
.. 

RISK AND CONTROL 
OF THE SOFTWARE 

MAINTENANCE PROCESS 
By Frederick G•llego1, CISA, CDE 

U.S. G•n•r•I Accounting Office 

The increased demand for new or improved com­
puter information systems application has created 
a number of problems for the DP professional, the 
users. an~ management. Staff and budget con­
straints limit the ability of DP managers to respond 
to this demand. Antiquated or poorly designed sys­
tems have created severe maintenance and perfor­
mance problems. leaving little time to develop new 
applications or improve existing systems. Thus, the 
risk and control of maintaining the software is an 
important goal , an institutional goal toward which 
all must work. 

In response to this goal, the National Bureau of 
Standards issued its Federal Information Process­
ing Standards Publi~~tion Number 106, entitled 
Guideline on Software Maintenance. The Guideline 
provides general guidance for managing software 
maintenance. It does a,, excellent job of com­
municating that improvements in the area of soft­
ware maintenance will come primarily as a result of 
the software maintenance policies, standards, 
procedures, and techniQues instituted and enfo.-ced 
by management. 

Controlling the software maintenance process is 
an institutional goal, which management, users, and 
DP professionals must collaboratively work toward. 
Controls involve how well they work together in per­
forming the software maintenance process illustrat­
ed in Figure A. 

Everything that is done to software affects its 

12 •Quality Data Processing 

Quality. Thus, measures should be established to aid 
in determining which category of changes are likely 
to degrade software quality, especially impact to the 

FIGURE A 

THE SOFTWARE 
MAINTENANCE PROCESS 

1. Determination of need for change 
2. Submission of change request 
3. Requirements analysis 
4. ApprovaJ/rejection of change 

request 
5. Scheduling of task 
6. Design analysis 
7. Design review 
8. Code changes and debugging 
9. Review of proposed code changes 

10. Testing 
11. Update documentation 
12. Standards audit 
13. User acceptance 
14. Postinstallation review of changes 

and their impact on the system 
15. Completion of task 

user. The primary purpose of change control is to 
assure the continued smooth functioning of the 
application and its orderly evolution. Examples of 
such controls are described in Figure B. 



• 

FIGURE B 

CONTROLLING SOFTWARE 
MAINTE+4ANCE 

1. Review and evaluate all requests for 
changes. 
-Require formal (written) requests 
for all changes. 
-Review all change requests . 
-Analyze and evaluate the type and 
frequency of change requests. 
-Consider the degree to wh ich a 
change is needed and its 
anticipated use. All changes should 
be fully justified. 
-Evaluate changes to ensure that 
they are not incompat ible with the 
original system design and intent . 
No change should be implemented 
without careful consideration of its 
ramifications. 
-Emphasize the need to determine 
whether the proposed change will 
enhance or degrade the system. 
-Approve changes only if the 
benefits outweigh the costs. 

2. Plan for and schedule maintenance. 
-Assign a priority to each change 
request . 
-Schedule each approved change 
request. 
-Adhere to the schedule. 
-Plan for preventive maintenance. 

3. Restrict code changes to the 
approved work. 

4. Enforce documentation and coding 
standards through reviews and 
audits. 

The inherent ri sks of software maintenance are 
many. If organ izat ions do not properly manage and 
a5sess the process from an inst itut ional standpoint . 
systems may evolve to a state where the organ iza· 
t1on ·s abil ity to meet the informat ion demands of its 
users and decision making will in fact affect its 
prof itability . The risks are having systems oevelop 
characteristics such as those shown in Figure C. 
The greater the number of characteristics found in 
a system, the greater the potential for disaster and 
need for redesign . 

FIGURE C 

CHARACTERISTICS OF SYSTEMS 
WITH HIGH RISK 

AND ARE CANDIDATES 
FOR REDESIGN 

1. Frequent system failures 
2. Code over 7 years old 
3. Overly complex program structure 

and logic flow 
4. Code written for previous 

generation hardware 
5. Running in emulation mode 
6. Very large modules or unit 

subroutines 
7. Excessive resource requirements 
8. Hard-coded parameters which are 

subject to change 
9. Difficulty in keeping maintainers 

10. Seriously deficient documentation 
11 . Missing or incomplete design 

specifications 

Software maintenance is an institutional issue 
which all participants must work towards in 
achieving controllable systems in these times of 
dynamic technological change. It is a goal which 
can be reached if supported by all concerned. 

January 1987 • 13 




