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In December 1989, the Congress established the Agency for Health Care Policy and Research 
(AHCPR) in an effort to improve the quality of health care afforded the American public. As an 
accompaniment to this action, you asked us to initiate a series of studies that would assist 
AHCPR with its mission and, most particularly, with determining the effectiveness of medical 
interventions. 

We have already provided you with the results of two of these studies: (1) an examination of the 
obstacles A~ICPR is likely to face in obtaining data on effectiveness and (2) a review of the 
methods medical specialty societies have used in the past to develop medical practice 
guidelines, based on whatever was known about treatment effectiveness. In this report, we 
assess ways to determine how well medical treatments actually work, and we present a new 
strategy for medical effectiveness research. This strategy, which we call “cross design 
synthesis,” represents an important step in advancing knowledge about the effectiveness of 
medical treatments, based not only on the results of randomized clinical trials but also on data 
reflecting wide experience in the field. 
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As agreed with your offices, we will send copies of this report to officials of the Department of 
Health and Human Services and the Agency for Health Care Policy and Research and to other 
interested parties, and we will make copies available to others upon request. If you have any 
questions or would like additional information, please caIl me at (202) 276-1854 or Robert L. 
York, Director of Program Evaluation in Human Service Areas, at (202) 2756885. Major 
contributors to this report are listed in appendix II. 
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Executive Summary 

Purpose With the establishment of the Agency for Health Care Policy and Research 
(AHCPR) in December 1989, the Congress launched an “effectiveness 
initiative” intended to improve the quality of health care through 
research-based development of national guidelines for medical practice. 
Credible guidelines require research results that are both scientifically 
valid and relevant to the conditions of medical practice. However, there is 
an increasing realization of just how elusive such information carp be, and 
the task facing the new agency is a difficult one. Thus, four Senators asked 
GAO to (1) review existing designs for evaluating medical effectiveness, and 
(2) suggest an evaluation strategy that avoids the limitations of existing 
approaches. 

Background There is a surprising lack of knowledge about “what works in medicine.” 
Many technologies in common use have never been evaluated. Many of 
those that have been evaluated remain of uncertain benefit to large 
numbers of patients. This is true even when the evaluations were 
conducted in accordance with the highest scientific standards. 

The problem derives from the fact that controlled studies are typically 
conducted under conditions much more limited than those in which 
medical practice occurs. In actual medical practice, what works well for 
one type of patient may be less effective for others. A new technique that 
is highly effective when implemented by an expert may prove less so in the 
hands of a relatively inexperienced medical team. And the treatment that 
improves patient survival may have surprisingly negative effects on other 
outcomes, such as quality of life. 

Scientific study designs are not suited to capturing the range of relevant 
patients, treatment implementations, and outcome criteria that count in 
medical practice. New research strategies are needed to provide the a 
broader knowledge that is essential for setting practice guidelines. The 
goal is to achieve a research base that is at once scientifically sound and 
relevant for real-life patients and physicians across the United States. 

Results in Brief 

Y 

GAO conducted a critical review of study designs that have been used to 
evaluate how well medical treatments “work.” GAO found that all study 
designs are characterized by strengths and weaknesses. GAO also found 
that certain combinations of designs are complementary: The chief 
weakness of one study design may occur in an area where another design 
is strong. In particular, two study designs were found to have 
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complementary strengths and weaknesses: randomized studies and data 
base analyses. Randomized studies can provide the scientific rigor needed 
to evaluate how well a treatment works, but their results may not be fully 
generalizable to the varied conditions of medical practice. Data base 
analyses are potentially weak because patients are not randomly assigned 
to alternative treatments. “Imbalanced comparison groups” may result. If 
corrected for this problem, the results of many data base analyses would 
be highly generalizable to actual medical practice. 

GAO'S review of study designs also showed that considerable work has been 
done in combining research results across existing studies. This work, 
known as meta-analysis or quantitative Uoverview,n sI3ecifIes ways of 
combining results from similar studies and, to some extent, across more 
diverse study designs. 

Building on findings from the review of designs, GAO devised a strategy 
that extends the logic of me&analysis. The new strategy, which GAO terms 
“cross design synthesis” and presents in this report, combines results from 
studies that have different, complementary designs. The goal of this 
strategy is to capture the strengths of the different designs, while 
minimizing weaknesses. This goal is pursued by capitalizing upon 
numerous existing techniques for assessing, adjusting, and combining the 
results of existing studies. 

To gauge the feasibility of cross design synthesis, GAO developed a 
methodology for combining results from two complementary 
designs-randomized studies and data base analyses. This methodology is 
designed to answer the following research question: 

Does the treatment “work” across the full range of patients for whom it is 
intended? a 

Based on the methodology presented here, along with a review of this 
work by a panel of experts, GAO concludes that cross design synthesis is 
indeed a feasible strategy. 

GAO’s Analysis 
” 

Drawing upon established and lesser known techniques from 
methodological and substantive literature in a number of fields, GAO 
identified the methods necessary for a synthesis ofrandomized studies 
and data base analyses. GAO brought these methods together in a series of 
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tasks and steps that constitute a first-cut methodology for determining 
whether a treatment “works” across the full range of patients. 

The four major tasks of this methodology are: 

l Assess existing randomized studies for generalizsbility across the full 
range of relevant patients (task 1). 

l Assess data base analyses for “imbalanced comparison groups” (task 2). 
. Adjust the results of each randomized study and each data base analysis, 

compensating for biases as needed (task 3). 
. Synthesize the studies’ adjusted results within and across design 

categories (task 4). 

Tasks 1 and 2, above, constitute the cornerstone of the strategy. A  cross 
design synthesis is needed only if assessment shows that randomized 
studies’ results are not generalizable to the relevant patient population. 
Further, a cross design synthesis is possible only if assessment shows that 
data base analyses are sufficiently valid. In-depth assessment also provides 
the basis for secondary adjustment of each study’s results (task 3). Finally, 
the assessments provide information that clarifies the range of,uncertainty 
associated with each study’s results. This guides key decisions in task 4. 

GAO reviewed and assembled existing techniques for assessing the 
generalizability of randomized studies (that is, techniques for conducting 
task 1). These techniques were combined in a set of appropriate steps, 
ranging from logic-based assessment of how patients were enrolled in 
these studies to empirical analyses that compare the patients who were 
enrolled to those who are seen in medical practice. 

GAO found that data base analyses are potentially weak, primarily because 
of the potential for imbalanced comparisons. Techniques for assessing 4 
imbalance (task 2) include reviewing the methods used by the primary 
analyst and conducting a variety of empirical tests. 

Adjusting individual study results to compensate for biases (task 3) 
involves using specific information generated by the assessments to 
standardize each randomized study’s results to distributions in the patient 
population (that is, to compensate for known underrepresentation and 
overrepresentation of key patient groups). The assessment information is 
also used either (1) to raise or lower each treatment effect estimated by a 
data base analysis, thus correcting for known imbalances in comparison 
groups, or (2) to define ranges that account for potential imbalances. 
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Finally, synthesizing adjusted results from both kinds of studies (task 4) 
requires a framework that defines appropriate categories of study design 
and population coverage, the use of meta-analysis techniques to combine 
study results, and the use of other statistical methods, such as projection, 
to extend results to patient groups not covered by randomized studies. 

As presented, cross design synthesis has three major strengths. First is the 
capacity to draw upon different kinds of studies that, in combination, can 
tell more about how medical treatments work than any single type of study 
can. Second, cross design synthesis can be applied to existing results in 
several areas because diverse study designs are increasingly being used to 
evaluate treatment effectiveness. Indeed, when the different designs yield 
divergent findings, there is a special need for this approach. Third, cross 
design synthesis is a new and efficient evaluation strategy that can 
produce the scientifically strong and generalizable information that is 
needed to develop credible medical practice guidelines. Given these 
strengths, GAO believes that the further development and use of this 
research strategy should be facilitated. 

The major limitation of cross design synthesis is that it requires 
investigator judgment for many decisions. Until refinements of this 
strategy are developed, GAO believes it is best applied by those 
knowledgeable about both a specific medical treatment and evaluation 
methods in general. 

Agency Comments Because this study did not examine AHCPR policies and procedures, GAO did 
not seek written agency comments. GAO periodically updated agency 
representatives on this study and received their informal reactions. 
Throughout, GAO consulted experts in medicine, statistics, meta-analysis 
and evaluation design; these experts are listed in appendix I. 
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Chapter 1 

Introduction and Review of Study Designs 
for Evaluating Treatment Effectiveness 

Our nation’s “crisis of health care” has been defined mainly in terms of 
excessively high and ever-escalating cost, but there are also indications 
that, despite its high cost, the quality of health care is not optimal. The 
problem of quality has many manifestations, some of which point to a 
surprising lack of knowledge about “what works in medicine.” Indeed, 
more and better information is needed if the nation is to discriminate 
among medical interventions that are clearly beneficial for specific types 
of patients, those interventions that are less so, and those that do little but 
drive up the costs of health care and may even subject some patients to 
needless risk. 

Many new medical technologies in common use have never been 
rigorously evaluated (Mosteller et al., 1985). Many other treatments have 
been evaluated in studies that cannot be generalized across the full range 
of medical practice. Numerous procedures have been routinely applied to 
broad classes of patients--even when the benefits of these procedures are 
uncertain for all patients or are known only for certain kinds of cases. 

Electronic fetal monitoring is a case in point. This procedure was 
introduced for use with high-risk births in the early 1970s and, over time, 
came to be used routinely for normal deliveries. Sizable scientific 
evaluations eventually showed that, aside from high-risk cases, electronic 
fetal monitoring is no more effective than the earlier standard 
approach-which was based on intermittent use of the stethoscope (see 
Leveno et al., 1986). Now, the American College of Obstetricians and 
Gynecologists has concluded that electronic fetal monitoring provides no 
benefit over the stethoscope (Sandmire, 1990). Hysterectomy and drug 
therapy for hypertension are two other examples of procedures that, in the 
absence of comprehensive studies, were applied to much broader patient 
groups than originally intended (see Mosteller et al., 1985). 

These examples suggest that the lack of information about “what works in 
medicine” has led to the overuse of certain treatments-one source of 
needless increases in the cost of care. There may also be parallel instances 
of underutilization, although these seem more difficult to identify. 

To improve the quality of health care, the Congress established the Agency 
for Health Care Policy and Research (AHCPR) in December 1989. One way 
in which the new agency is to move toward improved quality of care is by 
conducting rigorous evaluations to produce relevant information on the 
effectiveness of medical interventions. But there is an increasing 
realization of how elusive accurate information can be. beading experts in 
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medical effectiveness research call not only for the evaluation of more 
treatments using the strongest evaluation designs, but also for 
methodological work to strengthen the “weaker” designs (see Mosteller et 
al., 1986; Se&rest and Hannah, 1990). New strategies are needed because 
of the high cost and the inherent limitations of the strongest existing 
designs. 

Shortly before the creation of AHCPR, we received a request from Senators 
Mitchell, Glenn, Pryor, and Heinz to examine current methods for studying 
medical effectiveness and to suggest new strategies for effectiveness 
research. This report describes one of the efforts we have mounted in an 
on-going series responding to this request.’ 

Research on medical effectiveness spans several question areas, including, 
for example: (1) how well alternative interventions actually “work” in 
medical practice; (2) how evaluation results are linked to medical practice 
guidelines; (3) how widely certain treatments are used in community 
medical practice; and (4) the relative costs of alternative procedures. As 
implied in the Senators’ request, the first question area-how well 
alternative interventions actually “work” in medical practice-is central 
and poses many challenges. 

A  prior report in this series examined the second question area: the 
development of practice guidelines (GAO, 1991). As that report made clear, 
practice guidelines for any one disease or condition should be based on 
sound information about the relative benefits of the alternative medical 
interventions that are available. At a minimum, such guidelines should 
reflect the full degree of uncertainty in our current knowledge about the 
true benefits that specific treatments provide when they are applied to real 
patients in actual medical practice. Such considerations underscore the 
importance and primacy of the first question area, which we address in a 
this report. 

Specifically, in accordance with the Senators’ request, this report (1) 
reviews existing designs for evaluating how well medical interventions 
work, and (2) suggests an evaluation strategy that improves upon existing 
research approaches for answering this question. 

The scope of this study is limited in two important ways. First, we limited 
the review and development of study designs to those suitable for 

‘Earlier studies examined (1) the relevance of data base information TV key questions in medical 
effectiveness research (results reported in a briefing of committee staff) and (2) the experience of 
medical societies in developing practice guidelines (see GAO, 1991). 
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evaluating treatment effects, thus excluding diagnostic procedures. 
Second, in developing an improved evaluation strategy, we focused on 
achieving both (1) scientific rigor, and (2) generalizability of results across 
all patients for whom the treatment will be used in medical practice. As 
explained below, our focus on extending results across all patients is 
coupled with both the assumption of a constant treatment implementation 
and the assumption of a single, objective outcome criterion. Future work 
is planned to extend the results of this study beyond the limitations of 
these assumptions, 

Three Dimensions of “Effectiveness” is a commonly used word, which can be defined as the 

Effectiveness state of accomplishing a desired outcome. “Medicd effectiveness” refers 
to the extent to which treatments accomplish certain outcomes. For 
example, the effectiveness of aspirin for headaches might be determined 
by the degree to which aspirin alleviates the pain. Similarly, the 
effectiveness of Band-Aids for cuts would be indicated by whether they 
keep the wound clean, allow it to heal properly, and so forth. However, 
despite the clarity of these simple examples, medical effectiveness is a 
complex concept. 

The “effectiveness domain” involves three major dimensions or sources of 
complexity: (1) various types of patients and forms of the disease, (2) 
varying implementations of the treatment in question, and (3) varying 
outcome criteria. 

l A treatmentmay be more effective for certain kinds of patients than for 
others. For example, a given dosage of aspirin may be effective in helping 
patients with moderate headaches, but less likely to ease pain for those 
with severe migraines. 

l A treatment may be less effective if it is implemented in a less than optimal 6 
fashion. For example, the process by which Band-Aids help minor cuts is 
not mysterious; however, a study might show that, in many instances, 
Band-Aids did not protect cuts from either dirt or abrasion because they 
were put on haphazardly by children and either fell off quickly or never 
adequately covered the cut in the first place. As this example shows, there 
is a difference between the potential benefit of a medical intervention and 
the realization of that potentiaL2 

l A treatment may appear to be more or less effective depending upon the 
particular type of outcome measure that is used as a criterion. For 

2Medical effectiveness has been defined as incorporating assessments of both a treatment’s potential 
(generally referred to as ‘efficacy”) and the realization of that potential. - 

Page 12 GAO/PEMD-92-18 Crose De&n Synthesis 

; . 
!Pd: ,_:, ., ; 
,.’ “, 



Chapter 1 
Introduction and Review of Study Deeignr 
for Evaluating Treatment Effectivenesll 

example, aspirin might appear to “work well” if the outcome measured 
was pain reduced (or not) within 16 minutes. But it might appear less 
effective on a criterion of all pain eliminated within 6 minutes. 

Taken together, the three dimensions shown in figure 1.1 define what we 
term the “effectiveness domain.” 

Figure 1 .l: The Effectiveness Domain 
Patient/disease 

The effectiveness of any one treatment (for example, aspirin) may be 
different for different points within this domain. That is, the precise 
effectiveness of a treatment (such as aspirin) depends upon (1) the 

a 
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specific type of patient to whom it is administered (for example, young, 
otherwise healthy patients with severe migraine headaches), (2) the 
specific form or level of the treatment that is administered (for example, 
!300 mg of aspirin), and (3) the specific outcome measure deemed most 
salient (perhaps whether pain is at least reduced somewhat in 16 
minutes).3 For any one point in the domain, a patient with specific 
characteristics receives a treatment in a specific form, and a specific type 
of outcome is measured. 

The size of the effectiveness domain is determined, first, by the realities of 
medical practice; that is, whether the patients who need the treatment in 
question are a varied group, whether the treatment is implemented in 
different ways, and whether different kinds of outcomes really do matter. 
Thus, depending upon the particular treatment in question, one or more 
dimensions may not be relevant. For example, a centrally produced drug 
administered in hospitals at a precise dosage would not vary substantially 
on the treatment implementation dimension. In other instances, all three 
dimensions are potentially relevant. 

Second, given the realities of medical practice, the size of the domain is 
limited by the robustness of the treatment effect. That is, a very robust 
treatment (such as penicillin for common infections) likely affects even 
very different kinds of patients in the same way. The benefits of such a 
treatment may not depend, in a substantial degree, on exactly how it is 
implemented. And whether or not such a treatment appears to help 
patients probably does not depend upon the specific outcome criterion 
used. But the effectiveness of other, less robust treatments can vary across 
one, two, or all three of these dimensions. 

For many treatments, the size of the effectiveness domain (that is, the 
dimensions of medical practice and the robustness of the treatment across 
these dimensions) is unknown. And if available information covers only 
certain kinds of patients, implementations, and outcome measures, it is 
not possible to determine how consistent or robust a treatment’s effect 
really is. 

Thus, a study that captures only a very limited number of points may not, 
by itself, adequately capture the full story or “truth” about the 
effectiveness of the treatment in question. If a rigorous scientific study 
includes only certain kinds of patients, only selected-perhaps 

31nteractions between dimensions are possible. For example, a treatment may be equally effective in 
improving quality of life for all patient age groups, but improve survival only for younger patients (see 
Zelen and Gelman, 1986). 
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optimal-forms of implementing the treatment, and a single outcome 
measure, that study can only tell a small part of the story. Such a study 
may be a poor guide for making many of the decisions required in medical 
practice. Certainly, an equally scientific study of the same treatment could 
yield very different results if it focused on different kinds of patients, 
implementations, and outcomes. 

Ideally, information that serves aa a basis for setting medical practice 
guidelines would cover the complete effectiveness domain, Scientific 
studies have often omitted large portions of that domain. Thus, our review 
of study designs and our proposal for an improved evaluation strategy is 
aimed at feasible approaches for achieving greater coverage of that 
domain, while maximizing scientific rigor. 

The Scope of Our 
Study 

In developing the proposed evaluation strategy, we decided to target the 
simultaneous achievement of scientific validity and extended coverage 
with respect to one of the three dimensions of the effectiveness domain: 
the patientklise~dimension. Thus, our study focuses on designs and 
strategies for evaluating treatment effectiveness across the full range of 
patients, assuming a constant treatment implementation and a single 
outcome criterion. 

Extending Patient The primary effectiveness question we deal with is: 
Coverage 

l What is the average effect of the treatment, calculated across all patients 
for whom it is intended (or to whom it is applied in medical practice)? 

Cronbach (1982, p. 166) has emphasized that if a general treatment policy 
is selected on the basis of “what works best on average,” then the A 
“average” for patients participating in a study should match the average for 
all patients to whom the general policy will apply. 

Related questions concern how effective the treatment is with respect to 
different patient subgroups. For example, does the treatment provide 
more or less benefit for patients with different severity of disease or for 
patients in different demographic groups? Such questions are important 
because, to the extent that different kinds of patients (for example, the 
elderly or the most severely ill) respond to a treatment differently than 
other kinds of patients do, this information should be given to clinicians 
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(or incorporated into guidelines) so that each patient can receive the most 
effective individual care. 

Simplifying Assumptions As noted above, our decision to focus on extending coverage of scientific 
results across the patient dimension (that is, to develop a strategy for 
studying how well a treatment works across all relevant patients) is 
coupled with two important assumptions about the other two dimensions 
of the effectiveness domain. 

l First, we assumed that there is a constant implementation of the 
treatment, as would occur, for example, for a centrally produced drug 
administered by hospital personnel in a set dosage. 

l Second, we assumed that a single, relatively objective outcome measure is 
of interest; for example, byear m rvivaL 

The decision to focus on a single dimension in this initial study was made 
in light of the complex issues relevant to each of the three dimensions. 
Indeed, the foregoing discussion of the effectiveness domain, though 
instructive, represents merely the “tip of the iceberg.” For examtile, the 
treatment implementation dimension involves not only such issues as 
surgical skill, dosage level, and so forth, but also the settings in which 
treatments are given and even the kind of information that is given to 
patients (which may have psychological effects4 ). Issues associated with 
the outcome criterion dimension have involved the varying 
subjectivity-objectivity of different measures and the need for study 
designs to incorporate the blinded assessment of outcomes (especially for 
subjective measures; see T.C. Chalmers et al., 1981). 

Our decision to focus on extending coverage across the patient/disease 
dimension in no way implies a lesser importance of extending coverage a 
across the treatment implementation or the outcome criterion dimensions. 
These need to be examined in future work.6 

‘The importance of the different types of information about a treatment that might be given to patients 
is suggested by the “placebo effect”; that is, the effect of an inactive substance that patients are told 
may or may not be an active drug (see, e.g.,*Beecher, 1966;Rosenthal, 1985; Kirsch and Weixel, 1888, 
Wilkins, 1985). Patients enrolled in placebo studies are provided with information that is different from 
what would be given them in medical practice; for example, those receiving the %A” medicine are 
sometimes told they may or may not be receiving a placebo. 

%s previously noted, the most important next steps for future work may involve one or both of these 
dimensions. For example, a future study might examine whether a methodology parallel to the steps of 
cross design synthesis proposed in this report can be used to extend the coverage of effectiveness 
information across the varied treatment implementations that occur in actual medical practice. 
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Review of Existing 
Study Designs 

Through the years, a variety of studies-with different desigm+have been 
used to evaluate treatment effects. Some study designs have been deemed 
superior to others; each design, however, has characteristic strengths and 
weaknesses. In this review, we discuss early approaches, randomized 
studies, meta-analyses, and data base analyses. 

Early Approaches Considering that the practice of medicine dates back to antiquity, it is only 
relatively recently (that is, within the past 150 to 200 years) that studies of 
treatment effectiveness have moved beyond personal observations by 
individual clinicians. The personal-observation approach relies on the 
expertise and acumen of the chnician to interpret the observed 
consequences of treating a specific patient with a particular therapy. The 
strength of this approach is that it incorporates clinically relevant 
experiences into the conclusions and thus provides richness to them.s But 
the weaknesses of personal observation are many and include the 
possibility that the patient outcomes observed are coincidental to the 
treatment rather than caused by it. 

Perhaps the earliest instance of a more objective approach is bind’s 18th 
century research on treatments for scurvy conducted on board the 
Salisbury at sea (see Pocock, 1983, citing hind, 1753). bind took 12 very 
similar cases and assigned two each to six different treatments, finding 
that the treatment consisting of oranges and lemons produced the best 
result. 

P. Louis (1834,1835) made explicit the limitations of the usual subjective 
approach and developed the “numerical method” in 19th century France.’ 
The numerical method emphasized exact observations, exact recordings 
of treatments (and deviations from intended treatment), and numerical 
comparisons of patient outcomes. 4 

Since that time, a variety of controlled designs have been developed. For 
example, historical control trials compare outcomes for patients currently 
receiving a new treatment to historically recorded outcomes for patients 
who, at earlier times, had received different treatments. Such studies 
apparently provided the evidence supporting the majority of cancer 

Indeed, case studies are still routinely reported in the New England Journal of Medicine, and many 
medical decisions are probably still made on the basis of individual physicians “trying out” a new drug 
or a new diagnostic test to ‘see if it works” (Sechrest and FIgueredo, 1991, p. 7). 

‘It was Louis’ use of this method that led to a “decline in bleeding as a standard treatment” for many 
illnesses (Pocock, 1983, p. 16, citing P. Louis, 1836). 
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Randomized Studies 

treatments in use today (Mike, 1982). Logically, however, the difference 
between the average outcomes cannot be attributed to the treatments 
received unless the patients in the current study and the patients who 
historically received the alternative treatment are equivalent. A  historical 
control trial typically cannot ensure the equivalence of these groups. One 
reason, among others, is that patients who are selected for the current 
study (and who agree to “try out” the new treatment) may represent a 
special group; these patients, then, would not be comparable to the more 
typical patients used as historical controls (see Pocock, 1983; Gehan, 1934; 
Sacks et al., 1933). 

Numerous other evaluation designs, termed “quasi-experiments” (see 
Cook and Campbell, 1979), include the one-group pretest-posttest design, 
the regression-discontinuity design, and many, many others. Despite 
differences in these designs (and in their rigor), they share with historical 
trials an inability to ensure the isolation of the treatment effect. 

The 1920s brought a significant breakthrough in controlled trials: the 
randomized design (R.A. Fisher, 1926,1936* ). Relying on a chance process 
(randomization) for assigning current patients to two alternative 
treatments ensured that the only source of differences between the two 
groups, at baseline, would be chance? Thus, one could assess the 
likelihood that an observed difference in outcomes occurred because of 
the difference in treatments rather than chance. Given an objective 
outcome measure, one could be relatively sure of the validity of this 
assessment. 

Strictly random procedures preclude the possibility that investigators 
would (even unconsciously) assign the healthier patients to receive the 
new treatmentor usual care. In addition, there is a statistical expectation 4 

of equivalence in the two groups. Probability theory allows investigators to 
estimate the size of the average difference in outcomes that might occur 
by chance alone-provided that a random process was used to assign 
treatments to individual patients. Thus, only a difference in outcomes that 
is larger than would be expected on the basis of chance alone will be 
interpreted as a statistically significant indicator of a treatment effect. 

The development of the randomized design has also been linked to earlier work by Neyman (1923), 
given a newly translated version of Neyman’s 1923 theoretical work (see Speed, 1990; Neyman, 1990, 
Rubin, 1QQOb). 

BRandomization of treatment assignment can be accomplished by flipping a coin, drawing lots, using a 
table of random numbers or using an appropriate computer program. 
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The first full-fledged ‘random clinical trials” in the medical area were 
conducted in the 1940s (Pocock, 1988, citing Medical Research Council, 
1948 and 1950). Two well-known examples of randomized studies 
conducted since that time are the Salk vaccine placebo trial (Francis et al., 
1965; Meier, 1972) and the long-term breast cancer chemotherapy trial (B. 
F’isher et al., 1975). Specifically: 

l Rates of poliomyelitis among schoolchildren assigned the Salk vaccine 
were compared to rates among those receiving a “placebo.“1o Assignment 
to vaccine or placebo was blinded, and the use of coded supplies in a 
predetermined order was the virtual equivalent of random assignment.11 

l Ten-year survival of breastcancer patients randomly assigned to a new 
treatment, consisting of surgery and a#.want chemotherapy, was 
compared to outcomes of patien%$?&signed to the usual treatment, 
consisting of surgery only. 

Randomized clinical trials (or, more simply, randomized studies) have 
been deemed, statistically, the most suitable design for addressing the 
question of a medical treatment’s efficacy (see, for example, Mosteller et 
al., 1985). But such studies are not without weaknesses. 

The weaknesses of randomized studies derive primarily from their 
typically high cost.12 Because of their high cost, randomized studies have 
been used to formally evaluate relatively few medical interventions, 
Further: 

. the randomized studies that have been conducted have typically focused 
on narrow questions (such as, what is the effect of 50 mg of a particular 
drug for patients in a limited age range; for example, 4566 years of age); 
and 

4 

‘OA placebo is an inert substance or procedure given to subjects assigned to the control group of some 
experiments. The purpose is to prevent the patients themselves, the physicians judging patients’ 
outcomes, or both from being infiuenced by knowing which treatment each patient received (Rirsch 
and Weixel, 1QSS). Depending upon the treatment in question, placebos may or may not be feasible. 
The inability to use a placebo control (i.e., the inability to “blind” patients or physicians judging 
outcomes) increases the uncertainty associated with the results-to a marked degree for subjective 
outcomes, such ss perceptions of pain, and to a lesser degree for objective outcomes, such as sun?val. 

%I addition to the placebo trial, the Salk vaccine study included a nonrandomixed study in which 
second-grade children were given the vaccine and their outcomes were compared to first- and 
third-graders who were not given the vaccine (see Meier, 1972). 

%her weaknesses do exist For example, a randomized study is not suitable, first, from an ethical 
viewpoint, wherever there would be negative effects on some participants, and second, from a 
practical policy viewpoint, wherever there is a lengthy waiting time involved in determining future 
patient outcomes (Rubin, 1974). 
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l many randomized studies have been able to enroll only small numbers of 
patients. 

These weaknesses have long been recognized (see, for example, Rubin, 
1974). 

Indeed, in the interests of achieving a more tightly controlled comparison, 
investigators who can afford to enroll only a small number have 
deliberately drawn study participants from a limited subset of patients. (If 
all patients are similar, then by definition, the comparison groups are 
composed of comparable patients.) 

Elderly patients and others with comorbidities are often excluded from 
randomized studies for two reasons. FJrst, investigators fear that adverse 
reactions to a new treatment may be greater among “weaker” patients. 
Second, investigators expect that a greater number of such patients will 
die during the study from other diseases and conditions.13 In all cases 
where certain types of patients are excluded, there is a threat that results 
might not be generahzable to all patients. 

The generahzability of results can vary greatly from one study to another. 
For example: 

9 Some randomized studies are conducted on patients who approximate a 
2nicrocosm” of the total patient population, thus allowing generalization 
from the observed results. One example is the placebo trial in the Salk 
vaccine study cited above--but, even here, there were some differences 
between study participants and those schoolchildren who did not 
participate. 

l More often, however, randomized studies totally exclude certain patient 
groups. A  well-known example is the MRFIT’~ study (I&r&on and Morgan, 8 

1986; Neaton, Grimm, and Cutler, 1987), which excluded women.16 

i31ndeed, an increasing likelihood of death for other reasons characteriaes each older age group of 
patients. As Men and Gelman (1986) point out, when the key outcome of a randomized study is 
survival, the inclusion of older patients is associated with the dilution of results. For example, if a 40- 
to 44-year-old woman diagnosed with node-positive breast cani within a lo-year period, the 
chances are 83 to 1 that the cancer was the cause of death, by contrast, for a similar woman aged 7b70 
at diagnosis, the chances are only 1.3 to 1 that the cancer wss the cause of death. Thus, much larger 
samples are required to achieve significant results for elderly patients. 

IThe Multiple Risk Factor Intervention Trial targeted males at risk of heart disease. 

When certain kinds of patients are excluded from a t&I, it Is often not known whether or not these 
patient groups would respond to the treatment in a similar fashion to those who were included. 
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l Other randomized studies include key patient groups, but underrepresent 
or overrepresent their relative numbers. For example, a randomized study 
may draw participants predominantly from younger age ranges, even 
though the patients that treatment is intended for are predominantly 
elderly.ls 

l In still other studies, hidden biases affect the patient selection process, 
and it may not be obvious--even to the investigators themselves--exactly 
which groups of patients are fully represented, which are 
underrepresented, and which (if any) are completely excluded. 

Of course, wider recruitment may not always be an appropriate solution, 
especially for relatively small-sample studies. But this does not change the 
fact that the genera&ability of results is a potentially important problem 
in each such study. 

Meta-analyses The limited size and scope of many individual studies has been associated 
with inconclusive and, sometimes, seemingly inconsistent findings. This 
has led to the development of a new form of research that is still 
undergoing refinement. “Metaanalyses” (Glass, 1976; Glass, McGaw, and 
Smith, 1981; Hedges and Olkin, 1985; Wachter and Straf, 1990), or 
“quantitative overviews” as many medical researchers call them (Yusuf, 
Simon, and Ellenberg, 1987; Ellenberg, 1988; Pete, 1987), expand 
knowledge by statistically combining the results of multiple studies-often 
randomized studies-that all address essentially the same research 
question (Ellenberg, 1988). 

As explained by T. Louis, Fineberg, and Mosteller (1986, pp. l-2): 

“A meta-analysis is to a primary research study as a primary research study is to its study 
subjects. The meta-analyst first decides on a research question (such as the relation 
between diet and hyperactivity), searches the literature for relevant primary studies, and 
then summarizes these studies with both descriptive and numeric presentations. Just as the 
primary study requires an admission rule for patients, so the meta-study requires an 
admission rule for primary studies (what sorts of primary studies should be combined?), a 
measurement rule (what endpoints are of primary interest and how should they be 
quantiried?), and an analysis plan (what summaries, statistical comparisons, and estimates 
should be produced?).” 

leFor examples in the area of coronary artery disease, see Califf, Fryor, and Greenfield (1986). 
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, 
Meta-analysis was fmt practiced by social scientists who used a 
standardized “effect size” to combine results from studies with different 
outcome measures (for example, different measures of self-esteem). hater, 
many medical researchers combined only those studies that had the same 
“endpoint” (for example, byear survival) or only those with random 
assignment or only those that met both criteria.” 

By combining the results of many similar, small studies, using rigorous 
methods, the meta-analyst can approximate the results of a single large 
study at a tiny fraction of the cost of fielding a new large study. Thus, the 
most widely recognized advantage (or strength) of meta-analysis is the 
increase in sample size-and thus in statistical power-that a “pooled” 
estimate affords (bight, 1934). W ithin any one study, the numbers of 
patients in a subgroup may not be large enough for a stable estimate of the 
treatment’s effect in that particular subgroup,16 but using meta-analysis to 
combine results observed for that subgroup in multiple studies allows 
greater stability. 

Further, the meta-analyst can combine the results of several randomized 
studies, each of which covers different portions of the patient population. 
For example, he or she might combine results of a study that covers male 
patients (only) with another that covers females only. The combined 
results of such studies more closely approximate the total patient 
population. 

Light (1934; Light and Pillemer, 1934) has pointed to another advantage of 
meta-analysis. The differences in various primary studies’ estimates of a 
treatment’s effect may have come about because of study-to-study 
variations in the research process. This strength of meta-analysis is 
illustrated by Lipsey’s (1992) analysis of a sample of 443 delinquency 
treatment studies. Using hierarchical multiple regression, Lipsey explored 4 

the impact of cross-study differences (for example, differing 
characteristics of the delinquents in each study) on the observed effect of 
the treatment. His objective was to differentiate the unique impact of each 
type of cross-study difference. (For example, the impact of differing 
characteristics of delinquents would be distinguished from the impact of 

ITIn England, the “Oxford group” (Richard Pete and others) were among the leaders of this effort (see 
Ellenberg, 1988). A recent example of this approach is the twovolume set of meta-analyses assessing 
treatments in pregnancy and childbirth (I. Chalmers, Enkin, and Keirse, 1980). For a methodological 
review of me&analyses of randomized studies, see Sacks et al. (1987). 

‘*For example, within a single breast cancer study, the number of premenopausal women with three or 
more positive nodes may be too small to support a separate estimate of the benefits of adjuvant 
chemotherapy. 
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other cross-study differences, such as sample size, attrition, amount of 
treatment given.) 

Building upon work by bight and by Lipsey, meta-analysts in the medical 
area could investigate, for example, whether studies evaluating a 
treatment on healthier patients show greater (or less) benefit than do 
studies conducted on more severely ill patients or those with 
comorbidities. 

Rating the quality of each study that is a candidate for inclusion in a 
met&analysis has been a focus of many working in this field (see T.C. 
Chalmers et al., 1981). Some meta-analyses have examined the relationship 
between the size of the observed treatment effect and the quality score of 
the study. Others have excluded studies deemed to be of lower quality or 
have, in effect, “written off such studies (see Cordray, 1990b). Rubin’s 
(199Oa) approach, described below, includes all studies. 

The most obvious limitation of meta-analyses is that the results do not 
extend beyond the set of studies that have already been conducted. A 
meta-analysis of randomized studies cannot cover elderly patients if no (or 
virtually no) elderly patients were included in these studies. And the 
stricter the inclusion criteria, the more limited the pool of qualifying 
studies and available results (see Cordray, 199Oa, 1990b). As previously 
noted, many meta-analysts’ assessing medical treatment effects have 
excluded aJl nonrandomized studies; however, to capture more 
information, some have included more diverse studies. For example, 
American social scientists working in the medical area (Wortman and 
Yeaton, 1983) included results of both randomized studies and 
nonrandomized “quasi-experiments”; results were stratified by type of 
study design.rO 

Critics of meta-analysis fear that the weaknesses and biases of existing 
studies may be compounded when they are quantitatively combined. For 
example, individual studies on a topic-far from being independent-may 
have been conducted by a single researcher and his (former) students. A 
convergence of results across such studies gives the appearance that a 
certain fmding has been independently confirmed; in reality, such 
convergence may be merely an artifact, arising from masked correlations 

‘gMeta-analyses focusing not on treatments but on risk factors for various diseases have combined 
data from epidemiologic studies, which are not randomized. One example of such a study is the 
me&analysis of studies of the relationship of blood pressure to stroke and coronary heart disease 
(MacMahon et al., 1990). Another is the meta-analysis of studies of the relationship between alcohol 
consumption and breast cancer (Longnecker et al., 1988). 
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between results and the affiliation of the researchers involved. (Such 
problems would be mitigated by combining diverse types of studies that 
are more likely to have been conducted by mdependent investigators and 
to have complementary strengths and weaknesses.) 

As pointed out by Rubin (199Oa), much meta-analysis has been oriented 
toward summarizing existing studies-rather than toward using existing 
studies to discover scientific reality. The distinction is an important one: 
Typically, meta-analysts seek to include all studies that have been 
conducted on a topic (or all that meet preset inclusion criteria), thereby 
representing the work that has been done in the field. By contrast, few 
seek to ensure that all relevant patient population groups are adequately 
represented; yet such representation is an equally--or more-important 
sampling issue (Hedges, 1990; Light and Pillemer, 1984). 

Most recently, alternative or expanded ways of synthesizing study results 
have been suggested by Eddy (Eddy, 1989; Eddy, Hasselblad, and Shatter, 
1989; Eddy et al., 1988) and by Rubin (1990a)-and have also arisen in the 
work or comments of other researchers in the medical field. 

Specifically, Eddy has constructed models interrelating “pieces of 
evidence”; that is, results from diverse studies that may address different, 
but related, research questions. Results of studies estimating numbers of 
women receiving mammography might be combined with studies of its 
effectiveness in diagnosing breast cancer and vvith studies of the impact of 
early diagnosis on patient survival. Eddy’s work focuses on ways of 
adjusting and combining the results of diverse studies that address these 
questions, given knowledge of certain biases; it does not focus on ways of 
determining the nature and degree of bias in each study. 

Rubin (199Oa) has proposed that rather than exclude all but the highest 
6 

quality randomized studies, the metaanalyst should use all existing studies 
to project results for an “ideal study.” Rubin’s reasoning is that all studies 
are imperfect and that extrapolation to the ideal study would, as 
appropriate, give more weight to higher quality studies. Presumably, the 
diverse set of studies to be included (randomized and nonrandomized) 
would allow the projection to cover the full population of patients. Glass 
(1991) endorses Rubin’s view. 

Mosteller (1990b, p. 189, citing remarks of Singer) has also suggested the 
possibility of synthesizing information from diverse sources,, although he 
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notes that “executing such a maneuver may be challenging, and convincing 
others of its validity even harder.” 

In a somewhat similar vein, a recent study by the Oxford group (Collins et 
al., 1990) included (1) a traditional meta-analysis of randomized studies of 
the impact that blood pressure drugs have on stroke and coronary heart 
disease, and (2) a separate presentation of data from epidemiologic 
studies of the natural or usual relationship of blood pressure to stroke and 
coronary heart disease. The epidemiologic data set the “context” for 
randomized studies’ estimates of drug effects. 

Other meta-analysts attempting to compare the “relative merits of 
allogeneic bone-marrow transplantation. . . and conventional 
chemotherapy” (Begg and Pilote, 1991, p. 899; see also, Begg, McGlave, 
and Pilote, 1989) found no published randomized studies, a few small, 
nonrandom comparative studies, and a number of larger uncontrolled 
studies. They therefore explored ways of combining the existing 
nonrandom information derived from a variety of less than optimal study 
designs. 

Data Base Analyses W ith the advent of the computer age, another type of study has appeared: 
the data base analysis. 2o Computerized data bases routinely maintain 
records for thousands of patients. In many data bases, the record for each 
patient includes information on his or her diagnosis, treatment, and 
outcome (see Pryor et al., 1986; Connell, Diehr, and Hart, 1987; Tierney 
and McDonald, 1991). In recent years, such data bases have often been 
made available for public use, with information identifying specific 
patients stripped away. Recently, anslysts interested in medical 
effectiveness have begun to use these data bases (see Ellwood, 1988; 
Roper et al., 1988; McDonald and Hui, 1991).21 

Nonrandomized studies have long been recognized as generally providing 
superior coverage (see Rubin, 1974). Many observational data bases 
capture the treatments and outcomes that occur in the normal course of 
medical practice-and a fuller range of patients than any selective study 

“Before computer technology for storing and retrieving patient information, certain hospitals and 
clinics archived patient records. Notably, the Mayo Clinic kept records on individual patients from the 
beginning of this century (Pryor et al., 1986, p. 881, citing Kurland and Molgaard, 1981, and Bill et al., 
1978). 

21This form of research has often been referred to aa “outcomes” research because it explores medical 
effectiveness by comparing the outcomes of patients receiving a new treatment to outcomes for other 
patients receiving usual care. 
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could approximate. For example, the Medicare data base includes the vast 
majority of all elderly patients in the nation.22 The SEER Data Base includes 
all cancer patients entering all hospitals in several large geographic areas.23 
The Duke Databank for Cardiovascular Disease includes all patients with 
chest pain at Duke University Medical Center (Pryor et al., 1985). It 
contains a wealth of data on each patient’s demographic profile, diagnosis, 
treatment, and eventual outcome. By contrast, data bases comprised of 
patients participating in a group of selective studies (see, for example, 
Moon et al., 1987) would clearly not qualify as approximating the full range 
of patients.” 

A recent study by Krakauer (1986) provides an example of a data base 
analysis that evaluates treatment effectiveness. This study of end-stage 
renal disease patients who had received transplants compared two 
alternative immunosuppressive regimens: cyclosporin (an expensive drug) 
and conventional therapy. Using a data base jointly developed by the 
Health Care Financing Administration (HCFA) and the Social Security 
Administration, Krakauer compared outcomes (graft retention and costs) 
for the two groups of patients; the results showed that cyclosporin 
reduced graft failure-and did so without incurring additional cost 
(because the need for dialysis was also reduced). The relative risk of graft 
failure was used’to estimate the treatment effect. In estimating the relative 
risk, adjustments were made equating the comparison groups on age, race, 
various prognostic factors, and comorbidities (for example, diabetic 
nephrosclerosis). 

Data base analyses (or outcomes research) have a number of attractive 
characteristics. An obvious advantage is low cost, because the data have 
already been collected. Another advantage is that many data bases cover 
the full range of patients receiving the treatment in medical practice. This 
is important, given the limited coverage in randomized studies and even 4 
meta-analyses of randomized studies.26 

%e Medkare data base ia msintalned by the Health Care Financing Administration (HCFA), which is 
part of the U. S. Department of Health and Human Services. It is sometimea referred ti aa the HCFA 
data base. 

%e Surveillance, Epidemiology, and End Besulta (SEER) Data Base iB maintained by the National 
Cancer Institute. 

“Of course, a researcher should asseas the coverage that each data base provides for the specific 
patient population in question. For example, hospital data bases may be far from complete for 
conditions and diseases where substantial numbers of patients are not hospitalized. 

?3till other advantages of data base analyses include (1) their tlmelinees (since the outcomes of 
treatmenta have already occurred and there is no need to wait, e.g., 10 years, to assess long-term 
survival); and (2) their freedom from the ethical concerns that manipulation of treatments in 
randomized studies sometimes involves (see Rubin, 1974). 
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Despite these tivantages, the outcomes approach suffers from several 
potential weaknesses. These include limited patient descriptors, potential 
recording and transcription errors, and missing data, to name a few.26 
Given our focus on estimating treatment effects, the chief weakness of 
data base analyses-and indeed all observational studies-is undoubtedly 
the likelihood that the patient groups being compared were not 
comparable at baseline. If so, then differences in outcomes forpatients 
who received different treatments may be coincidental to and not caused 
by the difference in treatments. 

This problem is referred to in this report primarily by the term 
“comparison bias.” Other terms, used in this report to refer to specific 
aspects of this problem, include: “treatment assignment bias”. and 
“imbalanced comparison groupsn2’ The potential for comparison bias can 
be appreciated when one realizes that treatment assignment is often 
biased: the healthier patient, who has a relatively mild case of a disease 
and a high likelihood of a favorable outcome, may be considered a “good 
candidate” for a certain treatment and is therefore likely to receive it. By 
contrast, the patient with a more severe case and a worse prognosis may 
be assigned to an alternative treatment.28 The upshot is, oftentimes, 
imbalanced comparison groups in data base analyses. 

To adjust for initially imbalanced comparison groups, analysts have turned 
to a variety of statistical methods.% But unfortunately, no after-the-fact 
adjustment can be counted on to approximate the assurance of 
equivalence that randomization provides. 

Implications of the 
Review of Designs 

The foregoing review of study designs indicates, first, that two sets of 
factors contribute to the results of any study. These are (1) the real 
effectiveness of the treatment, and (2) the “filter” imposed by the design of 4 

“‘A particularly vexing problem for many data base analysts is the lack of follow-up as individual 
patients move in and out of the “net” or “capture area” of a particular data base. However, some data 
bases are not affected by this problem (Medicare), and others solve it through telephone follow-up 
(Duke). 

27Stili other terms for this problem, which are not used in this report because of the potential for 
confusion, include “selection bias” (Byar, 1980) and ‘nonignorable treatment assignment” (Rubin, 
1978). Selection bias can refer to either (1) selection of a nonrepresentative sample for a study or (2) 
biased selection of individuals who will receive a particular treatment-or both. “Nonignorable 
treatment assignment” means that the process by which treatments were assigned cannot be ignored 
when making a comparison of outcomes. 

mFor example, the stage of a cancer patient’s disease often determines which therapy is advised. 

%is is sometimes referred to as “controlling for confounding factors.” 
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a less-than-perfect study. For example, a given study result (such as: “there 
is a 60-percent reduction in tumor size for the treatment group”) has been 
produced not only by the reality of the effect of the treatment on tumor 
size, but also by such idiosyncracies as who participated in the study, who 
was assigned to which treatment, how tumor size was measured and 
recorded, the type of analysis that resulted in the SO-percent figure, and 
possibly other factors. 

Thus, to the degree that a study’s weaknesses and biases are not 
understood, the meaning of that study’s results is uncertain. Each study’s 
strengths and weaknesses should be assessed and taken into account 
when interpreting its results, in order to reduce or minimize the potential 
for misinterpretation, Further, no single study-indeed no single type of 
study design-is likely to reveal the complete effectiveness domain 
clearly.W 

Secondly, the review of designs indicates that combining research results 
through meta-analysis has a number of advantages. Mela-analysis is less 
expensive than studies that require new data collection, and it often allows 
one to reach broader conclusions than are possible in a single study. As 
typically practiced thus far, meta-analysis has limited ability to answer our 
question on the effectiveness of a treatment across all patients. However, 
efforts to synthesize study results are still undergoing refinement and 
change. 

Thirdly, the review of study designs indicates that the strengths and 
weaknesses of different designs are often complementary. Two very 
different study designs-randomized studies and data base 
analyseg-have complementary strengths and weaknessesa By definition,’ 
the primary strength of the randomized study is controlled comparison, 
whereas the chief weakness .of the data base consists of uncontrolled and 4 
potentially imbalanced comparison groups (McDonald and Hui, 1991). And 
given the effectiveness question under study in this report, the primary 

“Recently, well-known analysts (Richard Pete of Oxford and Paul Meier of the University of Chicago, 
among others) have called for exceedingly large controlled studies. Indeed, some have informally 
stated a belief that every patient in the United States should be enrolled in a randomized trial. The 
costs of such large enrollments might be offset to some degree by collecting information on fewer 
variables, but this would limit poesibilities for estimating differential effects of the treatment in 
different patient subgroups. (It would also limit estimation of differential effects for different 
implementations of the treatment and for different outcome criteria) And even if measurement of 
fewer variables were deemed appropriate, it seems unlikely that vast undertakings would be feasible 
for most medical intqventlona-or that patients would agree to accept random assignment to 
treatments. 

Wther researchers-notably, Cahff, Pryor, and Greenileld (19S6)-have also viewed randomized 
studies and data base analyses as complementary designs. 
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strength of a data base analysis lies in its ability to capture all aspects of 
actual medical practice-in particular, the full range of patients for whom 
a treatment is intended or actually used; by contrast, the key weakness of 
randomized studies is their potential lack of generalizability (see Califf, 
Pryor, and Greenfield, 1986). 

In other words, when well conducted, randomized studies should provide 
the valid comparisons needed in scientific evaluations; however, if such 
studies provide only limited coverage of the effectiveness domain, their 
results may not be sufficiently genera) to serve as a basis for setting 
national guidelines for medical practice. In such situations, it may be that 
data base analyses can be used ,to complement .randomized study results. 

The primary strengths and weaknesses of randomized studies and data 
base analyses are summan ‘zed in table 1.1. 

Table 1 .l : Compkmentarity of 
Strengths and &aknesse; of Two 
Study Dsslgns 

Study design 
Randomized studies 

Primary strength Primary weakness 
Controlled comparison; Potential lack of 

Data base analyses 

internal validity’ generalizability; external 
validity at risk 

Coverage of medical Uhcontrolled comparison; 
practice (full patient internal vaHdity at risk 
population, full range of 
treatment implementations); 
external validity 

Drawing upon the results of studies with complementary strengths and 
weaknesses logically has the potential to yield more-and 
better-information than could be provided either by a single study or by a 
group of studies that share essentially the same strengths and weaknesses. 
There is a potential benefit to strategically combining the results from 
diverse studies that have different, complementary strengths and 
weaknesses, but that are nevertheless alike in their goal of estimating the 
same treatment’s effect. 

4 

Of course, one cannot simply average studies together, hoping that the 
different biases will counteract (or “cancel out”) one another. Nor can one 
assume that the different biases are all equally severe. Thus, the potential 
of a synthesis of complementary studies can be realized only if the diverse 
strengths of the different studies can be captured, while recognizing each 
study’s specific weaknesses and minimizing their impact on results. This is 
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the goal of the strategy presented here, which we term “cross design 
synthesis.” 

Objective, Approach, Our overall objective is to develop a strategy for cross design synthesis: 

and Methodology specifically, a methodology for combining results from diverse, 
complementary studies that have evaluated a given treatment’s effect. The 
long-term goal of our work is to improve knowledge about the 
effectiveness of medical interventions and thus to enhance the 
development of valid practice guidelines. Specifically, by increasing the 
validity, the credibility, and the efficient dissemination of such 
information, the potential for successful medical practice guidelines in the 
United States is enhanced. 

Our approach is anchored in meta-analytic principles and techniques. 
However, a cross design synthesis is quite distinct from a traditional 
meta-analysis. Foremost among the differences is the fact that a cross 
design synthesis combines results from study designs that have 
complementary strengths and weaknesses, and it is specifically aimed at 
reaping the benefits of the studies’ diverse strengths, while minimizing the 
bias associated with each study. The spirit of such an effort is well 
described by Shadish, Cook, and Houts (1936, p. 43) in their discussion of 
quasi-experimentation (that is, imperfect designs) from a “critical 
multiplist perspective”: 

“From a critical multiplist perspective, . . . [dealing with imperfect designs] . . . resembles 
chess in several ways. Each chess piece has different strengths and weaknesses with 
respect to mobility and direction. Similarly, . . . no two kinds of design or analysis are the 
same; each is associated with a unique set of biases. In chess, no single piece is capable of 
winning the game by itself. Rather, the best chance of winning occurs when all the pieces 
work together, using the strengths of each to protect against the weaknesses of the others.” 

As already noted, the challenge of cross design synthesis lies in the fact 
that one cannot expect the various design weaknesses (and consequent 
biases in study results) to cancel out one another. This makes any attempt 
to combine the results of different, complementary types of studies 
difficult: The different weaknesses associated with the different designs 
must be assessed according to a specific strategy and then taken into 
account when combining the results. 

In light of this, strategies for cross design synthesis must be based on the 
full set of methods that have been used to assess, adjust, and combine 
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studies. A  cross design investigator must act within each of these 
methodological areas. However, the most important for cross design 
synthesis may be assessment; that is, discriminating between study results 
that speak to the true effectiveness of an intervention and results that 
merely reflect consequences of how studies were conducted. What is 
learned in the assessment of existing studies determines whether a cross 
design synthesis is needed, possible, and advisable. Further, the results of 
assessment will guide strategies for adjusting and combining studies. 
Thus, although this report reviews methods for assessing, adjusting, and 
combining study results, its greatest emphasis is placed on methods for 
assessing study weaknesses. 

Given that a cross design synthesis will include studies with very different 
kinds of weaknesses and potential biases, different assessment methods 
are appropriate for the different types of studies to be included in the 
synthesis, This, in turn, argues for limiting the numbers of different types 
of studies to be included’in a synthesis and for focusing on only the 
primary weaknesses of those studies (at least in this first report).32 
Therefore, in this initial presentation of the cross design synthesis, we 
limit our efforts to two types of study designs-randomized studies and 
data base analyses-and we focus on the primary weakness associated 
with each of these designs.% 

Although our main reason for selecting these two designs is their 
complementarity, a second reason is their current prominence in the field. 
Doubtless, the randomized design is considered the “gold standard” for 
evaluating medical interventions, And the recent proliferation of data base 
analyses combined with funding opportunities for outcomes research 
make it likely that such analyses will increase m  importance over time. 
Other types of studies (for example, historical control trials and other 
nonrandomized designs) might ‘&SO have been considered for a cross 
design synthesis. These could well be the focus of future work in this area. 

In SUM, the strategy of cross design synthesis presented here is limited to 
methods for assessing, adjusting, and combining treatment effects from 

We primary weaknesses are detlned in terms of the research question being addressed. 

%thers have also recognized that strategies involving these two study designs provide certain 
benefits. Notably, Krakauer and Bailey (lQQ1) have put forward a prospective strategy for sequentially 
conducting and planning research. In the Krakauer-Bailey model, analyses ofdata bases would be 
conducted first, and then, where just&d by the results of these analyses, randomized studies would 
be planned. Moffttt ( lQQ1) has suggested that prospective approaches could include not only the 
sequential plan but also the simultaneous fielding of randomized studies and data bsse analyses. The 
simultaneous studies could be used to test hypotheses about the effect of study design on results. 
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studies of two major designs: specifically, randomized studies and data 
base analyses. The specific objectives of this report are further limited to 
resolving the chief weakness associated with each of these designs; that is: 

l in randomized studies, the lack of generalizability (which is an issue of 
external validity); and 

+ in data base analyses, imbalanced comparison groups (which is an issue of 
internal validity). 

Once we decided upon our specific objectives and our general approach, 
we engaged.in a sequential process that can best be characterized as 
informed trial and error. We began by reviewing the relevant 
methodological literature, including: 

l methods for assessing generalizability of randomized studies’ results, 
l methods for assessing imbalanced comparison groups in data base 

analyses (or other nonrandomized studies), and 
l methods for dusting and combining research results. 

We limited our review of methods for assessing randomized studies to 
methods for assessing generaliz+bility; similarly, our review of methods 
for assessing data base analyses is limited to methods for assessing 
comparison bias. We therefore assumed that the studies were otherwise 
well conducted. In an actual application of cross design synthesis (as in 
traditional me&analysis), the investigator would assess studies on 
numerous criteria (see, for example, Himel et al., 1986). The in-depth 
assessments of key weaknesses described in this report are intended as an 
addition to the more usual assessments; those assessments typically cover 
a comprehensive set of potential biases, but subject each to relatively 
superficial scrutiny. 

Studies that were not well conducted might be eliminated from a synthesis 
on the basis of relatively superficial assessments. But the point of the 
in-depth assessments described here is that randomized studies’ results 
will be included in the cross design synthesis even though it is known in 
advance that .they are probably not generalizable. The r&son is that they 
have an important strength in another area. In order to minimize the 
weakness (lack of generalizability), the investigator must have an in-depth 
understanding of its nature and extent in each randomized study. The 
situation is similar for data base analyses and the potential problem of 
imbalanced comparison groups. 
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In reviewing methods for assessing, a+&ing, and combining studies, our 
purpose was to identify as full a range of analytic procedures as possible. 
To this end, we conducted computerized literature searches, 
hand-checked key medical journals (especially letters to the editor, which 
we deemed a possible source of informal methods of assessing published 
studies), and asked numerous consultants to suggest “leads.“34 We drew 
material from the literature of meta-analysis, evaluation research, general 
social science research methods, applied statistics, and substantive 
medical research.% 

We then organized our findings according to frameworks that would help 
us identify gaps in available methods. Where we initially found gaps, we 
renewed efforts to find previously published methods that might ffl these 
gaps. 

Finally, we drafted a set of tasks and steps for conducting a cross design 
synthesis based on existing methods of assessing, adjusting, and 
combining studies. We then had these steps extensively reviewed by 
individuals expert in the major types of effectiveness studies. 

Organization of the 
Report 

The three subsequent chapters in this report parallel the tasks one would 
follow in performing a cross design synthesis. Chapters 2 and 3 present 
methods for assessment, based on approaches reported in the literature. 
Specifically, chapter 2 reviews methods for the task of assessing the 
generalizability of randomized studies’ results. Chapter 3 reviews methods 
for the task of assessing unbalanced comparison groups and resulting bias 
in data base analyses. Chapters 2 and 3 provide the basis for the 
subsequent tasks: adjusting the results of existing studies, as appropriate, 
and strategically combining these results, while taking account of 
differences across studies. Specific methods for adjusting and combining 
results are discussed in chapter 4. 

%ee Appendix I: List of Experts. 

=We did not cover other fields such aa astronomy, physics, or the philosophy of science. 
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Randomized clinical trials (or more simply, randomized studies) are 
designed to achieve a valid comparison of alternative treatments, that is, 
internal validily.1 By contrast, lack of generallzability (external validity) is 
not specifically addressed by the randomized study design and, as 
explained in chapter 1, constitutes the chief potential weakness associated 
with such studies’ results, The treatment effect observed for the perhaps 
select subset of patients participating in a randomized study may or may 
not be generalizable to all relevant patients. Yet knowing the effects of a 
treatment in various patient subgroups and the degree to which those 
effects will be observed in the full population is essential for setting 
medical practice guidelines. 

Therefore, to minimize the risk of overestimating or underestimating a 
treatment’s average effect in the patient population, results of existing 
randomized studies should be subjected to an in-depth assessment of their 
generalizability. In conducting this assessment, the specific purposes of 
the cross design investigator are to: 

l determine whether there is a need for a cross design synthesis (that is, 
whether there is a need to draw upon studies of other designs to expand 
the generalizability of existing randomized studies’ results); 

l provide a basis for adjusting each randomized study’s results, where 
necessary, so as to enhance their generalizability; and 

. inform judgments about persistent limitations of each study (including 
judgments about the level of uncertainty associated with the each study’s 
results), which will guide choices among methodological options 
when-later-synthesizing results of diverse studies. 

Thus, the first major task facing the cross design investigator is to assess 
the generalizability of randomized studies’ results. Previous work in 
assessing the generalizability of existing studies’ results falls into two 
major categories. They are: 

l Assessment of the methodological process by which patients were 
selected into a randomized study, based on logic and subjective reviewer 
judgments about whether the process was aimed at achieving a 
representative patient pool. 

‘The discussion in this chapter assumes the randomized studies in question were well conducted, thus 
reaping the benefits of internal validity that are possible with randomized design. Of course, the extent 
to which any one specific randomized study actually achieves internal validity depends on a number of 
factors (see, e.g., Pocock, 1983). The Chalmers quality rating scale for randomized studies includes 
several internal validity items (T.C. Chalmers et al., 1981). 
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l Assessment of the result of the randomized study’s patient selection 
process (that is, the representativeness of the achieved patient pool) based 
on empirical evidence of whether the patient pool includes the kinds of 
patients seen in medical practice. 

Judgmental 
Assessments of 
Patient Selection 
Methods 

Reviewers’ assessments of patient selection methods are necessarily 
subjective and are most useful when combined with the more objective 
and empirical assessments of representativeness discussed in a 
subsequent part of this chapter. Nevertheless, methods of patient selection 
are recognized as an important dete rminant of generahzabilily. They have 
been assessed in previous reviews of randomized studies. And, if the 
reviewers’ assessments are properly conducted, they should indicate 
whether the selection of patients for the study was aimed at attaining a 
%iicrocosm” of the population of patients seen in medical practice. 

We believe a properly conducted methodological assessment should cover 
all phases of the patient selection process. At least four phases have been 
identified: 

l Phase 1: The target group is set (that is, patient selection criteria are 
defined). 

l Phase 2: The patient recruitment mode is chosen and activated. 
l Phase 3: Some patients who met the initial selection criteria are 

subsequently rejected, on a case-by-case basis, by the study investigator. 
l Phase 4: Eligible patients prove willing (or unwilling) to participate when 

selected. In some instances, they avoid selection. 

The following sections discuss each of the four phases of the patient 
selection process and ways of improving assessments of this 
methodological process. 

Phase 1: Target Group The potential for nonrepresentativeness resulting from a limited target 
(Patient Selection Criteria) group has been emphasized by McPeek (1987). Similarly, Merigan (1990) 

and Byar et al. (1990) have recently called for wider target 
groups-specifically, in trials of treatments for acquired 
immunodeficiency syndrome (AIDS). As these methodologists recognize, 
target groups have often been limited intentionally, in an effort to increase 
the internal validity of the trial’s results. But the upshot has been 
randomized studies conducted on nonrepresentative groups of patients. 
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One frequent mode of limiting the target group has been to exclude elderly 
patients--even when they constitute a substantial portion of the relevant 
patient population.2 For example, elderly breast cancer patients have been 
excluded from major randomized studies, although 43 percent of all breast 
cancer patients are over 66 at the time of diagnosis (Lichtman and 
Budman, 1989, citing Yancik, Ries and Yates, 1989)? Another common 
mode of limiting the target group is to exclude women patients, as has 
occurred in many randomized studies in the area of heart disease.4 

The Chalmers scale for rating the quality of a randomized trial includes an 
item on patient selection criteria (which define the target group). 
Specifically, this item requires the investigator to judge the adequacy-not 
of the selection criteria themselves-but of the description of those 
criteria that is included in the report of the randomized study (see T.C. 
Chalmers et al., 1981; Liberati, Himel, and T.C. Chalmers, 1986). 
Descriptions judged “adequate, ” “fair,” or “inadequate” receive a 
prescribed number of points. 

Phase 2: Patient 
Recruitment Mode 

The way that patients are recruited for a randomized study can seriously 
impair the generalizability of results. Pocock (1983, p. 36), for example, 
points to the source of patients-or recruitment mode-as a key issue in 
representativeness. He notes that: 

“in the study of depressive illness if one recruits hospital in-patients one ends up with an 
atypical group. Such patients tend to be the more serious chronic csses whereas any new 
antidepressant chug is usually under investigation with an eye to the larger group of 
depressed patients....” 

Thus, as Pocock stresses, patient recruitment must be representative; 
otherwise, the generalizability of the findings may be merely that of a 
“convenience sample.” 

The reasons why investigators exclude certain patient groups from randomized studies were 
discussed in chapter 1 of this report. 

me National Surgical Adjuvant Breast Project haa generally excluded patients over age 70. This 
followed from a requirement for a life expectancy of 10 yeam of more, exclusive of a cancer diagnosis 
(see B. Fisher and Redman, 1989). The Ludwig Breast Cancer Study Group Trial excludes patients age 
66 or older. 

“See GAO (1990) testimony on problems of implementing the National Institutes of Health policy on 
including women in study populations. 
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Phase 3: Rejection of 
Individual Patients Who 
Qualified 

Remington (1989, p. I-67) has charged that “patient exclusion criteria 
represent a vast wasteland of clinical trial design.” He notes that, although 
investigators have been “relatively precise” in deftig target groups and 
patient selection criteria, this has unfortunately not been the case for 
rejections of patients who had qualified under the initial criteria: 

Y 
*.. many [investigators] . . . have been very crude in defining patient exclusion criteria . . . in 

general . . . [using only] a brief statement . . . or such global phrases as ‘serious intercurrent 
disease.” 

Similarly, Liberati, Himel, and T.C. Chalmers (1986) report that fully 
two-thirds of the breast cancer treatment trials they assessed did not even 
mention having kept a log of patients rejected. 

Exclusion of individual patients can have important cumulative effects on 
the representativeness of the entire patient pool. To cite one example, in 
reviewing the British Medical Research Council Trial, Remington (1989, p. 
I-67) points out that, of the 46,000 patients identified as eligible for this 
trial on the basis of measured blood pressure, more than half were 
excluded. Apparently, the excluded patients were those with 
worse-than-average prognoses since “ultimate mortality rates [were] much 
lower than expected in general populations with similar elevations of 
blood pressure.” 

The Chalmers rating scale includes an item on each randomized study’s 
exclusions of patients; specifically, exclusions are judged on whether or 
not “a log [had been kept] of patients who had been seen by the 
investigators, but rejected before randomization as ineligible with listed 
reasons” (Liberati, Himel, and T.C. Chalmers, 1986, p. 945). Judgments of 
whether exclusions were adequately described-“Yes,” “Partial,” “No,” or 
“Unknown”-are associated with a prescribed number of points (see T.C. 
Chalmers et al., 1981, p. 46). 

Phase 4: Patient 
W illingness or Refusal to 
Participate 

Y 

In certain illness or treatment areas, the reluctance of patients to 
participate in a randomized study (or of their physicians to refer them to 
the study) can .seriously affect representativeness. Edhmd, Craig, and 
Richardson (1985) call for primary investigators to provide more 
information on patient willingness to participate, noting that of 84 
treatment studies reviewed, none had reported the number of refusers and 
nonrefusers. 
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Depending on the recruitment mode, patients (or primary physicians) may 
find it easy to avoid participation in randomized studies. In such instances, 
investigators cannot count individual refusals, but potential problems can 
be indicated by d.ifGculties in achieving recruitment targets, as has 
occurred in randomized studies comparing lumpectomy with mastectomy 
(Taylor et al., 1984), or by low rates of participation in targeted clinics or 
hospitals, as has occurred in trials evaluating the intracraniaVextracranial 
bypass (Barnett et al., 1987). 

An example of the potential importance of patient refusals is Schooler’s 
(1980, p. 30) description of a trial evaluating a drug used to prevent relapse 
in schizophrenia: 

“The hypothesis to be tested was that guaranteeing receipt of medication would 
significantly decrease the number of patients who would relapse, and would also delay 
relapse for those who did ultimately relapse. Contrary to prediction, there were no 
differences in relapse rate between the two groups....[P]atient.s whose medication taking 
was controlled relapsed as early and as often ss those who had to take oral medication 
daily. 

This study has been criticized on sampling grounds. It has been suggested that a 
significant treatment effect was not found because patients who refuse to enter a drug trial 
are the same patients who will be noncompliant with treatment, and that the restriction of 
the sample to those who consented to be studied also restricted the study to subjects who 
would take oral medication and therefore not show a treatment effect.” (Emphasis added.) 

Improving Methodological Representativeness of patients participating in a randomized study can be 
Assessments threatened by each of the four phases of the patient selection 

process-the target group definition, recruitment mode, rejection of 
individual patients, and patient willingness or unwillingness to participate. A  
Alternatively, success in each phase can ensure representativeness. One 
example of a trial thatcomes close to ensuring representation in every 
phase would be the placebo trials that tested the Salk polio vaccine. These 
trials targeted all public schoolchildren in grades 1 through 3, recruited 
from all schools in communities at high risk of polio and apparently did 
not reject any of the children who appeared at the clinics. Further, 
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widespread cooperation was obtained from parents and children (F’rancis 
et al., 1965; Meier, 1972).6 

All four phases should therefore be included in an assessment of the 
methods in the patient selection process. Current rating scale items (T.C. 
Chalmers et al., 1981) relating to generahzability are limited to only two 
phases of the patient selection process and, for these, to assessing 
whether or not each study recorded and described the relevant patient 
selection procedures as part of the report of results. The Chalmers’ items, 
then, are aimed at assessing a study’s documentation of procedures, rather 
than assessing the procedures themselves. In particular, the items do not 
assess the degree of representativeness or nonrepresentativeness thatx 
implied by the study’s procedures. One way to do that would be to derive 
separate, subjective rating scores for each of the four phases of patient 
selection discussed in the previous section. These might include ratings 
for both whether or not primary investigators had provided an adequate 
reportof each phase and, where adequate reports were provided, the 
implied inclusiveness’rselectivity of the procedures followed in each 
phase. 

When applied to multiple existing randomized studies on a particular 
topic, descriptions of all phases of the patient selection process should 
reveal similarities and differences across individual randomized studies in 
the set. Similarities and differences in the portions of the patient 
population covered by different studies indicate where they overlap or 
where they are complementary.6 In this way, a reviewer can determine 
whether the various randomized studies were nearly identical or 
extremely diverse, and perhaps complementary, in their selection of the 
patient pool. 

%er 60 percent of all children in grades 1 through 3 of the targeted schools provided signed parental 
petmission slips to participate, and the vast majority of these actually received the full series of 
injections--with the remainder being classified as absent at the first or subsequent clinics or as 
withdrawals (see Francis et al., 1966, table la, p, 2). In other words, 100 percent of the relevant 
population was defined aa the target group and 60 to 60 percent of the total actually participated. In 
considering this, one must recognize that in many other trials, participation is much, much lower than 
60 percent- For example, a target group that excludes all women and elderly patients may represent 
only about 26 percent of the relevant patient population. Furthermore, perhaps only one-third of the 
target group will actually partidpak-as might be the case if patients (or primary physicians) have a 
strong preference for one or the other treatment and do not wish to be randomized or if investigators 
eliminate large numbers of eligible patients as “poor candidates.” This would yield a combined figure 
of only (0.33)(0.26) = 0.083 or only about 8% of the relevant population. - 

Coverage provided by two studies would be complementary if, for example, one covered women 
patients only, whereas another covered men patients only. 
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Judgmental assessments of the patient selection process, taken by 
themselves, are weaker than when combined with the empirical 
assessments described in the following sections. Empirical assessments 
are designed specifically to provide information about the consequences 
of patient selection procedures in randomized studies; that is, the 
representativeness of the achieved patient pool and the impact of any 
nonrepresentativeness on the generalizability of the observed treatment 
effect. We believe that empirical assessments of representativeness should 
be made unless the patient pool has been randomly selected from the 
reference population or approximates the total patient population. 

Empirical The representativeness of patients participating in a randomized study 

Assessments of the refers to the extent to which the achieved patient pool reflects the full 
population of patients for whom the treatment is intended. In assessing 

Representativeness of representativeness, it is unrealistic to expect (or to test for) achievement 

the Achieved Patient of a perfect miniature of the population (Kruskal and Mosteller, 1981); 

Pool 
instead, one must ask whether the patient pool is representative with 
respect to a specific criterion. Because our goal is to estimate treatment 
effectiveness, the appropriate criterion is whether persons participating in 
the study are representative of the different ways that patients are affected 
by the treatment in question. Thus, the key question is: Does the treatment 
effect observed for participating patients represent the average treatment 
effect that would pertain for all patients in the relevant population? 

Representativeness of the treatment effect cannot be measured directly; 
thus, existing assessments have necessarily proceeded via two-part 
approaches. The major two-part approach consists of (1) directly 
comparing the baseline characteristics (for example, patient sex and age) 
of participants in a randomized study to those of patients seen in medical 
practice, and (2) looking for evidence of whether each underrepresented 1, 
and over-represented subgroup (for example, elderly female patients) 
experienced a different treatment effect than other patients. 

Another, less well-known approach also proceeds in two parts. As 
explained below, levels of patient outcomes (not effects) in each 
randomized study are compared to levels of outcomes for patients who 
received the same treatment in medical practice. Then, the reviewer looks 
for evidence that different levels of outcomes are linked to differential 
effects. 
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Assessing 
Representativeness Using 
Patient Baseline 
Characteristics 

Assessing representativeness via patient baseline characteristics is a 
two-part approach: Part 1 involves comparing baseline characteristics. 
Part 2 involves checking whether differences on these characteristics are 
linked to differential treatment effects. Part 1 and part 2 are discussed 
separately below. 

Part 1: Comparing Patient 
Baseline Characteristics 

The representativeness of study subjects has often been assessed by 
comparing baseline characteristics of persons participating in a study with 
those of persons not participating. For example, a Swedish health 
intervention study (Wilhelmsen et al., 1976) used records of the local 
Temperance Board to compare the prevalence of alcohol problems among 
those who participated and among those who had refused or failed to 
appear for the study.’ In a similar fashion, Steinhorn et al. (1983) compared 
the demographic characteristics of colon cancer patients in 
Comprehensive Cancer Centers with those of colon cancer patients in the 
SEER registry. Recently, Moon (1989) advocated comparing patients in a 
randomized study to those in a population-based registry (data base) in 
order to assess generalizability and improve the interpretation of results. 

Comparison of baseline chaacteristics provides a mapping of the kinds of 
patients that are-and are not-covered by existing studies. Such a 
mapping might show, for example, that elderly patients were completely 
excluded from randomized studies of a certain treatment even if that age 
group had not been explicitly ruled out by the initial definition of the 
target .group. Such a mapping would also indicate whether excluded 
groups constitute a majority or a small minority of all relevant patients in 
the population. 

Any of several existing data bases could provide information to be used as 
a yardstick against which baseline characteristics of patients in 
randomized studies could be compared. A  wide variety of data bases, such 
as SEER, are reviewed by Pryor et al. (1986), Mosteller et al. (1986), and 
Tierney and McDonald (1991).* 

4 

‘They found an alcohol problem rate roughly three times higher among nonparticipants than among 
participants. 

%terestingly, for present purposes (Le., a standard for judging coverage of the full patient population), 
a data bsse of patients and their characteristics need not include treatment informtion. For example, 
AIDS patients in a drug trial could be compared to AIDS cases in the data base maintained by the 
Centers for Disease Control. The fact that the CDC data base does not include treatment information is 
hrelevant to its use as a yardstick for assessing the representativeness of participants In a randomized 
study on measured baseline characteristics (such as sex). Of course, csses reported to CDC would 
ideally be adjusted for artifacts of the surveillance system (see GAO, 1989b). 
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In general, comparisons of patient baseline characteristics should cover all 
potentially relevant characteristics for which data are available. Such 
characteristics may be ranked as follows: 

l The most important patient baseline characteristics are those that are 
known to be linked to differential effects of the treatment in question. 
Often, however, there is limited information regarding which patient 
characteristics predict above-average versus below-average responses to a 
new treatment. 

. The next most important patient characteristics are prognostic factors; for 
example, indicators of severity of illness. Patient prognostic factors (such 
as the size of a cancer patient’s tumor or the stage of a disease) have been 
linked to differential effects of specific treatments.B 

l F’inally, numerous demographic and other patient characteristics are also 
potentially related to the effect that a treatment will have. For example, 
studies of chemotherapy for breast cancer show that younger (that is, 
premenopausal) patients have a better response to chemotherapy than 
older (postmenopausal) patients (see B. Fisher et al., 1976).l” 

A  reviewer rarely has access to full distributions of baseline 
characteristics; however, he or she can sometimes extend the foregoing 
comparisons of patient characteristics beyond measures of central 
tendency (such as the mean) by using reported measures of dispersion 
(such as the standard deviation). For example, the standard deviation of 
patients’ ages may be much smaller in a randomized study than in a data 
base-even if both groups of patients have the same average age. Such a 
pattern would suggest that the randomized study may have excluded many 
elderly and youthful patients, choosing a more homogeneous 
“middle-aged” group. 

Where possible, comparing full distributions is the best approach, since 
4 

this identifies the degree to which patient groups are under-represented or 
overrepresented. It also distinguishes those special instances where 
virtually no representatives of a patient group are included. The latter 
constitutes a more serious problem than instances where the 

Tar example, stage I breast cancer patients generally have better outcomes than stage II patients. Thii 
is particularly true for “low-risk” stage I patients, who, for example, have very small tumors. The stage 
of a patient’s disease is related to the effect that a given treatment is likely to have on that patient. 
Specifically, chemotherapy combats systemic disease; therefore, stage II patients (who have relatively 
early systemic disease) are more likely to respond to chemotherapy than low-risk stage I patients (who 
generally do not have systenuc disease). 

‘OAnother example consists of those patients with lower socioeconomic status or those without socisI 
supports, who might not respond to certain at-home treatments as well as other patients who have 
more resources to draw upon in their homes. 
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nonrepresentativeness is simply a question of relative numbers. In addition 
to comparing single-characteristic distributions, joint distributions of 
multiple patient characteristics (for example, age by stage of disease) 
could be compared (randomized study versus data base). Such a 
comparison might reveal, for example, that a randomized study includes 
no patients who are both old and severely ill, even though some old and 
some severely ill patients wer%&luded. However, reviewers are limited 
by available information. 

If several randomized studies are being reviewed, the combined coverage 
of the set of randomized studies should be considered, particularly if 
complementary portions of the patient population are covered by different 
randomized studies. The reason is that even if no single randomized study 
covers the entire patient population, the combined set of existing 
randomized studies may come close to doing so. For example, if one 
randomized study covers male patients and a second randomized study 
covers female patients, together the two randomized studies cover both. 
This situation differs greatly from that in which all studies fail to cover the 
same patient group. 

Part 2: Checking Linkage of 
Baseline Characteristics to 
Treatment Effects 

Once the reviewer has assessed the representativeness of patient baseline 
characteristics, he or she addresses the next logical question: whether any 
nonrepresentativeness that was detected for these characteristics actually 
translates into nonrepresentativeness with respect to the treatment effect. 
The danger is quite simply that a treatment may be more or less effective 
for the kinds of patients participating in randomized studies than for other 
kinds of patients. 

As previously noted, patient nonrepresentativeness on such measurable 
variables as sex, age, or known prognostic factors may or may not 
translate into a lack of generalizability for the estimated treatment effect. 
For example, suppose that a randomized study’s patient pool does not 
represent all patient ages or that it does not represent all stages of the 
disease being treated. If the treatment has different effects on patients in 
different age groups or on those with different stages of the disease, then 
the results of this study will not be genera&able to the full population of 
patients.” But if the treatment in question is equally effective for patients 

A  

“This would be the case if, for example, younger patients responded well and received a great deal of 
benefit, but older patients were helped little or not at all. 
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of all ages and for all stages of the disease, there is no reason to believe 
that the results of this randomized study are not generalizable.12 

We therefore reviewed the literature on assessing linkage of the 
over-representation (or the underrepresentation) of a patient subgroup to a 
difference in the treatment’s effect. We found two primary approaches to 
assessing linkage: 

l One was to review subgroup analyses in published randomized studies to 
find comparisons of treatment effects across the specific subgroups that 
were found to be over-represented (or under-represented) in a randomized 
study. 

l The other was to conduct meta-analyses, comparing treatment effects 
across randomized studies that over-represent and underrepresent 
different subgroups of the patient population.r3 

Conducting a subgroup review to check linkage to differential treatment 
effects. A  long-standing method of assessing linkage between known 
nonrepresentativeness (for example, on age, sex, or race) and differential 
treatment effects is to review existing randomized studies for reports of 
treatment effects within the relevant subgroups. The review of existing 
randomized studies amounts to a search for evidence that the treatment in 
question is-or is not-more (or less) effective for the over-represented or 
under-represented patient subgroups (for example, elderly, blacks, 
women). A  subgroup review may help in specifying the kinds of patients 
for whom the treatment works best, least, and so forth.14 

One important limitation of the subgroup review is that any subgroups that 
were completely excluded from existing randomized studies cannot be a 
part of published subgroup analyses using randomized study data. Another 
limitation of the subgroup review is its dependence upon what has been a 

i21t is important to distinguish prognostic factors from correlates of the effect of a treatment. A 
patient’s prognosis refers to hls or her expecied outcome in the absence of treatment; the issue of how 
much he or she might be helped by a particular treatment is a separate one. In some instances, patients 
with especially good prognoses might have the best chance of beneiXing from a particular treatment. 
In others, those with poor prognoses might benefit most 

i3A third approach would be to analyxe a relevant data base or to use information from existing data 
base analyses. In chapter 4 of this report, treatment effects estimated ln data base analyses are used 
for the purpose of filling gaps in randomized studies’ coverage. Thii logically follows the assessment of 
the Internal validity of data base analyses, presented in chapter 3. 

“The subgroup review was discussed by Hyman (lQ66) and Cochran (1966). It has been explicated as 
the “elaboration model” (see Laaarsfeld, Pasanella, and Rosenberg (1972) and Rosenberg (1968)). The 
term ‘speclikatlon” has been used when different subgroups exhibit different relationships between 
the independent and dependent variables (Le., when the relationship between the treatment and the 
outcome is different for different subgroups). 
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analyzed and reported. Existing subgroup analyses included in published 
reports may not cover all patient characteristics known to be 
underrepresented in randomized studies. For example, if it is known that 
blacks are underrepresented in existing randomized studies, one would 
look for studies that “break out” black patients, separately presenting the 
treatment’s effect for them. But the needed “break-out” or subgroup 
analysis may not be available. The reviewer could conduct a secondary 
analysis of randomized study data, but this may only rarely prove feasible. 
When the needed subgroup was not “broken out” in published reports, a 
meta-analysis technique could provide an’aRernative solution: As 
described below, meta-analysis can provide information on whether 
overrepresentation or underrepresentation of specific patient groups 
actually produces a different treatment effect. 

Using meta-analyses to assess impact of nonrepresentativeness. When 
subgroup data on treatment effects have not been broken out by, for 
example, race or age, the reviewer can turn to a meta-analysis technique: 
checking for patterns in reported treatment effects across randomized 
studies that have been categorized according to the percentage of the 
underrepresented group (for example, the percentage of black or elderly 
patients) in their patient poo@ (see Devine and Cook; 1983; Light and 
Fillemer, 1984; Cordray, 199Ob). Of course, in order to rule out the 
possibility that variability among findings derives purely from sampling 
error, meta-analysts have devised heterogeneity tests (see Hedges and 
Olkin, 1986). After conducting heterogeneity tests, the reviewer can test 
for patterned differences in the observed treatment effect across primary 
studies. Recently, sophisticated approaches such as hierarchical multiple 
regression have been applied in me&analyses designed to distinguish (1) 
what portion of cross-study differences in observed treatment effects is 
attributable to varied patient characteristics, and (2) what portion of those 
differences is attributable to other sources (see Lipsey, 1992.)16 

As noted above, these methods are useful for patient groups that are 
underrepresented and overrepresented in various randomized studies, but 
cannot address the issue of whether treatment effects differ in patient 
groups that have been totally excluded from all existing ,randomized - 
studies. 

‘“One cautionary note: Mosteller ( lQQOa, p. 229) points out that such analyses “are ordinarily 
exploratory data analyses, and usually cannot be solidly confirmed by the same data that suggest the 
hypotheses.” This suggests that the reviewer using this meta-analysis technique should distiguish 
between (1) previously known indicators for which a hypothesis has been stated before the analysis, 
and (2) newly identified indicators uncovered as part of the current analysis. 
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Assessing 
Representativeness Using 
Levels of Outcomes 

A somewhat lesser known two-part approach to assessing 
representativeness involves comparing patient outcome levels (for 
example, comparing the percentage of patients who survived for 6 years) 
across studies. 

Part 1: Comparing Patient 
Outcome Levels 

Perhaps the most notable example of outcomes comparison is the 
Coronary Artery Surgery Study (widely known as CAM), which involved 
both a randomized study and a follow-up of patients who declined to 
participate in the randomized study (see K. Davis, 1988). Patient outcomes 
in these two groups were compared in order to demonstrate the 
generalizability of the randomized trial. Survival curves for randomized 
and nonrandomized patients receiving each treatment were “virtually 
superimposable.” In other words, a demonstration of “no difference” 
between outcome levels observed for patients in a randomized study and 
for other patients receiving the same treatments waS used to support a 
claim of generalizability. 

Conversely, differences in outcome levels have been used to suggest a 
likely lack of generalizability. Kramer and Shapiro (1984) point to a study 
of portacaval-shunt surgery (Garceau, Donaldson, and O’Hara, 1964) in 
which survival of both the experimental and the control groups proved to 
be considerably higher than survival for other eligible patients who did not 
participate in the study. They argue that while this randomized study 
showed a zero-level treatment effect, its results may not be generalizable 
to the higher risk patients who did not participate. 

Data demonstrating large differences in levels of outcomes have been 
obtained in a number of ways. For example, a follow-up of a Swedish 
primary prevention study used death records to compare outcomes of 
study participants and nonparticipants (Wilhelmsen et al.,’ 1976). The 
nonparticipants consisted of those who had been asked to participate but 8 
had refused oinot appeared at the study center. The comparison showed 
that during the follow-up period, mortality was three times higher among 
the nonparticipants than the participants. 

Outcomes comparisons have been advocated by Remington (1989, p, I-67) 
as follows: “[A]n important guide to the representativeness of patients 
participating in [a] trial is the overall mortality rates in the group . . . .” 

Certainly, many of the data bases used to compare baseline characteristics 
could also be used to compare patient outcome levels. Differences in 
outcomes for randomized-study participants and nonparticipants are 
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clearly interpretable when the magnitude of such differences dwarfs the 
magnitude of reported differences attributed to alternative treatments. The 
logic behind these outcome comparisons also seems clear when there is 
no difference between patient outcomes in the randomized study and the 
outcomes of other patients who received the same treatments. But a 
moderate difference in outcomes requires the analyst to account for 
potentially confounding factors, such as the influence of slightly different 
treatments (or levels of care) or the influence of treatment assignment 
bias on the outcomes of data base patients.16 

Table 2.1 is presented as a preliminary guide to interpreting patterns of 
outcomes across studies and treatment groups. That is, table 2.1 
distinguishes patterns that signal nonrepresentativeness from other 
patterns resulting from other sources. 

For example, the center cell of table 2.1 shows one instance in which it 
appears that the patients in a randomized study are not representative. As 
indicated in the column and row headings for the center cell, this would 
occur if (1) an average outcome, such as survival, calculated for those 
patients in a randomized study who received a new treatment was lower 
than the corresponding average outcome calculated for data base patients 
receiving that same treatment, and (2) average survival for those patients 
in the randomized study who received usual care was also lower than for 
data base patients who received usual care. A  similar situation applies for 
the upper left cell of table 2.1. Here, the participants in the randomized 
study have better survival than data base patients do. The pattern of better 
survival holds both when (1) the comparison is made using just patients 
who received the new treatment, and (2) it is made using only patients 
receiving usual care.l’ 

iflOf course, the problem does not exist if the new treatment has not yet been introduced into 
community medical practice. In such an instance, outcomes for control groups receiving usual csre in 
trials may be compared to outcomes for all patients in the data base. Sometimes thii situation can be 
simulated by focusing the comparison on data base patients in geographic areas where the new 
treatment has not yet been introduced. 

i7The patterns described in table 2.1 are limited to mean (average) outcome levels. But when dealing 
with a continuous outcome variable (e.g., years of survival), the standard deviation of outcomes for 
patients in a randomized study can be compared to the standard deviation for other patients, perhaps 
using a ratio. LogicaIly, the standard deviation for an outcome variable would be high if the 
randomized study included both patients with extremely good prognoses and those with extremely 
poor prognoses. Convenely, if the standard deviation for patient outcome= a randomized study is 
substantially lower than that observed for patients in a medical practice data base, patients in the 
randomized studymay be a relatively narrow subset of the hinds of patients seen in medical practice. 
The meaning of the pattern is clearest when differences between the randomized study and the patient 
population dwarf differences between treatment groups in a single study. 
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Table 2.1: Logic of Patlent Outcome 
Comparlaono: Pattern8 Slgnallng 
Nongen~rallzablllty of Randomized 
Studlea 

Outcomer for 
patlentr recelvlng Outcome8 for patlentr recelvlng new treatment 
urual care 54 5< irt = Pt 
%I ’ ii,, Patients In Comparison bias Combination of 

randomlzed study likely in data base problems 
may not be analysis 
repre8entatlvo 

sz, < ir,, Comparison bias Patlentr in Combination of 
likely in data base randomhod study problems 
analysis may not be 

re~rerentatlvo 
xw - = Ir”, Treatment Treatment Convergence 

implementation may implementation may 
differ: data base differ: data base 
versus randomized versus randomized 
studv studv 

y, = mean outcome for the treatment group of a randomized study 

X, = mean outcome for the control group of a randomized study (in which patients were assigned 
to “usual care”) 

I;, = mean outcome for data base patients who received the new treatment 

lj u. = mean outcome for data base patients who received usual care 

Note: This table is a guide to distinguishing nonrepresentativeness of patients in randomized 
studies from two other problems: (I) comparision bias in data base analyses and (2) treatment 
implementation differences between randomized studies and data bases. The logic of the table 
assumes that any other potential problems were ruled out. 

In other words, the key pattern is: Randomized study patients show a 
consistently higher-or a consistently lower-outcome level than do 
patients in the relevant population. This signals that patients in the 
randomized study may represent only the better-or only the 
worse-prognosis patients. 

Of course, even if outcome levels indicate that patients with better 
prognoses (or those with worse prognoses) participated in a randomized 
study, the question remains as to whether the treatment effect differs 
across patients according to prognosis. 

Part 2: Linking Outcome Levels To investigate whether the treatment effect differs across patients 
to Effect Sizes according to their prognoses, the reviewer can examine patient outcome 

levels (for example, survival rates) across various randomized studies, 
” checking for linkage to effect sizes. Patients in some randomized studies 

may exhibit average survival levels above those for other randomized 
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studies. This pattern may occur both within the control group receiving 
usual care and within the new treatment group. Similarly, patients in other 
randomized studies may exhibit below-average survival levels. If such 
differences are found and if observed treatment effects vary beyond a level 
attributable to chance, questions such as the following can be asked: 

l Are the highest treatment effects observed in the randomized studies that 
have captured patients with the best prognoses (for example, the longest 
surviving patients), while the lowest effects (perhaps zero-level or even 
negative) are observed in randomized studies conducted on patients with 
such poor prognoses that they may have been beyond help? 

l Or did the reverse occur: Do the randomized studies whose patients have 
uniformly excellent outcomes (and hence “little room for improvement”) 
report little benefit from the treatment? 

Devine and Cook (1983) conducted a somewhat similar type of analysis as 
part of a meta-analysis of studies of psychoeducational interventions and 
length of postsurgical hospital stay. Here, the desired outcome was a 
shorter hospital stay. Devine and Cook found that over all studies, the 
intervention reduced hospital stays. Butin those situations where patients 
already had a short average hospital stay (as was the case for the most 
recent studies), the intervention did not further reduce it. 

Summary of Task 1: The variety of approaches to assessing genera&ability suggests that while 

Steps in Assessing the each has some weakness, if all were applied to the same randomized study 
or set of randomized studies, the combined results should indicate either: 

Generalizability of (1) the nature and level of representativeness or nonrepresentativeness of 

Existing Randomized patients participating in randomized studies, or (2) uncertainty about 

Studies 
patient representativeness-and hence about generalizability of 
results--because of an inability to fully apply the foregoing assessments. 

In other words, the foregoing assessments should allow the cross design 
investigator to complete the first task: assessing the generalizability of 
each randomized study’s results. The specific steps that the investigator 
should follow are shown in table 2.2. 
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Table 2.2: Areerelng Genorallzablllty of Randomized Study Resulte to the Patient Population: Four Step8 
Target of awerrment stepr A88888m8Ilt method8 tot’ conducting 88Ch 8tep 
Methods of patient Step 1. Assess every phase of the patient Assess each of the following for its likely impact on 
selection selection process for each randomized study. patient representativeness: 

-Patient selection criteria established: phase 1 (see 
T.C. Chalmers et al., 1981; McPeek, 1987). 
-Patient recruitment: phase 2 (see Pocock, 1983). 
-Exclusions, rejections of individual patients who met 
initial criteria: phase 3 (see T.C. Chalmers, et al., 1981; 
Remington, 1989). 
-Willingness of patients and physicians to participate: 
phase 4 (see Edlund, et al., 1985; Schooler, 1980). 

Step 2. Assess likely representativeness 
of patients in each randomized study, using 
information from step 1 (all phases). 

Judge likely representativeness given patient selection 
process: a serious problem in even one phase or small 
problems in multiple phases can threaten 
representativeness. 

Achieved representation Step 3. Assess empirical non- 
representativeness on patient baseline 
characteristics and. . . 

Compare baseline characteristics of patients in the 
randomized study to those of patients in data base that 
approximates the full range of patients. Include 
characteristics related to treatment effectiveness (if any 
are known in advance), prognostic factors, and 
demographic variables (see Wilhelmsen et al., 1976; 
Steinhorn, et al., 1983). 

. . . linkage to differential treatment effects. Conduct one or both of the following: 

-a subgroup review of randomized studies (see 
Cochran, 1965; Hyman, 1955; Lazarsfeld et al., 1972; 
Rosenberg, 1968). 
-a meta-analytic comparison of results across 
randomized studies that differentially represent patient 
groups (see Devine and Cook, 1983; Light and 
Pillemer, 1984; Cordray, 199Ob; Lipsey, 1992). 

Step 4. Assess empirical non- 
representativeness using patient outcome 
levels and. , . 

Compare outcome levels of patients in randomized A 
studies to those of patients in a data base that 
approximates the full range of patients (K. Davis, 1988; 
Wilhelmsen et al., 1976; Remington, 1989; S. Davis et 
al., 1985; Kramer and Shapiro, 1984). 

* * . linkage to differential effects. Conduct one or both of the following: 

-an analytic subgroup review, checking whether 
treatment effects differ for subgroups with better (or 
worse) overall outcomes. 
-a meta-analytic comparison of results across 
randomized studies that vary in terms of outcome 
levels (Devine and Cook, 1983). 
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Once steps 1 through 4 have been completed for each randomized study, 
the cross design investigator combines this information to reach a 
conclusion about the nature and extent of any generalizability problems 
associated with each randomized study. Alternatively, the investigator may 
determine that there is uncertainty concerning the genera&ability of a 
randomized study’s results because of, for example, a lack of information 
needed to complete the assessments. 

To our knowledge, these assessment steps have not been presented 
previously as a set. Thus, a number of potential technical issues might be 
raised about their use in combination; for example, whether significance 
tests conducted in one step would affect the form of the tests to be 
conducted in another step or whether an investigator should complete 
each step without reference to the results of other steps. These, and 
doubtless other technical issues, need to be explored by future analysts. 

To complete assessment of generalizability of existing randomized studies, 
the investigator considers all randomized studies in the existing set with 
respect to their combined coverage of the relevant patient population. This 
assessment of all randomized studies taken together guides the 
investigator’s decision about the need for a cross design synthesis, as 
opposed, for example, to a conventional meta-analysis of randomized 
studies’ results. That is, the investigator decides whether or not there is a 
need to combine results of randomized studies with information from 
analyses of observational data bases that more fully represent the relevant 
patient population. 

If the investigator does decide upon a cross design synthesis, then the 
results of the assessments conducted separately for each randomized 
study will provide the information needed to: 

l adjust individual randomized study results, standardizing them to better 
reflect the composition of the relevant patient population; 

. develop an appropriate framework for the synthesis; and 

. combine the results of each randomized study with the results of other 
randomized studies and with other kinds of studies in a way that is 
appropriate, given the certainty associated with each randomized study’s 
results. 

These tasks are discussed in detail in chapter 4. 
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Today, patient records are routinely stored in computer data bases 
maintained by hospitals and insurance companies. In addition, certain 
“specialty” data bases have been compiled to develop clinical information 
on a particular disease (for example, cancer). Many administrative and 
clinical data bases come close to encompassing the full range of patients 
seen in medical practice.1 Several of these “medical practice” data bases 
have been stripped of patient identifiers and made available for use by 
researchers. 

Data base analyses have now been conducted to estimate treatment 
effects. These estimates often provide much fuller coverage of the patient 
population than existing randomized studies do. When this is the case, 
data base analyses represent a potentially useful addition to the results of 
randomized studies. But despite greater coverage of the patient 
population, data base analyses may not be suitable for synthesis with 
randomized study results. As discussed in chapter 1, the problem is one of 
internal validity or “comparison bias.” 

Briefly, in medical practice, patients and their physicians freely “assign,” 
or choose from, alternative treatments according to their preferences. 
Patients who choose one treatment may be very different from those who 
choose another. If the patients choosing the new treatment have better (or 
worse) prognoses than those receiving usual care, it follows that outcomes 
for the two patient groups would differ even without a difference in 
treatments. In this instance, comparing the outcomes of patients receiving 
the two treatments would yield an invalid, biased treatment effect. This 
problem of “comparison bias” can mar the results of any data base 
analysis.2 

Only randomization ensures unbiased treatment assignment. However, a 
data base analyst can define and adjust comparison groups to minimize 

‘Many data bases cover only a speciilc segment of the population; for example, a Medicare data base 
covers only elderly patients, but it ls quite comprehensive for this group. Certain other data bases may 
appear to be comprehensive, but in fact fail to capture the full population. A case ln point is the data 
base of AIDS cases maintained by the Centers for Disease Control. The &able ‘undercount” of AIDS 
cases in that data base was estimated by GAO (lOSOb). Thus, it may be appropriate for an investigator 
to sssess the generahxability of a data base, using methods such as those outlined in chapter 2 of this 
report 

‘In this report, the primary term used to refer to this problem is ‘comparison bias.” Terms used to refer 
to specific aspects of the problem include “treatment assignment bias” and “lmbalanced comparison 
groups.” Other terms used In the literature (but not in this report) include “selection bias” (Byar, lOSO) 
and ‘non&notable treatment assignment” (Rubin, 1978). The term “selection bias” is potentially 
confusing because it has been used to refer to both the problem discussed here and lack of 
generalirability. “Nonignorable treatment assiignment” Is more specific, but may~dlfiIcult for 
nontechnical readers. 

Page 62 GMVPEMD-92-18 Crow Design Synthesis 



Cbrptor a 
Methods for Asaeasiq Data Bane Analyaw 
for Chnpubon Bias (T-k 2) 

imbalance. A  thorough assessment of the data base analyst’s methods of 
comparison and adjustment will help suggest the likely dimensions of 
comparison bias in a particular analysis. In addition, empirical assessment 
of the degree of balance actually achieved in that analysiscan provide 
further information on the nature and degree of comparison bias. 

Multiple assessments of comparison bias can, when taken together, 
indicate and enhance the usefuiness of data base results. But the 
challenges involved should not be understated: Even when no imbalance 
in the comparison groups is found, hidden imbalances may at. And 
where several imbalances are noted and taken into acczt, other 
imbalances tiy go undetected. To meet this challenge, we emphasize that 
multiple assessment approaches should be used in combination. These 
include, among others, sensitivity analyses that address the question of 
whether undetected imbalances represent a threat of potentially serious 
proportions. 

For the cross design investigator, the specific purposes of assessing 
comparison bias are to: 

. determine whether treatment effects estimated in existing data base 
analyses are sufficiently free of comparison bias to be suitable for 
combining with randomized study results; 

. provide, when appropriate, a basis for the secondary adjustment of data 
base results to further minimize comparison bias; and 

. help estimate the level of uncertainty regarding hidden comparison bias in 
the adjusted data base results. 

Previously reported assessments of comparison bias fall into two major 
categories: (1) judgmental assessments of the methods of comparison and 
adjustment used by the data base analyst; and (2) empirical assessments of 
the achieved balance of the comparison groups following adjustment by 
the data base analyst. 

Judgmental Assessments of the methods a data base analyst used to minimize 

Assessments of comparison bias must be based largely on the judgment of the reviewer. 
Three examples of judgmental assessments are provided by: 

Methods Used by Data 
Base Analysts- l Wortman and Bryant’s (1986, p, 292) review of school desegregation and 

academic achievement studies, which included a qualitative a priori 
judgment about whether or not each study had “selection problems.” 
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l Longnecker et al’s (1988, p. 663) meta-analysis of nonrandomized studies 
on alcohol consumption and breast cancer risk, which included a 
rating-score instrument with the following item: “In the analyses, did the 
authors control for potential confounding by classic breast cancer risk 
factors in addition to age?“3 

l Steinberg et al’s (1991, p. 1986) meta-analysis of case-control studies on 
estrogen replacement and breast cancer risk, in which three 
epidemiologists judgmentally assigned scores, using the following 
criterion, among others: “appropriate potential confounding factors were 
ascert.ained...and...the analyses were adjusted for these confounders.” 

Assessments of the methods that the data base analyst used to minimize 
comparison bias can proceed in two phases: 

l In phase 1, the reviewer assesses the data base analyst’s choice of 
comparison groups. 

l In phase 2, the reviewer assesses the data base.analyst’s adjustments of 
those groups. 

Phase 1: Assessing the 
Analyst’s Choice of 
Comparison Groups 

Most data base analysts have chosen to use treatment groups as 
comparison groups. That is, they have compared the outcomes of patients 
who received a new treatment to the outcomes of those who received 
usual care. Alternatively, however, the analyst may have chosen “natural 
cohorts” as comparison groups4 The assessment question is: Which set of 
comparison groups is the better choice for minimizing comparison 
bias-treatment groups or natural cohorts? The answer depends upon the 
particular situation. 

Background: Treatment Group 
Comparison 

Usually, data base analysts have estimated medical treatment effects by 4 
comparing patient outcomes across treatment groups. A  variety of 
statistics may be used, such as the difference between each group’s 
average outcome or the relative risk of a negative outcome following the 

The risk factors dusted for in these breast cancer studies include the patient’s age at first childbirth 
and her body maas, among others (see, e.g., Schatzkin et al., 1987). 

‘This lesser known approach is described below, following background on the more common 
treatment group8 comparison. 
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new treatment as opposed to usual care or the correlation between 
treatment and outcome.6 

A well-known example of the treatment group approach is the comparison 
of mortality following open prostatectomy to mortality following a newer 
approach-transurethral resection of the prostate. Two such studies (one 
based on a Canadian data set, the other based on a Danish data set) found 
higher mortality following the newer treatment (see Roos et al., 1989, and 
Andersen et al., 1990). In both cases, relative risk was used to estimate the 
treatment effect.s 

Another version of treatment group comparison involves not just two 
treatment groups but a treatment variable that takes on many different 
values. A  case in point consists of studies of the effect of the timing of 
breast cancer surgery in the premenopausal patient’s menstrual cycle (that 
is, surgery conducted on day 1 through day 23-32). Two analyses-one 
using data from a previous Los Angeles community study, the other using 
data from Guy’s Hospital in London-showed that outcomes such as 
disease recurrence and mortality varied depending on the day of the 
menstrual cycle when surgery was performed (Hrushesky a., 1989; 
Badwe et al., 1991).’ 

Background: Natural Cohort 
Comparison 

“Natural cohorW are pre-existing patient groups (or naturally occurring 
patient groups) that differ in terms of the relative numbers of patients 
receiving the new treatment and usual care. The analyst compares net 
outcomes across these naturally occurring groups.* 

- 

For example, if patients diagnosed in each successive l-year or 2-year 
interval were markedly more likely to receive a new treatment, these 
annual or biannual diagnostic groups would constitute natural cohorts. An 
analyst could compare outcomes for all patients diagnosed in a given year 
to outcomes for all patients diagnosedin each subsequent year, thereby 

KA variant on treatment group comparison uses change scores as the outcome measure. One example 
is cognitive pretests and posttests in sn Alaheimer’s drug treatment trial (see T. Thompson et al., 1990). 
This approach is precluded in those medical studies where the outcome measures (such as disease 
recurrence or death) are “one time only” and occur after treatment. 

@The relative risks were calculated using adjustments to balance the comparison groups. These 
adjustments are described in a subsequent section of this chapter. 

‘A third study (Senie et al., 1991) has also been reported. Findings from these small-sample studies do 
conflict, especially when cutting points are used to divide the month into two intervals (one ‘rishy 
and one *safe*). The riskiest time in all three studies appears to be around the 4th to 12th day from the 
beginning of the last menstrual cycle. 

%uch analyses have sometimes been referred to as “natural experiments.” 
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gaining an estimate of the overall impact that increased use of the new 
treatment has had on patient outcomes. 

As delineated by Moffitt (1991), an analysis of this type may be advisable 
whenever it is possible to identify a variable that is both (1) related to the 
likelihood of receiving a new treatment, and (2) unrelated to patient 
prognoses. The importance of the second requirement is evident when one 
considers that comparison bias can occur in natural cohorts. For example, 
if patients experienced more severe cases of a disease in each successive 
year, then net comparisons of outcomes across annual cohorts would not 
isolate the impact of changes in treatment over the years. Indeed, one 
would not know whether differences in outcomes resulted from increasing 
use of a new treatment or from changes in the severity of the disease. 

An example of a natural cohort comparison is the analysis of 
chemotherapy and breast cancer survival that GAO conducted, using the 
SEER data base (GAO, 1989a). This analysis focused solely on 
premenopausal, node-positive breast cancer patients and compared 
survival across natural cohorts defined by year of diagnosis. That is, 
survival for patients diagnosed in 1976 was compared to survival for 
patients diagnosed in 1976, and so on through the early 1980s. These 
annual cohorts of breast cancer patients apparently met both criteria 
discussed above: 

. First, differing proportions of the node-positive patients in each cohort 
received chemotherapy; that is, only 23 percent of the 1976 cohort 
received chemotherapy, but 46 percent of the 1976 cohort received it, as 
did ever larger proportions of subsequent cohorts through 1981 (when 66 
percent of patients received it). 

l Second, as measured by such prognostic factors as size of tumor, the 
prognoses of the node-positive patients-their expected outcomes absent 

4 

new treatment-remained steady across the cohorts. 

The results of this breast cancer study showed that, despite more 
widespread use of chemotherapy over the years, there was no detectable 
improvement in the overall survival of premenopausal node-positive 
breast cancer patients: 72 percent of the entire 1976 cohort survived 6 
years, as did 71 percent of the entire 1976 cohort and 72 percent of the 
1981 cohort, A  difference in outcomes across the natural cohorts would 
have indicated a positive (or negative) effect of the new treatment. 
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Another study (Wennberg et al,, 1989) provides an example of geographic 
locations as natural cohorts. Boston and New Haven differ in terms of 
overall hospital usage: Boston has both greater numbers of patients 
admitted to hospitals and longer lengths of hospital stay. This difference in 
treatment choices (that is, hospital use) appeared to stem from differences 
in medical opinions on whether certain diseases actually require 
hospitalization, rather than from differences in the incidence or severity of 
disease (which appeared to be similar in the two cities).O 

Using adjustments to equate sex, race, and age in the two cities, Wennberg 
et al. compared hospital use rates and mortality rates. The results showed 
that the adjusted mortality rates were the same in both cities: Lower 
hospital usage in New Haven apparently did not have a negative effect on 
patient survival. A difference in adjusted mortality rates would have 
indicated the presence of an effect. 

Where there are two natural cohorts, the size of the treatment effect can 
be estimated in two steps. For example: 

. Step 1: The difference in outcomes observed for the two natural cohorts is 
calculated by subtraction. 

9 Step 2: The difference in outcomes is divided by the difference between 
the proportion of patients receiving the new treatment in each natural 
cohort. lo 

Step 1 (subtraction) is the same procedure that is often conducted for a 
treatment group comparison, Step 2 is an additional procedure that is 
necessary for a natural cohort comparison. Step 2 is not needed in a 
treatment group comparison because 199 percent of one group received 
the new treatment and zero percent of the other group received it. 

@BpeciilcaIly, analysis of the Medicare data base showed that the hospital use rates in Boston were 
higher for those ‘medical conditions, such as pneumonia, gastroent&tIs, and chronic obstructive lung 
disease, for which there is little consensus about the need for hospitalization . . . . By contrast, discharge 
rates involving myocardial infarction, stroke, and gastrointestlnaI hemorrhage . . . were vIrtuaIIy the 
same in the two communities. For these . . . conditions, which are characterized by professional 
consensus on the need for hospitalization, the hospitalization rates are more closely related to the 
incidence rates of the disease.” (Wennberg et al, 1989, p. 1168.) 

‘@That Is: Estimated effect = ( MEAN - MEANCI;) ) / (p, -pa) 

Where Y, refers to outcomes in natural cohort 1, Y2 refers to outcomes in natural cohort 2, p, refers to 
the proportion of cohort 1 that received the new treatment, and pz refers to the proportion of cohort 2 
that received the new treatment. 

In situations where p, = 1 and pn = 0, this formula reduces to the simple difference in means formula, 
which is appropriate for a treatment group comparison. 
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Step 2 is required in a natural cohort comparison in order to correct for 
the dilution of the observed difference. The dilution occurs because in the 
cohort where the new treatment predominates, the percentage receiving it 
is less than 100 percent; in the other cohort, the lower percentage 
receiving the new treatment is greater than zero. For example, if the 
proportions of each cohort receiving the new treatment are 0.90 and 0.20, 
then the denominator in step 2 would be: 0.0 minus 0.2, or 0.7. Dividing the 
observed difference by 0.7 would inflate it to the appropriate level. Thus, 
an observed difference of 10 percent would be inflated to 14 percent 
(since 0.1 divided by 0.7 is 0.14). Angrist (1990) cites Wald (1940) as the 
source of such estimates, referring to them as “Wald estimates.n11 

In econometrics, the approach we term “natural cohort comparisonn is 
referred to as “instrumental variables estimation” or as the “identifying 
variables solution.” If multiple variables define natural cohorts (groups 
more and less likely to receive the treatment), econometricians carry out a 
two-stage least-squares regression. In the first stage, the identifying 
variables are used to predict treatment assignment. In the second stage, 
the predicted treatment assignment is used to predict outcome.12 The key, 
however, is to find at least one “legitimate” identifying variable that meets 
both requirements discussed earlier (that is, one set of natural cohorts). 

Assessing Choice of Treatment 
Group Versus Natural Cohort 
Comparison 

The task of the reviewer assessing comparison bias is to determine 
whether, in a given data base analysis, it is more appropriate to use a 
treatment group comparison or a natural cohort comparison. The answer 
depends primarily upon which approach provides the more balanced 
comparison: 

l A comparison of outcomes across treatment groups (such as the 
prostatectomy analyses discussed on page 66) is unbiased provided that 
the different treatment groups are balanced (that is, provided that patients 1, 
in the different groups have comparable prognoses or the same expected 

“Where covariances are used to define an effect for natural cohorts, there are two analogous steps. In 
the first step, the analyst calculates the covariance of (1) the variable defining the cohorts and (2) the 
outcome variable. In the second step, the analyst divides the covariance calculated in first step by the 
covariance of (1) the variable defining the cohorts and (2) the treatment variable (see a recent 
econometrics text, such as Wallace and Silver, 1988). In the breast cancer example, step 1 would 
consist of calculating the covariance of the diagnostic year and patient survival. The denominator, 
calculated in step 2, would be the covariance of the diagnostic year and the receipt of chemotherapy. 

%  statistical terms, ‘first regress...X on Z, then regress...Y on predicted X” (Wallace and Silver, p. 
266). Here, X refers to the treatment variable; Z refers to the variable defining the “natural cohorts” or 
to a set of such variables; and Y refers to the outcome variable. Thus, in the chemotherapy/breast 
cancer example discussed above, the analyst would predict receipt of chemotherapy from annual 
diagnostic cohort and perhaps also geographic location; the analyst would then predict survival from 
predicted receipt of chemotherapy. 
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outcomes following usual care). Said another way, a treatment group 
comparison is valid to the extent that an individual patient’s assignment to 
a particular treatment alternative is not linked to the patient’s prognosis.13 

l A comparison of outcomes across “natural cohorts” that differ in terms of 
the prevalence of a new treatment (such as in the analysis of 
chemotherapy’s effect for breast cancer patients) represents a valid 
estimate of the treatment’s effect provided that the cohorts are balanced in 
terms of patient prognoses. A natural cohort comparison is valid to the 
extent that differences in the prevalence of a particular treatment across 
cohort+ are not linked to differing patient prognoses in those cohorts. 

Table 3.1 provides a guide to assessing an analyst’s choice of treatment 
group comparison versus natural cohort comparison. 

Table 3.1: Aasesring the Analyst’s 
Choice of Comparlron Groups: 
Treatment Group8 Verrus Natural 
Cohort8 

Prevalence of a treatment 
acro$b different cohorts 
Is linked to patient Individual treatment declslons are based on or llnked 
prognoses in those to patlent prognoslr 
cohort8 Yes No 
Yell 

No 

Situation 1: Neither 
is preferable; both 
may be invalid 
Situation 3: Natural 
cohorts are preferable 

Situation 2: Treatment 
groups are preferable 

Situation 4: Either is 
valid; results should 
converse 

Depending upon patterns in the underlying data, one or the other type of 
comparison may be more appropriate. If treatment groups are indeed 
comparable (situations 2 and 4), there is no need for the analyst to search 
for “natural cohorts.” If both types of comparisons are valid (situation 4) 
and data on natural cohorts are available, a natural cohort comparison 
may be used to confirm a treatment group comparison. 

However, physicians often choose between alternative treatments based 
on the patient’s prognosis. For example, whether cancer patients are 
advised to undergo more or less aggressive therapies often depends upon 
the stage of their disease. This suggests that in certain instances treatment 
groups may be a poor choice for outcome comparisons. 

The literature on Usma&area variations” in medical practice (see 
Wennberg et al., 1988; 1939) shows that physician preferences can vary 

130r, in the instance of a change-score analysis, it is the expected change scores following usual care 
that must be balanced across treatment groups. 
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independently of patient prognoses. Given two alternative treatments for 
prostate disease, for example, one may be much more popular among 
physicians in certain geographic aress, while the other may be favored by 
other physicians in different areas. Physicians’ preferences for particular 
treatments may be linked to differences in their training, philosophies 
(such as whether survival is more important than quality of life), or beliefs 
about the relative effectiveness of different treatments (see Wennberg et 
al., 198S).i4 Preferences may also be linked to the availability of technology 
and resources. Thus, a key question becomes: Do physician preferences 
for certain treatments differ geographically (for example, across urban and 
rural areas)-or across time? 

The reviewer must also remain alert to the possibility that patients 
sometimes do differ in severity of disease across geographic areas or 
across diGstic years. Diagnostic improvements in large cities could, for 
example, result in the detection of greater numbers of less severe cases in 
cities than in rural areas. A  similar situation could occur over time. 

Ideally, data on these factors-as they impact a specific treatment-would 
be brought to bear by reviewers assessing an analysis of that treatment’s 
effect. Alternatively, the reviewer should draw upon a broad knowledge of 
patterns of medical practice regarding the disease in question. 

Phase 2: Assessing 
Acljustments the Analyst 
Made to Balance 
Comparison Groups 

An assessment of methods used by the data base analyst should include a 
review of the adjustment procedures used to eliminate imbalances in the 
comparison groups. Because treatment groups are rarely equivalent, data 
base analysts have often made adjustments to increase the comparability 
or balance ,of the groups. For example, in comparing mortality following 
open prostatectomy to mortality following transurethral resection, 
Andersen et al. (1990) introduced ad(justments for age and for l 

comorbidities, which followed the model used by Roos et al. (1989). 
Essentially, these acijustments equated the treatment groups on measured 
prognostic factors (that is, covariates of the outcome absent treatment). 

Similarly, adjustments may be needed to balance natural cohorts. We 
know of only one study where the analyst could use cohorts formed by 

‘A study of Maine urologists showed that some advocated prostatectomies for patients with prostate 
problems that had not resulted in cbronid obstruction-regardless of symptom relief. Such physicians 
believed “that life expectancy is improved by avoiding the need for operation at a later date” 
(Wennberg et al., 1988, p. 3028). Other physicians disagreed; they believed that prostatectomy would 
be justified for such patients only if symptoms would be reduced and quality of life improved. 
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Background: Overview of 
Acijustment Techniques 

random assignment.16 In ali other instances, imbalance should be assessed 
and adjusted for. 

In medical studies, the statistical techniques that have been used to equate 
treatment groups on prognostic factors (and could also be used to equate 
naturai cohorts) include: 

. matching (Cochran 1965; Co&ran and Rubin, 1973); 

. subclassification or “poststratification” (for example, separate 
examination of treatment effects for the healthiest stratum of patients) 
and acQustments based on, for example, weighted averages taken across 
strata (Co&ran, 1966; Cochran and Rubin, 1973); and 

l analysis of covariance (Co&ran and G. Cox, 1967); partial correlation 
(DuBois, 1967), regression (Co&ran and Rubin, 1973), the Cox 
proportional hazards model (D.R. Cox, 1972,1975), and “propensity 
scores” (Rosenbaum and Rubin, 1983a).ls 

For reviews of the above techniques, see Rubin (1984) and K.ish (1987);” 
Other techniques for obtaining unbiased comparisons include: 

l selection modeling (Cain, 1975; Heckman and Hotz, 1989a., 198913; 
Rindskopf, 1986); and 

. structural equation models (see Rindskopf, 1981; Bentler, 1990; Joreskog, 
19’77; Goldberger and Duncan, 1973).18 

Potential problems and complexities in the use of the various adjustment 
methods are discussed by Reichardt (1979). Adjustments can be risky 
when large imbalances on the measured covariates distinguish the groups 
or cohorts being compared. Co&ran has advised analysts planning 

4 

i6During the Vietnam war, random assignment of birthdays for the mIlitsry draft lottery created natural 
cohorts; that is, groups of young men that differed in terms of the likelihood of military service. The 
incomes of men in these randomly formed cohorts were compare&for the years following the Vietnam 
war (Angrist, 1990). It Is interesting to note that an analysis based on randomly formed natural cohorts 
is comparable to a randomized study in which (1) there are ntmrerous “crossovers” who obtain a 
treatment other than the one assigned to them, and (2) the comparison of patient outcomes is made on 
the basis of the treatment that was assigned (not the one eventually obtained). 

‘These statistical techniques may be more effective when used in combination; for example, 
subclassification might best be combined with other, multivariatc adjustments (LavorI et al., 1983, pp. 
12921294). Similarly, a combination of matching and ar\justments based on multiple regression has 
been demonstrated to be more effective than multiple regression alone (Co&ran and Rubin, 1973). 

lrAdlustlng outcomes using nonlinear models for binary outcomes is more complex (see Chang, 
Gelman, and Pagano, 1982). 

Wructural equation models are not unrelated to selection models. StructuraI equation models can 
include prediction of treatment assignment as well as prediction of the effects of treatment received. 
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observational studies to “avoid treatment and control groups with large 
initial differences on confounding variables” (Rubin, 1984, p. 41, citing 
Co&ran, 1966). Adjustments are also risky when there is measurement 
error in the covariates used to make ac@.&ments.lQ Because of the 
complexities sometimes involved in adjustments, a methodological 
assessment of the techniques used should include a statistical expert’s 
opinion on whether various pitfalls were ruled out in the original data base 
analysis (see Kaplan and Berry, 1990, p. 113). 

Selection modeling, which includes a variety of approaches, is of special 
interest here because it has been applied in deriving instrumental variable 
estimates (or “natural cohort comparisons,” as we have termed them in 
this report; see Moffitt, 1991). Specifically, in the second stage of the 
two-stage lea&squares analysis, correlates of the outcome variable are 
entered as controls (see Rindskopf, 1986). 

Controversy has surrounded selection modeling because of apparent 
claims by some advocates of this approach that unmeasured differences 
between comparison groups can be eliminated.20 We believe that the 
requirement for balance is never eliminated, but merely shifts to the 
particular groups that are being compared. For example, with respect to 
the natural cohorts approach described earlier, unmeasured differences 
across the treatment groups become irrelevant; but unmeasured 
differences across the “natural cohorts” are potentially of concern. 

Assessing Whether Acljustments If the set of prognostic factors that the data base analyst adjusted for is 
Covered a Sufficient Set of insufficient, then there will be remaining imbalances in the comparison 
Prognostic Factors groups and these will bias the results, The problem is essentially the same 

for adjustments to balance treatment groups and adjustments to balance 
natural cohorts. It exists regardless of the specific control or adjustment 
technique used. The major assessment task of the reviewer is thus to 4 
determine whether the data base analyst adjusted for a sufficient or 
complete set of prognostic factors. 

‘?he controversial first evaluation of Project Head Start (the Ohio State-Westinghouse evaluation) is 
an instance where measurement error in a covariate may have combined with the imbalance in the 
comparison groups, thus threatening the validity of the adhrstments on that covariate. For two very 
different views, see Bamow, Cain, and Goldberger (BISO), and Kaplan and Berry (1990, citing Campbell 
and Erlebacher, 1970). 

%For a brief discussion of this controversy, see Coyle, Boruch and Turner, 1991, which also notes that 
in spring 1991, the National Research Council of the National Academy of Sciences recommended that 
the National Science Foundation sponsor research into the empirical accuracy of estimates of program 
effects derived from selection model methods. See also, Holland, 1989; Moff~tt, 1989; Heckman and 
Hotz, 19839~. 
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An example of the difference that hidden prognostic factors can make in 
balancing comparison groups is provided by two successive analyses 
conducted at the Health Care F’inancing Administration (Roper et al., 
1988). These analyses compared survival following coronary artery bypass 
surgery with survival following balloon angioplasty. The initial analysis, 
which adjusted for covariates readily available in the data base, showed an 
apparent benefit for angioplasty: 

The ratio of the probability of dying over a period of up to two years after angioplasty to 
the probability of dying under similar conditions after bypass surgery is 0.7 according to 
the Cox proportional-hazards model (p=O.O02), after adjustment for age, sex, race, the 
incidence of selected high-risk comorbid conditions, and the use of either procedure as an 
emergency treatment of acute myocardial infarction.” (pp. 11991200, emphasis added) 

However, a further, heroic effort was made to supplement the HCFA data 
base with additional patient records that would allow further acijustments 
for treatment assignment bias. Specifically, the IICFA data base was 
supplemented by: 

‘a large number of preoperative clinical tindings, obtainable from medical records through 
the PRO system...includ[ing] historical data, observations from physical examinations, and 
the results of laboratory and diagnostic tests.” (p. 1199) 

This second analysis showed that: 

“If more clinical characteristics are taken into account, such as a previous bypass, the 
presence before an operation of atrial fibrillation and a depressed left ventricular ejection 
fraction-a total of 37 findings predictive of death after one or both procedures-the risks 
of death are virtually indistinguishable. Thus . . . the probability of dying after the two 
procedures [is] nearly equal . . . . The patients at higher risk appear to be undergoing the 
more complex procedure-bypass.” (p. 1200, emphasis added)21 

How does a reviewer address the question of what might constitute a 
‘sufficient” set of covariates in a particular adjustment? The Longnecker et 
al. (1988) rating-scale item cited earlier assumes a priori knowledge about 
classic breast cancer risk factors. In many instances, it would be 
reasonable to suppose that the investigator would be knowledgeable about 
important prognostic factors; however, in the absence of such knowledge, 
the investigator can refer to: 

zlAn acijustment that reduces a treatment effect to zero is likely to be a successful one, but this is not 
necessarily the case. For example, the wustment model may have increased imbalance on a hidden 
variable. Tests that help analysts assess the appropriateness of aQustmenta are discussed later in this 
chapter. 
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l Existing models of specific diseases, which have been published in the 
literature and which identify the importance of various prognostic factors 
and their interrelationships. One example in the area of heart disease is a 
model developed at Duke (Pryor et al., 1983; see also Hlatky et al., 1988), 
which specifies the interrelationships of demographic factors (such as 
patient sex, age), behavior (such as smoking), disease history (such as 
previous heart attacks), and various clinical and laboratory fmdings. 

l Generic scales that address “case mix” issues relating to patient outcomes 
or that rate coexisting illnesses.= Examples would be (1) the APACHE 
classification system,23 which has been shown to predict patient outcomes 
(Wagner, Knaus, and Draper, 1983), and (2) the Charlson comorbidities 
index (Charlson et al., 1987), which has been used to control for treatment 
assignment bias (see, for example, Roos et al., 1989). 

Using the information from such models and scales as a standard, the 
reviewer can make a judgmental assessment of the completeness of the 
set of patient characteristics (covariates of outcome) used by the original 
data base analyst to detect imbalances in the comparison groups and 
dust for them. 

Of course, an omitted prognostic factor will bias results only if the 
comparison groups were, in fact, unbalanced following the &ustments 
that were made. This highlights the fact that, in addition to judgmental 
assessment of methods used by the data base analyst, empirical 
assessments of the results of those methods should be conducted. 
Empirical assessments are necessary to determine the achieved balance of 
the comparison groups. 

Despite their efforts to achieve balanced comparison groups, data base Empirical 
Assessments of 
Achieved Balance in 
Aqusted Comparison 
Groups 

analysts are rarely 199-percent successful. As Mosteller et d. (1985, p. 109) 
have pointed out: 

“Because data bases ordinarily contain information from patients whose treatment wss 
chosen in an uncontrolled manner and delivered in an uncontrolled and poorly monitored 
fashion, groups receiving different treatments cannot be expected to be similar in 
prognosis. Attempts to use data to compare the effects of different treatments must 

%e term “case mix” (Greenfield, 1989, p. 1143) has been used to summarize the combination of 
patient characteristic8-including the severity of the illness, coexisting conditions, and other factors 
(such as age and functional status) that might affect a patient’s outcome regardless of treatment 
received. Hombrook (1986) provides a I%% of six approaches to measuring case mix. For 
discussions of primary care measures of case mix, see White, 1991, and Weiner, 1991. 

aAcute Physiology and Chronic Health Evaluation. 
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therefore use analytic devices to attempt to remove the effects of biases. Such devices are 
not entirely saCf3factory....” 

A similar argument could be made about balancing natural cohorts. The 
analyst’s degree of success in balancing comparison groups (whether 
these are treatment groups or natural cohorts) varies from study to study. 

To assess the success of the comparison and adjustment methods that 
were used, data base analysts themselves-and others performing 
secondary analyses-have used numerous empirical tests involving data 
manipulation. These include no-difference tests, sensitivity analyses, and 
goodness-of-fit tests. Other assessments that compare results across 
studies have been developed primarily by meta-analysts and by medical 
researchers studying coronary artery disease. 

Assessments of the data base analyst’s success in balancing comparison 
groups fall into three m&n categories: 

. review of the empirical tests of achieved balance provided by the data 
base analyst; 

l secondary analyses to test for achieved balance; and 
. comparisons of the results of the data base analysis to other studies’ 

results. 

Reviewing Empirical Tests The literature shows that many data base analyses have included empirical 
Provided by the Data Base tests of whether balanced comparison groups were actually achieved. 
Analyst These tests include: (1) tests of “no difference” in comparison groups, (2) 

sensitivity analyses, and (3) goodness-of-fit tests. Reported results of these 
tests can provide crucial input to a reviewer’s assessment of whether 
postadjustment imbalances in the comparison groups continue to bias the b 
estimated treatment effect. 

Tests of “No Difference” in 
Comparison Groups 

Demonstration of “no difference” in the baseline characteristics of 
comparison groups has been an important element in the evidence 
marshaled to support causal interpretations (see Yeaton, 1990). A  review 
of studies published in the New England Journal of Medicine (Lavori et al., 
1933) indicates that the majority of nonrandomized studies compared 
alternative treatment groups on several prognostic factors; each study 
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showed that its comparison groups were essentially the same on these 
variables.24 Similarly, our breast cancer study (GAO, 1989a) reported that 
essentially no differences distinguished the annual cohorts for certain 
prognostic factors (such as size of tumor). 

One way to expand data available for checking imbalances in the patient 
comparison groups is to contact the original data base analyst. Basic 
computer runs comparing baseline characteristics are likely to have been 
made.% If imbalances are found on patient characteristics other than 
prognostic factors (such as demographics), these differences cannot be 
assumed to bias results. The estimated treatment effect would be distorted 
only if the imbalances are linked to persistent differences in patient 
prognoses.26 

An ingenious technique for no-difference testing (developed by Rubin, 
1991) compares the adjusted groups on a patient outcome measure-one 
that is different than the one used in the tin analysis. Indeed, unlike the 
outcome criterion of the main analysis, the outcome measure for this test 
should be unrelated to the effect of the treatment. The logic of this test is 
as follows: If the comparison groups are balanced (that is, have equivalent 
prognoses except for the effect of the treatment), then the two groups 
should be the same on the test outcome measure. 

This no-difference test was used for an analysis of a 1981-85 Medicare data 
set, in which “the effects of switching from a name-brand to a generic 
drug” were examined (Rubin, 1991, p. 1213). The generic form of 
thioridazine became available in March 1983 (the intervention date). 
During the following months, patients had the option of switching from a 
name-brand version of this drug to the generic form. To analyze the effect 

%atisticians have pointed out that signlflcance tests are not relevant when comparing baseline 
characteristics to assess imbalances that could lead to treatment assignment bias. Specifically, one 
should not “interpret . . . a nonsignificant statistical difference as constituting sufficient evidence that 
the groups were not substantially different” (Lavori et al., 1983, p. 1291). Certainly, the importance of 
imbalances in groups receiving alternate treatments should not be determined on the basis of whether 
or not the imbalances occurred by chance alone (Altman and Dor6,1999). In randomized studies, 
chance differences between treatment groups are not considered irrelevant; hence, they should not be 
considered irrelevant in data base analyses. 

Bldeally, the reviewer would seek to validate these results, perhaps by inquiring as to who performed 
the runs and checking whether they were reviewed by the principal investigator. 

@ ‘For example, suppose that, on average, patients who received a new treatment were younger than 
those who received usual care and that an imbalance in the ages of the patients in the comparison 
groups remained after the analyst a&sted for other variables. Would there be a resultant bias in the 
observed treatment effect, calculated by comparing outcomes for these two groups? The answer is 
“yes” if the difference in patient ages for the comparison groups is related to a difference in the 
progn7ises of these groups-even after adjustments for various prognostic factors. 
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of switching, a treatment group comparison was made. Specifically, 
matched pairs of nonswitchers and switchers were carefully developed. 
Each pair was characterized by a switch date. The main analysis focused 
on outcomes after the switch date for each pair. Patients who continued to 
use the name-brand version of the drug (nonswitchers) were compared to 
paired patients who switched to a generic substitute. The nonswitchers 
appeared to fare better than switchersz7 

To check this result, several tests were performed including a 
no-difference test that involved patient outcomes during the interim 
between the intervention date and the switch date for each pair. If the 
pairing and the adjustments used in the main analysis had truly equated 
switchers and nonswitchers, then their outcomes during this interim 
period should be very similar. 

Sensitivity Analyses Sensitivity analyses are essentially simulations of outcomes under 
alternative conditions. Such analyses can be used to: 

“examine the sensitivity of estimates to assumptions about unobserved covaxlates . . . . If 
estimates are relatively insensitive to plausible variations in assumptions about unobserved 
covariates, then a causal interpretation is more defensible” (Rosenbaum, 1984, p. 42, citing 
Cornfield et al., 1969, Rubin, 1978, and Rosenbaum and Rubin, lQS3b). 

An example of a sensitivity analysis is presented by Rosenbaum and Rubin 
(1933b) in a nonrandomized study of coronary artery disease. Briefly, 
following adjustments, proportions of patients experiencing functional 
improvement were estimated for medical therapy (0.36) and for surgery 
(0.67). Rosenbaum and Rubin then examined the sensitivity of these 
estimates to a hypothetical unmeasured covariate related to both 
treatment assignment and outcome. Twenty-four sets of assumptions 
about the hypothetical covariate’s relationship to treatment assignment 
and outcome were examined; the most extreme of these tripled the odds 
of surgery and tripled the odds of improvement for a subset of patients. 
Under the various assumptions, the estimated proportion of patients 
experiencing functional improvement following medical therapy varied 
from 0.34 to 0.38, while those experiencing improvement after surgery 
varied from 0.63 to 0.70. In other words, none of the assumptions would 
have changed the original conclusions of this analysis. - 

?$ecifically, ‘nonswitchers have 6 percent fewer prescriptions than switchem during the 
pot&intervention period ,,. [used] less than . . . one-sixth of the total dose . . . [used] fewer other drugs 
and experience[d] fewer medical encounters . . . . [T]he estimates are several standard errors from zero” 
(Rubin, 1991, p. 1226). 
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Goodness-of-fit Tests 

Of course, the value of any particular sensitivity analysis depends upon a 
number of factors concerning the particular assumptions used. Most 
important is whether the varied assumptions specified by the analyst 
actually capture the true potential for results that are different than those 
that were observed. 

A  different type of sensitivity analysis has been suggested by Rindskopf 
(1986): use multiple alternative adjustment methods and check results for 
convergence and robustness. 

Goodness-of-fit tests compare (1) hypothetical or predicted outcomes 
based on a model (or hypothesized distribution) to (2) observed outcomes. 
Goodness-of-fit tests can indicate how much difference the adjustments 
that the analyst used actually made-and thus signal the analyst to 
instances where adjustments make no difference or where 
“overadjustment” mars results. 

For example, one goodness-of-fit test (used in Krakauer and Bailey, 1991, 
pp. 626-27) was baaed on the proportion of “concordant pairs.” That is, “in 
pairs consisting of a patient who did die and one who did not die,” the 
concordant pairs are those “pairs in which the patient who died had the 
higher probability of dying” according to the a.c@ rstment model. The higher 
the proportion of concordant pairs, the better the apparent fit of the 
adjustment model. 

Specifically, Krakauer and Bailey used this goodness-of-fit test to assess 
the adequacy of risk adjustment achieved in an analysis of “variations in 
mortality rates among acute-care hospitals treating Medicare 
beneficiaries” (p. 627). Successive goodness-of fit-tests were conducted for 
each of four sets of adjustments considered: demographics only; 
demographics plus other claims information;28 demographics and claims a 
plus clinical findings; and all these plus information on the hospital (see 
table III of Krakauer and Bailey, 1991, p. 627).29 The adequacy of 
adjustments baaed on demographics and other claims data was of special 
concern, because such adjustments are routinely used in published 
mortality rates for hospitals. 

2RClaims data include demographic inforn@ion, the reason for the patient’s hospitalization, other 
chronic conditions, and prior hospitaliions. 

‘?‘he concordant pairs test wae successively applied when using the four different sets of a&stmenta 
(demographics only; demographics plus claims information; demographics, claims, and clinical; and all 
these plus hospital). The proportion of concordant pairs was 0.64,0.&Q, 0.90, and 0.90, respectively. 
This assessment suggested that acijustments based on claims data were adequate, confitig teata 
were conducted based on rank correlations. 
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For further discussion of goodness-of-fit tests, model specification tests, 
and related topics, especially as these apply to structural equation 
modeling and to selection modeling, see Bentler and Bonett (1989) and 
Heckman and Hots (1989a, 1989b). Of course, all such methods are limited 
by the set of measured covariates; hidden biases may remain undetected. 

Conducting Secondaq 
Analyses to Test for 
Imbalance 

When analyses such as those described above have not been performed by 
the data base analyst, the cross design investigator c!sometimes conduct 
them. The advantages and difficulties of secondary analyses have been 
outlined by Boruch, Cordray, and Wortman (1981). Clearly, secondary 
analysis is possible only when the original data set is both available and 
adequately documented. Even then, difficulties may arise when attempting 
to match a specific subset of data or to recreate specific definitions and 
ac\justments. The time required for secondary analysis may also present a 
barrier, especially if several different data bases are involved. 

Where secondary analysis of data is feasible, however, the cross design 
investigator can perform the kinds of tests described above. In particular, 
secondary analysis provides the investigator with the opportunity to 
expand upon the no-difference tests reported by the primary analyst and 
to perform “tests of spuriousness.“30 

Expanding “No-difference” 
Tests Beyond Those Reported 
by the Data Base Analyst 

Accessing the data base greatly expands the number-and type-of 
possible comparisons beyond the limited ones made by the original data 
base analyst. For example, among the criticisms of the usual comparisons 
of baseline characteristics seen in medical journals is that only the means 
(average values) of baseline characteristics in each group are reported, 
without the standard deviations of those characteristics (Altman and Dare, 
1990). Also common is the comparison of baseline characteristics “one 
variable at a time” (Lavori et al., 1983, p. 1291). This is another practice 
that secondary analysis might improve upon. 

A  cross design investigator’s secondary analysis would ideally examine 
entire distributions for such variables as patient age at diagnosis 

“Spuriousness is the term used by Laaarsfeld and by Rosenberg when (1) an alleged effect, such as A 
causes B, is based on an observed correlation of A and B, and (2) a prior factor C has caused both A 
and B, so there is no intrinsic link between A and B (see Jmamfeld, Pasanella, and Rosenberg, 1972; 
Rosenberg, 1968). 
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separately for each comparison gro~p.~l A secondary analysis could also 
compare joint distributions on key variables-for example, age by a 
disease severity indicator-across comparison groups. Where possible, it 
is preferable to consider the overall or combined impact of “the difference 
in the distribution of the background variables” (Mosteller, 199Oa). When 
multiple variables are involved, a propensity score approach (Rosenbaum 
and Rubin, 1984) could make such an analysis more feasible. Outcomes 
unrelated to the treatment’s effect could also be used in no-difference 
tests, as discussed above. 

Conducting Tests of 
Spuriousness 

A secondary analysis can test for whether an observed effect is spurious. A  
test of spuriousness begins with subclassification (Co&ran, 1966) on 
patient baseline characteristics. The treatment effect is calculated 
separately for each subclass (or stratum).32 The pattern signaling 
spuriousness is that the treatment effect disappears (or is substantially 
reduced) within each subgroup. For example, a substantial observed effect 
for all patients would be spurious if within each age stratum the effect of 
the treatment is close to zero.33 

A secondary analysis testing for spuriousness would use the data as 
adjusted by the primary analyst. The subclasses or strata would be formed 
using baseline characteristics that were either (1) not adjusted in the 
primary analysis or (2) possibly incorrectly adjusted (in the reviewer’s 
judgment). 

Comparing Results Across Even when the cross design investigator cannot conduct a secondary 
Studies analysis, two other types of empirical assessments can be used to assess 

the impact of imbalances in comparison groups. The first compares 
treatment effects across data base analyses that differ in terms of the 

A 

a1The reason is that even if two groups have identical mesns, important differences in distributions 
could occur-perhaps indicating that different portions of the patient population are represented in 
the comparison groups (e.g., that young and old patients arc in one group, while middle-aged patients 
are in the other group). 

32Subclassification has sometimes been termed “poststratification” (Lavori et al., 1983, p. 1294). Both 
terms refer to the process of dividing the data into patient groups or strata formed by one or more 
baseline characteristics (such as patient age). 

-is pattern signals that the global ah-subjects effect derived, at least in part, from different 
distributions of age in the comparison groups. The reason is simply that the age groups more likely to 
have a better-than-average outcome were concentrated in one of the comparison groups. 

Although we have emphasized %ubgroup” analysis in tests of spuriousness, this approach may also be 
carried out using techniques such as partial correlation or multiple regression to control for additional 
baseline characteristics. That is, one controls for the imbalanced factor and observes whether the 
partial correlation coefficient is substantially lower than the originally observed effect 
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degree of known or likely imbalances in comparison groups. The other 
compares data base patients’ outcomes following a specific treatment 
(such as their average blood pressure after taking a drug designed to 
reduce it) to outcomes for those patients in a randomized study who 
received the same treatment. Both types of assessment are described 
below. 

Comparing Effects Estimated 
by Different Data Base 
Analyses 

To assess whether apparent imbalances in comparison groups actually 
impacted estimated treatment effects, meta-analysts have made 
cross-study comparisons. For example, Wortman and Bryant (1985) 
divided studies of school desegregation and academic achievement into 
two strata: (1) those with treatment assignment bias (known or likely 
imbalances) and (2) nose without detected bias. The average effect size 
for studies deemed to have no bias was only 0.20, whereas for potentially 
biased studies, it was 0.50. 

Comparison of effects across multiple data base analyses is really a 
two-part approach. The cross design investigator (1) draws upon the 
methodological and empirical assessments described earlier in the chapter 
to rate each data base analysis for comparison bias, and then (2) compares 
treatment effects across these strata. This shows whether data base 
analyses with apparent imbalances reported higher (or lower) effects than 
those without such imbalances; that is, it tests whether-and 
how-detected imbalances affected results3 

Of course, before comparing effects across data base analyses, the 
investigator should rule out the possibility that variability among findings 
derives purely from sampling error. Heterogeneity tests have been devised 
to address this problem (see Hedges and Olkin, 1985). 

Comparing Outcomes 
Following a Given Treatment 

Analyses from the Duke Cardiovascular Disease Databank have compared 
(1) Duke patients’ survival following a medical therapy to the survival of 
patients who received the same therapy in randomized studies, and (2) 
Duke patients’ survival following surgery to the survival of patients who 
received the same surgery in randomized studies. The Duke data had 
previously been adjusted according to a model of the disease. Results 
showed that, for 24 out of 26 comparisons, the adjusted Duke estimate of 

!“This two-part approach follows a long-standing tradition: comparing effects observed in randomized 
and nonrandomized studies to test for treatment assignment bias in the nonrandomized study. (For a 
brief review of cross design comparisons of effects, which date back to work by R.A. Fisher in the 
193Os, see Boruch, 1037, pp. 328 ff.) We believe such comparisons are best made after all assessments 
are completed and after secondary a&Mments of individual study results have been made by the 
cross design investigator (see chapter 4). 
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patient survival was within the 96-percent confidence limit surrounding 
the randomized study estimate. This demonstrated the absence of 
comparison bias in the adjusted Duke data.% 

The details of this important study are as follows: Three sets of patients 
were selected from the Duke Cardiovascular Disease Databank to match 
the entry criteria of three randomized studies. Outcomes for each set of 
Duke patients were acQusted using a statistical model. F’inally, the ad(justed 
b-year survival rates for the Duke patients receiving each therapy were 
compared to those for patients receiving the same therapy in a randomized 
trial (Hlatky et al., 1988; see also, Pryor et al., 1983; Califf et al., 1986). 

The adjusted patient outcomes from the databank matched patient 
outcomes reported in three published randomized studies, showing that 
balance had been achieved in the Duke data base analy~is.~ Given that the 
Duke Databank example compared outcomes to show an absence of 
comparison bias, the next question is: Can the same type of assessment be 
used to show the presence of comparison bias? We believe such 
assessments are possible. 

Briefly, the logic of using cross design comparisons of outcomes to check 
for signals of comparison bias rests on a simple fact: patients’ outcomes 
reflect-in part-their prognoses prior to treatment. Other factors also 
contribute to patient outcome levels and must be taken into account. 
Notably, when outcomes of randomized studies are part of the pattern, the 
reviewer must be alert to the possibility that the patient pool (consisting of 
treatment and control groups combined) may not be representative. That 
is, patients participating in randomized studies may have had initial 
prognoses that differed from those of the full population of patients. 
Nevertheless, the expectation is that, within a randomized study, the 
prognoses of the treatment and control groups are alike. W ith this in 
mind-and ideally assuming that some notion of the level of 
nonrepresentativeness in each randomized study was gleaned through 
assessments described in chapter 2the cross design investigator may 
sort out appropriate interpretations for various possible patterns. 

%is assessment of comparison bias applies only to data base analyses using a treatment group 
comparison. It cannot be used to diagnose imbalance in a natural cohort comparison. 

38A different type of analysis has been performed comparing effects estimated ln the Duke data set to 
effects estimated in randomlaed studies (see Hlatky, 1091); su~mparisons are discussed in chapter 
4 of this report. Note, however, that an effect represents the difference in survival that a treatment 
made (as opposed to survival itself). A comparison of outcorn- compsrison of survival rates) 
following each treatment provides more information than a comparison of treatment effects. This 
additional information is needed for the reviewer to diagnose the presence of comparison bii as 
opposed to other problems. 
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Table 3.2 is presented as a preliminary guide to interpreting patterns of 
patient outcomes in data base analyses and randomized studies. That is, 
table 3.2 distinguishes patterns that signal comparison bias in a data base 
analysis from patterns that point to other kinds of problems.37 

Table 3.2: Logic of Pstlent Outcome 
Comparlronr: Patterns Slgnallng 
Comparlson Blaa In a Data Bare 
Analyrlr 

Outcome8 for patlentr recelvlng new treatment 

Patients in Comgrleon blar Combination of 
randomized study likely In data bare problems 
may not be analyrlr 
representative 
Comparison bias Patients in Combination of 
likely In data base randomized study problems 
analyels may not be 

re’presentative 
Treatment Treatment Convergence 
implementation may implementation may 
differ: date base differ: data base 
versus randomized versus randomized 
studv studv 

x, = mean outcome for the treatment group of a randomized study 

X u: = mean outcome for the control group of a randomized study (in which patients were assigned 
to “usual care”) 

i, = mean outcome for data base patients who received the new treatment 

i, = mean outcome for data base patients who received usual care 

Note: This table is a guide to distinguishing comparison bias in data base analyses from two other 
problems: (1) nonrepresentativeness of patients in randomized studies and (2) treatment 
Implementation differences between randomized studies and data bases. The logic of the table 
assumes that any other potential problems were ruled out. 

Table 3.2 is essentially the same as table 2.1. The only difference is that table 3.2 highlights 
patterns signaling comparison bias, whereas table 2.1 highlights patterns signaling lack of 
generalizability. 

The patterns described in table 3.2 are limited to mean (average) outcome 
levels. However, patterns in the standard deviation of the outcome 
variable could also be examined across studies. Generally, in the absence 
of comparison bias, one would expect patterns such as the following: 

“Caveats for interpreting table 3.2 are noted at the bottom of the table. However, we believe that this 
approach-although preliminaty-is a substantial improvement upon the more traditional practice of 
comparing effects estimated in data base analyses to those observed in randomized studies and 
concluding that treatment assignment bias in the data base estimate is likely whenever there is a 
difference in effects. 
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. For patients receiving the new treatment, the standard deviation for data 
base patients should be as large as-or larger than-the standard 
deviation for patients in a randomized study. 

. For patients receiving usual care, the standard deviation for data base 
patients should be as large as-or larger than-the standard deviation in a 
randomized study. 

l The ratio of the standard deviations for two groups of data base patients 
recem alternative treatments should be the same as the ratio of the 
standard deviations for treatment and control groups of randomized 
studies. 

Summary of Task 2: 
Steps in Assessing 
Comparison B ias 

Some weakness is associated with each method of assessing comparison 
bias. But when the methods are jointly applied to the same data base 
analysis (or to each data base analysis in a set), the combined results 
should either (1) indicate the balance or imbalance of the patient groups 
being compared, or at least (2) point to a persistent uncertainty about the 
nature and degree of comparison bias. 

Five specific steps that a reviewer would follow to assess imbakmced 
comparison in each existing data base analysis are listed in table 3.3. 
These steps are based on the foregoing discussion of assessments that 
have been aimed at the two major factors involved in imbalanced 
comparisons: 

l the methods of comparison and adjustment used in the data base analysis 
(steps 1 and 2); and 

l the achieved balance or imbalance of the adjusted comparison groups 
(steps 3,4, and 6). 

Steps 1 and 2 require judgmental assessments. Steps 3 through 6 require 
empirical analyses. 
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Table 3.3: Aswrslng Imbalanced Comparkonr in Data Saw Analywr: Five Steps 
Target of arrewment Major rtepe Awessment method8 for conducting each step 
Methods of comparison Step 1. Assess data base analyst’s choice of Judge whether treatment groups are independent of 
and adjustment treatment groups versus “natural cohorts.” patient prognoses; repeat for natural cohorts (Moffitt, 

1991; see table 3.1 of this report). 

Step 2. Assess adjustments used to balance 
comparison groups. 

Judge completeness of covariates adjusted for by, 
e.g., checking models of the disease (Pryor et al., 
1983) generic case-mix indicators (e.g., Wagner et 
al., 1983; Charlson et al., 1987). 
If possible, check potential for invalid adjustment 
(e.g., very large adjustment needed or measurement 
error in covariate). 

Achieved balance in 
comparison groups 

Step 3. Review empirical tests provided by the data Review data base analyst’s tests for: 
base analyst. 

-” no difference” in comparison groups (see Yeaton, 
1990; Rubin, 1991); 

-sensitivity of the adjusted results to an 
unmeasured covariate (see Rosenbaum and Rubin, 
1983b); and 

-the adjustment model’s goodness of fit (Krakauer 
and Bailey, 1991; Bentler and Bonett, 1980). 

Step 4. Perform secondary analyses (if feasible). Perform tests on adjusted data to: 

-supplement empirical tests performed by the data 
base analyst (see step 3) and 

-check for “spuriousness” (Lazarsfeld, Pasanella, 
and Rosenberg, 1972). 

Step 5. Compare data base results to other studies’ Compare: 
results. 

-the treatment effect to effects observed in other 
data base analyses (Wortman and Bryant, 1985; 
Lipsey, 1992).a 

-patient outcomes in the data base analysis to 
patient outcomes in randomized studies (see Hlatky 
et al.. 1988: table 3.2 of this reoort). 

Check whether analyses judged likely to be imbalanced in steps 1 and 2 yielded larger or smaller 
effects than more balanced analyses. 
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Once steps 1 through 6 have been completed for an existing data base 
analysis, the cross design investigator combines this information to form a 
judgment about the nature and extent of imbalance associated with the 
results of that data base analysis. Alternatively, the investigator may 
conclude that uncertainty remains, perhaps because there was a lack of 
information needed to complete the assessments. 

As was noted in the previous chapter, these assessment steps have not 
been previously presented as a set of analyses. Thus, there are a number of 
potential technical issues that will need to be raised and resolved 
concerning their use in combination. 
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Once the assessments discussed in the previous chapters have been 
conducted, the cross design investigator will likely have accumulated 
considerable information on the weaknesses in the studies to be 
combined. Specifically, task 1 of the cross design synthesis should have 
indicated the nature and extent of generalizability problems for existing 
randomized studies. Task 2 should have revealed much about comparison 
bias in the results of each data base analysis. Alternatively, the investigator 
will have become aware of the uncertainty associated with existing 
results. Assuming that a cross design synthesis has been deemed both 
needed and feasible, the investigator now faces the major challenges of 
this approach. 

As noted at the outset of this report, even though the different designs 
were selected because they have complementary strengths and 
weaknesses, one cannot naively combine results across categories, 
trusting that the weaknesses will “average 0~4” while the complementary 
strengths are preserved. Rather, the cross design investigator must 
successfully complete the two remaining tasks: 

l Task 3 is to perform secondary adjustments, as needed, to minimize 
problems and biases in existing studies. 

l Task 4 is to synthesize the adjusted results within and across design 
categories, recognizing the limitations of these results and taking account 
of persistent cross-study differences. 

In this chapter, we further describe the challenges and logic of tasks 3 and 
4, the steps involved, and the methodological options available to the cross 
design investigator. 

Logic of Task 3: 
Adjusting Individual 
Studies’ Results 

. 

. 

The cross design investigator must take account of known biases in 
individual study results.’ Two alternatives for dealing with known biases in 
individual studies have been put forward previously. These are: 

exclusion of the more biased studies, and 
secondary axijustment of individual study results to compensate for 
specific biases. 

Exclusion (that is, assigning the more biased studies a “zero weight”) is 
not advocated here as a solution to the challenge of known biases in 

‘Based on tasks 1 and 2, the investigator will have information on what portions of the patient 
population are inadequately represented in each randomized study and on the direction of comparison 
bias in each data base analysis. 
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existing studies. Of course, some studies may in fact be so irretrievably 
biased or flawed that a “zero weight” is necessary. But in a cross design 
synthesis, such an approach does not represent an ideal first solution to 
the problem of individual study bias. 

The reason is that although each study is weak in an important area, it has 
an alternative strength. Our goal is to capture these strengths. For 
example, a randomized study is likely not fully generalixable to the patient 
population, but it should be included in a cross design synthesis because 
of its strength in providing a valid comparison. The situation is analogous 
for data base analyses. Exclusion signifies a failure to reap the benefits of 
the strengths contained within a particular study. Thus, exclusion on the 
basis of a known bias should represent a last resort. 

A  more promising approach is to begin with the secondary adjustment of 
each study’s results to counteract the specific form of bias that threatens 
their validity. Eddy’s “confidence profile method” strongly advocates 
adjusting the results of each study before developing a combined estimate 
(Eddy, Hasselblad, and Shatter, 1989, p. 66):2 

“the assumption being made is that all studies to be combined... [in order to estimate]...a 
particular parameter must be estimating that parameter without bias, or must have been 
adjusted for any biases that affect their estimates of that parameter.” 

More specifically, Rubin (1999a) has suggested that before including 
randomized studies in a meta-analysis, their results should be adjusted to 
reflect population distributions (of patients’ characteristics, for example). 
This produces meta-analysis results that’go beyond mere representation of 
the kinds of subjects that happen to have participated in the various 
studies. Mosteller (1990b, citing Colditz, Miller, and Mosteller, 1988) 
endorses secondary adjustment for comparison bias in results of 
nonrandomized studies. As Mosteller notes, however, practicing 
meta-analysts have only infrequently applied secondary adjustments3 

The confidence profile method is a strategy for statistically combining multiple pieces of evidence 
ikom different experimental designs involving different types of outcomes, different measures of 
effect, and different kinds of biases. This method also utilizes indirect evidence (on, e.g., intermediate 
outcomes) and “mixed compsrlsons” (Yone experiment might compare treatment A with treatment B, 
another treatment B with treatment C”). It advocates using nonexperimental, subjective evidence 
where there are gaps in formal knowledge (see “Executive Summary” of Eddy, Hasselblad, and 
Schacier, 1989). 

9A considerable literature exists on primary arjhmtments. Indeed, epidemiologists point out that 
adn&ments should be made whether or not an observed bias reaches statistical significance: “Even if 
such a distortion occurs by chance...it would still have to be corrected in the data in order to obtain a 
proper estimate....” (KIeinbaum, Kupper, and Morgenstern, 1982, p. 264). 
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One precedent for individualized secondary adjustments is provided by a 
GAO report (GAO, 1939b) concerning AIDS forecasts. GAO first assessed the 
different undercount and overcount problems in the AIDS data base, which 
was used by all the forecasters. GAO then determined which problems had 
(and which had not) already been adjusted for in each study. This allowed 
secondary adjustments to be individually tailored to each existing 
forecast. 

In a cross design synthesis, individualized adjustments that take account 
of the estimated distortion in each study’s results are possible because of 
the in-depth assessments conducted in tasks 1 and 2. Thus, we advocate 
individualized secondary adjustments to account for known biases. The 
first step consists of the secondary adjustment of randomized studies’ 
results to enhance generalizability; that is, standardizing results to the 
relevant patient population. The second step consists of adjustment of 
data base analyses to minimize comparison bias through a variety of 
methodological options. Methods for completing these steps are described 
later in this chapter. 

Logic of Task 4: 
Combining Results 
W ithin and Across 
Design Categories 

An important challenge facing the cross design investigator is the 
possibility that, despite secondary adjustments, the chief weaknesses 
associated with the major designs continue to distort study results. 
Notably: 

l Some patient groups may have been totally excluded from randomized 
studies. This is a problem that cannot be fued by adjustments of 
individual studies’ results to correct for over-representation and 
underrepresentation (in task 3). 

l In the assessment of each data base analysis, some imbalances in patient 
comparison groups may not have been detected. If any imbalance is not 
detected by either the data base analyst or the cross design investigator 
(and thus was not adjusted in task 3), hidden comparison bias will remain 
in the adjusted data base results. 

One solution is to devise an appropriate framework for organizing, 
analyzing, and combining results from different categories of study 
designs. This approach has its roots in meta-analysis, where strata based 
on study designs or characteristics of study participants (bight and 
W lemer, 1934) have been created so that results from multiple, relatively 
homogeneous studies could be analyzed separately and combined within 
each stratum. Such strata might be used to “take into account different 

PNe 79 GMWEMD-92-18 Cross Deeign Synthesis 



Chapter 4 
Methoda for AdJurtlng md Combining 
Remlt.e of ILurdomlzed Studier and Data 
But Analyses (Taska 8 and 4) 

characteristics of subjects, treatments, contextual variables, and effects of 
interactions among these” (Jackson, 1980, p. 136). 

Thus, we advocate that, following secondary adjustment of individual 
study results, the cross design investigator devise a synthesis framework. 
The purpose of this framework is to allow differences in design-and 
potentially persistent biases-to be accounted for when combining studies 
within and across design categories. 

Combining multiple studies within a major design category (or stratum) 
involves the traditional challenges of meta-analysis. For example, the 
results of randomized studies may differ from each other--even after 
secondary a<iiustment of each study’s results for known artifacts. Such 
differences should be analyzed and taken into consideration when 
deciding how the results of randomized studies are to be combined. The 
same logic applies when combining results from multiple data base 
analyses. 

Even after adjustment, differences in results of individual studies may 
remain and be linked to differences in 

l the certainty that the investigator has about different studies’ results, 
deriving from a number of sources, including (1) known differences in the 
quality of the studies and (2) differences in the investigator’s knowledge 
about the nature and extent of biases remaining in the studies’ a&sted 
results; 

. study procedures or design specifications (for example, differences in the 
target populations of various randomized studies, such as male patients 
only in one study and female patients only in another study); and, 

l the reliability of different studies’ results (deriving from different sample 
sizes, variances).4 h 

Differences in certainty should not be ignored, as most meta-analysts 
would agree (although specific approaches for dealing with differences in 
certainty have varied). Likewise, differences in procedures or design 
specifications should be recognized and taken into account via a logical 
model, stratification, or other method. Many analysts have realized this in 
recent years. And the more reliable studies should be given greater weight, 
as statisticians have shown (see Rao, 1984, citing Co&ran, 1937,1964, and 
Co&ran and Carroll, 1963). Thus, we believe that when combining studies 

‘This limited list of possible sources of differences in adjusted results reflects our continuing 
assumptions in Thai report: a constant treatment implementation and a single outcome of interest. 

Page 80 GAO/PEMD-92-18 Crone Design Synthesis 



Chaptax 4 
Method8 for Adjnrthg and Combining 
Berulta of Randomized Stodieo and Data 
BUH! Amlyeer (Taah 8 and 4) 

within each major design category, the investigator should take account of 
cross-study differences through such methodological options as 
appropriate weights or the use of ranges, which are described later in this 
chapter. 

After a multistudy estimate of the treatment effect has been calculated 
separately for each major design category, the cross design investigator 
faces what may seem to be his or her greatest challenge. In order to reap 
the benefits of the cross design approach, the investigator must 
successfully deal with two potential problems: 

l First, one or more logical design categories may be “empty sets” in the 
framework; notably, there may well be no existing randomized study that 
covers a major patient population group7such as elderly patients). 

l Second, estimates of the treatment’s effect may differ across design 
categories, and differences in these estimates may reflect (or derive from) 
differences in the levels of certainty associated with the,various estimates, 
differences in study design and population coverage, and of course, 
differences in the reliability of these estimates. 

In combining studies across design categories, the investigator must 
project results to the empty stratum and must determine the 
appropriateness of combining estimates of treatment effects across other 
design categories. This involves considerable investigator judgment about 
how (or if) to combine results from specific strata. For example, an 
investigator may decide to take a weighted average of results across 
certain design categories, Or, estimates from different design categories 
might be used to define ranges for plausible sizes of the treatment’s effect. 

Tasks, Steps, and 
Challenges in 
Adjusting and 
Combining Studies 

The task of adjusting individual studies’ results involves two major steps: 
(1) secondary adjustment of each randomized study’s results to correct for 
known over-representation and underrepresentation of patient groups (that 
is, standardization to population distributions); and (2) adjustment of the 
results from each data base analysis to compensate for known comparison 
bias. The task of combining studies’ results involves three additional steps: 
(3) constructing a framework for separately analyzing results of studies in 
different design categories; (4) combining studies within each design 
category, while taking account of differences between studies that may 
have affected results; and (6) synthesizing results across design categories, 
again taking account of major differences in design that may have affected 
results. 
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These steps have been designed to meet the challenges involved in 
adjusting and combining studies, as summarized in table 4.1. In the 
sections that follow, we review methodological options that the cross 
design investigator can draw upon to complete these steps. 

Table 4.1: Adjuatlng and Comblnlng Studier: Challenges, Tasks, and Stepr 
Challenge Task or SteD 

General challenge: individual study results are known to be biased 
by artifacts identified in assessment. 

Speclflc challenge: randomized study results are not generalizable. 

Specific challenge: data base comparisons are imbalanced. 

General challenge: Studies’ results differ both within and across 
major categories of study design and population coverage. 

Speclflc challenge: different strategies must be used to take 
account of differences within and across major design categories. 

Speclflc challenge: within each design category, studies’ adjusted 
results may differ according to their procedures, reliability, and 
quality. 

Specific challenges: there is a lack of results for one or more key 
categories (e.g., a lack of randomized study results for important 
patient groups); multistudy estimates do not converge across design 

Task: Adjust each study’s observed treatment effect before 
combining. 

-Step 1: Standardize each randomized study’s results to 
patient population parameters. 
-Step 2. Lower or raise effects estimated in data base 
analyses, using assessment results. 
Task: Combine adjusted study results, taking account of 
persistent differences, both within and across design 
categories. 

-Step 3. Create synthesis framework (design strata) to 
organize results. 

-Step 4. Within each stratum of the synthesis framework, 
combine results using a plan to adjust for multiple types of 
cross-study differences. 

-Step 5. Use synthesis framework to develop cross design 
projection; make judgments about using “better” estimates 
(only) versus ranges or weighted averages taken across strata. 

Making Secondary 
Adjustments to 
Enhance 
Generalizability 

The purpose of adjusting each randomized study’s results is to enhance 
generalizability; that is, to correct for the over-representation and A 
underrepresentation of certain patient groups. As Rubin (199Oa) has 
suggested, a randomized study’s results can be weighted to reflect known 
parameters of the patient population (such as patient age distribution). 
The cross design investigator can accomplish this without secondary data 
analysis--provided that separate treatment effects were reported for 
relevant patient subgroups (for example, a separate treatment effect for 
each age group). 

Specifically, the cross design investigator applies a set of weighting 
procedures that have been in common use for many years in survey 
sampling and in epidemiological research. In survey sampling, the goal has 
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been to improve the match between sample survey results and the 
corresponding values in the population from which the sample was drawn. 
The sample-survey weighting procedures include: 

“adjusting sample frequencies to expected marginal totals” (Deming, 1964, 
P. 96); 
the “nights-at-home” adjustment (Politz and Simmons, 1949) used in many 
opinion poll$ 
weighting random (second-wave) subsamples of first-wave 
nonrespondents to represent all first-wave nonrespondents (Co&ran, 
1963, citing Hansen and Hurwitz, 1946); 
weighting survey respondents in a given subgroup or geographic area by, 
for example, the inverse of the response rate for that subgroup or 
geographic area (see Kalton, 1933); and 
weighting survey respondents in various subgroups or geographic areas so 
that the resulting distributions across these subgroups or areas will match 
published data from the U.S. Census (K&on, 1933). 

In epidemiologic research, essentially the same approach has been used to 
produce a standardized incidence (or prevalence) rate. Here, the classic 
situation consists of two populations that differ on a characteristic (such 
as age) that affects the incidence rate of the disease in question. To better 
compare incidence rates across the two populations, these rates have been 
standardized for one or more key characteristics. For example, a drug use 
incidence rate in the armed forces and in a civilian population might be 
standardized for age and sex. 

When only one key characteristic is taken into account, the 
standardization procedure is straightforward. First, a standard population 
is identified and information on the distribution of the key characteristic 
(such as age) is obtained. Then, as described in Liberati et al. (1983), 
disease incidence rates for members of a study sample are calculated 
separately for each category of the key characteristic (for example, for 
each age category). Lastly, a weighted average of the category-specific 
disease incidence rates is calculated, with weights taken from the (age) 
distribution in the standard population. Deming (1964) and Fleiss (1973) 

@I’o illustrate the way the ‘nights-abhome” @ustment works, a relative weight of 4 is given to each 
survey respondent who reports that he or she was at home on only one of the four preceding nights, 
each such respondent thus represents himself or herself and three other (presumably similar) persons 
who were not interviewed because they were not at homaat night. By contrast, a survey respondent 
who reported being at home all four nights would receive a weight of 1, standing for himself or herself 
only. 
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describe procedures for calculating rates standardized on multiple 
characteristics. 

Fortunately, because these methods are baaed on weighting grouped data, 
they lend themselves to secondary adjustment of published results 
(provided, of course, that the required subgroup data have been reported). 
For example, suppose that a randomized study includes equal numbers of 
younger patients (31-60 years) and older patients @l-70), but that only 20 
percent of the total patient population falls into the 31-60 group. The large 
majority of the patient population (80 percent), then, are in the 61-70 age 
group. If the randomized study reports separate estimates of the treatment 
effect (for example, reduction in high blood pressure) for patients aged 
31-60 years and for patients aged U-70, then it is possible to calculate an 
overall treatment effect that is “standardized” or adjusted to reflect the age 
distribution of the patient population-at least within the 31-70 age range. 
The procedure is to take a weighted average of the separate treatment 
effects, using the information on the population age distribution as 
weights; for example, 0.20 times the reported effect for the younger group 
plus 0.80 times the reported effect for the older group. Such an adjustment 
would counteract overrepresentation and underrepresentation in each of 
these age groups. 

Making Secondary The traditional approach to minimizing comparison bias in existing studies 

Adjustments to 
is the secondary analysis of the data base in question. This means 
accessing the data base and using methods of primary adjustment to 

Minimize Comparison control for “confounding variables.” Methods of primary adjustment 

Bias include matching, subclassification, and a&.rstments based on weighted 
averages taken across strata, partial correlation, covariance or regression 
adjustment, propensity scores, selection modeling, or structural modeling 
(see chapter 3). 1, 

Although secondary analysis appears to be the safest approach, it is not 
always possible because of nonavailability of the original data set or other 
problems. In addition, the time and resource requirements for conducting 
secondary analyses of multiple data bases may be prohibitive. When 
secondary analyses are not possible, the cross design investigator may 
turn to other options, such as: 

l secondary adjustment using a variant of the standardization procedures 
discussed above (that is, a variant of the procedures recommended for 
standardizing a randomized study’s results); 
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l secondary adjustment of the observed treatment effect, upward or 
downward, using a ratio (to, for example, reduce the observed effect by 10 
percent); and 

. calculation of an alternative estimate of the treatment effect based on 
“natural experiments” or natural cohort comparisons (as discussed in 
chapter 3).6 

A  “standardized treatment effect” that corrects for comparison bias can be 
calculated by taking a weighted average of treatment effects for each 
separate subgroup defined by the key characteristic or prognostic factor. 
For example, the separate treatment effects observed for each age group 
could be averaged-using the relative sizes of the age groups as weights.’ 
However, if subgroup effects were reported by the data base analyst, it is 
likely that related differences were taken into account in the primary 
adjustments. 

Actjustment of the observed treatment effect upward or downward by a 
ratio has been described by Eddy, Hasselblad, and Schacter (1989, pp. 
107-08). The investigator specifies “a ratio for the outcome parameter that 
applies to individuals in the treated group compared with individuals in 
the control group, in the absence of the intervention.“* The benefit of using 
a ratio adjustment is that this avoids the need for accessing the data base. 
The important issue, however, concerns the basis used to set the ratio. The 
in-depth information gleaned in the assessment of comparison bias 
(chapter 3) would inform the investigator’s subjective choice of a ratio for 
each individual study.O 

‘The options for secondary adhrstment of data base results discussed in this section do not include use 
of randomized study results as a standard. In the strategy of cross design synthesis, comparisons of 
treatment effecta estimated in randornlaed studies and in data base analyses are not made until the last 
step. The reason is that comparisons across design categories are most appropriately made (1) after 
studies have been individually adjusted based on in-depth assessment of their specific weakne&%%nd 
(2) after the best multistudy estimate has been derived for each major design category. 

‘It is also possible to take a weighted average of outcomes for the treatment group, and then for the 
control group; that is, to standardize the groups separately. The weighted results for the treatment 
group could then be compared to the weighted results for the control group. Of course, thii approach 
can only be used if outcomes were reported for separate age groups of patient+-within each 
comparison (or treatment) group. 

*For example, suppose that the patients who received the new treatment would have been-in the 
absence of that treabnent-twlce as likely to experience a negative outcome as patients who received 
usual care. Logically, then, the usual care group should be subjected to a compensatory 
adjustment-doubling the proportion of usual care patients experiencing the negative outcome. The 
investigator would make thii secondary adjustment before recalculating the treatment effect 

8obviously, the ratio that is appropriate for adjusting one data base analysis might not be appropriate 
for adjusting another. 
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Calculating the difference between average outcomes for two similar 
populations of patients, each of which received a different treatment, 
constitutes taking advantage of a “natural experiment.” The work of 
Wennberg (for example, Wennberg et al., 1988) suggests that such 
possibilities do OCCUI=~~ This approach follows the natural cohort 
comparison discussed in chapter 3. Published outcomes for such natural 
cohorts may be available; if so, an alternative estimate could be derived. 

The use of different adjustment techniques has sometimes been found to 
yield different results. Therefore, a careful cross design investigator may 
wish to test the robustness of secondary adjustments by applying multiple, 
alternative techniques of secondary adjustment (see, for example, 
Rindskopf, 1986). Where necessary, a range of adjusted values can then be 
developed for each study; where such ranges are large, the uncertainty of 
the ac\justed value is clear. 

As deemed appropriate by the investigator, the estimates obtained via one 
or more of the foregoing adjustment options can be used either (1) as a 
substitute for the original data base estimate of the treatment’s effect, or 
(2) together with the original estimate as, for example, in a range. 

Designing a Synthesis Meta-analysts have often used separate design categories (or strata) to 

Framework analyze study results. For example, the treatment effects observed in 
randomized studies and “qua&experiments” were analyzed separately in 
Wortman and Yeaton’s (1983) metaanalysis of studies of coronary artery 
bypass graft surgery. And results for studies covering premenopausal and 
postmenopausal breast cancer patients were analyzed separately in a 
meta-analysis of randomized studies of ac@vant chemotherapy (Himel et 
al., 1986). Following separate analysis, the studies in the different 
categories may or may not be combined in a single estimate. 

Outside the meta-analysis tradition, one notable study (Hlatky, 1991) 
suggests the value of a framework that (1) stratifies observed treatment 
effects on both study design and population coverage and (2) fine-tunes 
the population coverage strati-0 that the results for randomized studies 
and data base analyses can be compared for matched patient groups). 

loThis work has revealed surprisingly high levels of variation in medical practice-including 
differences in the preferred treatments for specific diseases and conditions-across geographic areas. 
As a result, patients in certain geographic areas where the new treatment is very widespread may be 
overall very similar to patients in other geographic areas where that treatment is rare. 
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As discussed in chapter 3, researchers at Duke compared outcome levels 
from three previously published randomized studies to results of an 
analysis of the Duke Cardiovascular Disease Databank. In that analysis, 
patients from the Duke Databank were selected to match the patient pools 
of the randomized studies.11 The most recent in a series of studies that 
emerged from this effort (Hlatky, 1991) compares the treatment effect 
observed in each randomized study to the corresponding treatment effect 
estimated from records of comparable patients in the Duke Databank (see 
figure 1 of Hlatky, 1991). This Duke study suggests that, when secondary 
analysis of the data base in question is possible, design categories or strata 
should be based on “fine-tuned” definitions. 

Clearly, any number of strata might be used to create a framework for 
synthesizing results in specific areas. A  cross design synthesis to estimate 
a treatment’s effect across the full range of patients should include 
stratification on at least two key dimensions: 

l The primary dimension of stratification corresponds to the types of 
designs included in the synthesis. In the present instance, this means that 
randomized studies form one stratum and data base analyses form 
another.12 All further stratification is carried out within each primary 
design stratum. 

l The secondary dimension of stratification is defined according to coverage 
of the patient population by existing randomized studies. The key strata 
here are: (1) subgroups of the patient population covered by the existing, 
combined set of randomized studies (even if the subgroups are 
underrepreznted or overrepresented), and (2) subgroups of the patient 
population not covered at all in any existing randomized studies. 

Table 4.2 depicts four strata for a simple version of the framework 
suggested here. 

%pecifIcally, the patients were chosen from the Duke Databank to match eligibility criteria (including 
age, sex, type of heart disease, and patient entry date) for each of thze randomized studies (Hlatky 
et al., 19sS). 

‘*Of course, each dimension of stratification could include several strata (not just two). And more than 
two dimensions of stratification are possible. Thus, for example, when creating strata to take account 
of methodological variations, one might use several design strata instead of merely distinguishing 
between randomized studies and observational data bases. 
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Table 4.2: Synthesk Framework: 
Prlmaty and Secondary Dlmenrlona ot 
Stratlflcatlon Selcrondary dlmenrlon: 

coverage of patlent groups 
In randomized studies’ 
Covered In randomized Stratum la 
studies (e.g., whltes) 
Not covered In randomized Stratum 1 b (empty) 
studies (e.a., blacks, and 
other mino~liles) 
1Assumes that existing data base analyses cover all patient groups. 

Prlmary dimension: type of deslgn 
Rerulte of 
randomized studies: Data bare analyses: 
Stratum 1 Stratum 2 

Stratum 2a 

Stratum 2b 

To illustrate the secondary dimension of stratification, if an existing set of 
randomized studies covers only white patients-whereas approximately -- 
one-fourth of the patient population is composed of blacks and other 
minorities-then the secondary dimension of stratification subdivides the 
randomized study stratum and the data base stratum into racial strata as 
follows: randomized study results for white patients, randomized study 
results for nonwhite patients (an empty set), data base results for white 
patients, and data base results for nonwhite patients. 

There are two reasons why the second dimension of stratification is 
necessary. The first reason is simply that certainty concerning randomized 
study results is quite different for patient groups covered by randomized 
studies and patient groups not represented in any randomized study. 
Second, the procedures that are appropriate for developing estimates of 
treatment effects are different for each of these strata, as described in the 
following section, 

To obtain a very close match between the patient populations covered in 
stratum la and in stratum 2a, secondary analysis of the data base may be 
required, aa evidenced by the Duke analysis described above.13 

4 

Combining Study Having created a framework, the investigator’s next step is to combine 

Results W ithin Design results from studies within each category (stratum), taking account of 
cross-study differences. As previously discussed, cross-study differences 

Categories in estimated treatment effects may be linked to: (1) differences in the 
investigator’s certainty concerning the results of the studies; (2) 
differences in the procedures and design specifications (such as 

‘me Duke analysis provided the pattern for strata la and 2a in table 4.2; however, it did not cover 
strata lb and 2b. 
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population coverage) of the individual studies; and (3) differences in the 
reliability of the results of the various individual studies, To take account 
of each type of cross-study difference, specific methods must be identified 
and chosen; then, where multiple types of cross-study differences exist, a 
combined plan for taking account of them is needed. Available options are 
discussed below. 

Accounting for D ifferences There are at least three options for dealing with differences in certainty. 
in Certainty These are: quality weights, projection (by, for example, extrapolation), and 

stratification. Many analysts advocate such approaches.14 

The first option, long discussed by meta-analysts, consists of taking a 
weighted average of study results, weighting each study according to its 
quality. As Rosenthal (1984, pp. 54-55) observed: 

“Once sll the retrievable studies have been found, decisions csn be made about the use of 
any study. Precisely the same decision must be made about any study retrieved: How shall 
this study be weighted? Dropping a study is simply assigning a weight of zero. If there is a 
dimension of quality of study (e.g., internal validity, external validity, and so on) then there 
can be a corresponding system of weighting. If we think a study is twice as good as 
another, we csn weight it twice ss heavily or four times more heavily and so forth.” 

Rubin (1990a) has suggested another option: rather than averaging the 
results of “the current collection of fallible studies,” investigators develop 
ways to extrapolate to an “ideal study’s”’ results. Certainly, one can 
imagine a display in which observed treatment effects diminish with 
increasing study quality; if the size of the treatment effect appears to 
asymptote at a certain level of study quality, one would be reasonably 
confident in taking the effect size observed at that level as the “best 
estimate.” Alternatively, imagine a display in which the effect size 
decreases with study quality but does not appear to asymptote; one option 
would be to project an even lower value for the “ideal study” than any of 
those observed. 

4 

A  third option is to create strata based on study quality (Jackson, 1980). 
This approach was used in the recent GAO report of forecasts of the AIDS 
epidemic (GAO, 1989b): Results were first presented for all forecasts 
identified (first stratum or category); they were subsequently presented for 
only those forecasts that met certain criteria (the highest quality stratum). 

‘“Some, however, have argued against the use of the quality weights option (see, e.g., Eddy et al., 1989). 
It is true that if secondary adjustments improved all studies’ estimates to the point where differences 
in study quality were eliminated, such weights would not be relevant. 
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Recognizing D ifferences in There are at least three options for taking account of differences in 
Study Specifications specifications across studies of the same basic design (that is, options for 

taking account of differences such as one randomized study covers males, 
another covers females). They are: the use of an appropriate model, 
stratification, and ranges. 

Rubin (199Oa) has suggested that rather than averaging studies whose 
subjects represent different portions of a target population, the 
meta-analyst can extrapolate various studies’ results to achieve an effect 
size for a defined target population.16 Eddy, Hasselblad, and Schacter 
(1989) have suggested the use of explicit models (sketched out in 
“influence diagrams”) to relate findings about effects, outcome levels, 
intermediate outcomes, and so forth--observed for various patient groups 
and influenced by specified cofactors. 

The Rubin-Eddy cross-study approaches can be applied in ways that are 
very similar to the standardization of results for individual randomized 
studies (which was discussed in a previous section of this chapter). To 
suggest a simple example, suppose that one existing randomized study 
covers male patients only, while another covers female patients only, and 
the gender distribution of the patient population is 80-percent male, 20- 
percent female. A  model might specify taking a weighted average with the 
weight of 0.80 assigned to the men’s study result and the weight of 0.20 
assigned to the women’s study result. 

Using the approach suggested by Rubin and by Eddy, the cross design 
investigator would achieve a single multistudy estimate for the design 
stratum in question (for example, a single estimate for all randomized 
studies, which is stratum la in table 4.2). However, in some cases, a range 
or set of estimates for a particular stratum might be deemed more 
appropriate (see, for example, GAO, 1989b). Alternatively, a range might be 
seen as a desirable addition to the best multistudy estimate for that 
stratum. Yet another option is suggested by Light and Pillemer (1984): 
When different types of studies or different types of subjects yield ’ 
different results, one can stratify results by study characteristics, 
presenting them separately for each stratum, as appropriate. In the present 
instance, this would mean creating substrata within one or more major 
strata. 

161n the previous section, we noted R&ii’s projection approach as a way of taking account of 
differences in study quality; we note it here as a way of taking account of differences in population 
coverage. 
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Recognizing D ifferences in Hedges (1984) demonstrates that the most precise multistudy estimate 
Reliability would be a weighted average, using the inverse of the variance of each 

study’s estimate as that study’s weight. In the same vein, Hunter and 
Schmidt (1999) advocate weighting by each study’s sample size. Rosenthal 
(19&I), whose meta-analysis method is based on combining z scores, 
similarly discusses the possibility of weighting z scores by the associated 
degrees of freedom. 

It is important to note, however, that weighting study results to take 
account of reliability differences assumes that only estimates of a single 
treatment effect (that is, estimates of the same population value) are being 
combined. Thus, for example, when combining estimates of a treatment’s 
effect on male patients with estimates of that treatment’s very different 
effect on female patients, it would not be appropriate to weight one or the 
other category based on the sizes of the studies involved. 

Dealing W ith Multiple The various types of cross-study differences are not mutually exclusive. 
Types of Study D ifferences For example, the investigator may be faced with a set of randomized 

studies that differ from each other in terms of their quality (or the 
investigator’s certainty about their results), their specifications, and their 
size (and hence their reliability). Fortunately, many of the approaches 
outlined above can be used in conjunction, to take account of multiple 
types of cross-study differences. This requires that a careful plan be 
devised by the investigator. 

Suppose for example, that we are dealing only with studies within a single 
design category-stratum la in table 4.2. Further suppose that four 
randomized studies exist, all covering white patients only, and each has 
been standardized to reflect the age distribution of the patient population. 
W ithin this stratum or design category, the cross-study differences facing 
the investigator are as follows: 4 

l One of the randomized studies is associated with a lower level of certainty 
than the others (that is, it has been judged “lower quality”). 

l Three of the randomized studies cover male patients only and one covers 
female patients only (although the patient population is 60-60 
male-female). Further, the one lowquality randomized study is a male-only 
study. 

l AU the randomized studies have very different sample sizes. 
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One plan for joint consideration of these various differences is shown in 
table 4.3. This plan produces two estimated treatment effects (estimate A 
and estimate B) for the total p%nt population. These might be viewed as 
a range. One end of the range represents results of all studies; the other 
end, results of only the higher certainty studies. Both estimates of the 
treatment effect (that is, estimate A and estimate B) are calculated to 
reflect the male-female distribution of the population, as well as the 
differing reliability of the existing estimates for male patients. 

fable 4.3: Example of a Plan to 
Account for Multlplo Crow-study 
Differences In Four Randomized 
Studlss’ 

Crowstudy 
difference 
Level of certainty 

Component of three-part plan 
First, plan to develop two estimates, which may be presented 
separately or as a range. 

-Estimate A will be. based on all 4 studies (3 male, 1 
female). 

-Estimate B will be based on only the 3 higher certainty 
studies (2 male, 1 female). 

Study specifications 
(male or female 
subjects) 

Study reliability 

Second, in calculating each estimate plan to use a model of 
gender distribution in patient population: 

-For estimate A, plan to calculate a separate estimate for 
males (3 studies) and for females (1 study) and then take 
weighted average, using weight of 0.5 for male estimate and 
0.5 for female estimate. 

-For estimate B, the plan is the same as for A, except that 
the male estimate is based on only the 2 higher certainty 
studies. 

Third, when calculating the male estimate, plan to weight 
each male study by the inverse of its varianceeb 4 

-The procedures for calculating male estimates A and B are 
identical, except that all 3 male studies are included for A and 
only the 2 higher certainty male studies are used for B. 

BThe four randomized studies include 3 higher certainty studies and one lower quality study. One 
of the higher certainty studies covers female patients only, while the other 3 studies cover males 
only. The male studies have differing sample sizes. 

Weighting each male study by the inverse of its variance assumes that each of these studies is 
estimating the same population value. 
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Many such plans are possible, and the choice of any one plan is guided by 
investigator judgment, especially on the relative import of the various 
types of differences. For instance, in the example just cited, we did not 
specify whether the differences in treatment effects observed for male and 
female patients were very large; nor did we specify the sizes of the 
differences in treatment effects observed for the different quality 
maleonly randomized studies. 

Because different plans and options may yield different results, the 
investigator is advised to check the uncertainty associated with this step 
through a sensitivity analysis. That is, we believe the investigator should 
conduct this step in two or more alternative ways; this would allow 
estimation of the difference in synthesis results that alternative plans 
might produce. This type of sensitivity analysis has been recommended for 
more traditional meta-analyses (L’Abbe, Detsky, and O’Rourke, 1987). 

Synthesizing Results 
Across Design 
Categories 

Having combined study results within the separate design categories, the 
next step is to combine results across categories. As discussed earlier in 
this chapter, combining results across design categories involves dealing 
with two potential problems. The first problem consists of the “empty set” 
that is crucial when estimating a treatment effect across the full range of 
patients: the set of patient population groups not covered by any existing 
randomized study (stratum lb of table 4.2 on page 88). The second 
problem consists of differences in estimates across design categories, 
which may be linked to differences in certainty, in study designs, or in 
reliability. Successfully dealing with these problems amounts to reaping 
the benefits of a cross design synthesis that is based on studies with 
complementary strengths and weaknesses. 

Projecting to an “Empty” 
Design Category 

Projection to patients not covered by randomized studies, using data from 
all other strata, would be consistent with Rubin’s (199Oa) approach. The 
specific form of the projection depends on the assumptions that the 
investigator makes, Using the synthesis framework shown in table 4.2 on 
page 88, one method of making such a projection would be to assume that 
stratum la results are to stratum lb results as stratum 2a is to stratum 2b.16 
Since estimates are available for all except stratum lb, it is easy to “solve 
for’ the projection. 

Tt is important to note that this assumption is made for study results that (1) have been subjected to 
secondary adjustment and (2) have been combined withln each stratum 80 aa to maximize reliability, 
take account of differences in certainty, and so forth. (This approach is related to that used by Cold& 
Miller, and Moeteller, lQ88). 
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Suppose, for example, that existing randomized studies are limited to 
white patients. One might make the simple assumption that the unknown 
randomized study results for black patients bear the same relationship to 
the randomized study results for whites that the observed data base 
results for blacks bear to data base results for whites. Thus, for example, if 
the treatment effect that the data base estimates for bladks is 60 percent 
higher than for whites, the projected randomized study treatment effect 
for blacks would be 60 percent higher than the observed randomized study 
treatment effect for whitesi 

This approach has the advantage of trying to use the maximum available 
information. Various other options for projection are possible, of course, 
using alternative assumptions. For example, the relatively common 
practice of generalizing results from randomized studies covering certain 
patient groups to other, uncovered patient groups is based on the 
assumption that results for stratum la and stratum lb are identical. In fact, 
this assumption has been encouraged by some researchers-so long as 
there is no reason to believe that the uncovered groups would respond 
differently than those who participated.l* In our view, an indication of 
whether or not this is so is afforded by the comparison of stratum 2a 
results to stratum 2b results. 

Dealing W ith D ifferences in The sizes and patterns of the differences between the estimates for the 
Estimates Across Design various strata, the reliability of these estimates and their certainty should 
Categories all guide the investigator in choosing among options for synthesizing 

estimates across design categories. One option is to present each stratum 
estimate separately. Another is to present only estimates from certain 
strata (such as those deemed to be of higher quality). Many other options 
derive from the various methods that were described earlier as ways of 
combining results within design categories. To briefly summarize these 6 
methods, they include: 

l taking an unweighted average of treatment effects estimated for two or 
more categories (strata); 

i70f course, hidden artifacts biasing the stratum la or the stratum lb estimate (or both) would, in turn, 
bias the projection. Ideally, where the investigator is conscious that uncertainty must be associated 
with the multistudy estimate for a stratum, he or she would develop a range for that stratum, perhaps 
based on a sensitivity analysis. The projection would then involve use of a range for one or more strata 

‘aIndeed, the English meta-analyst I. Chalmers (MS) ma&sins that those who would challenge this 
practice in any one instance should provide evidence that patients not included in a randomized study 
do respond differently to the treatment in question than those who were included in the study. 
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l taking a weighted average of treatment effects estimated for two or more 
categories; 

l using other models or projections to combine results from two or more 
categories; 

0 using stratification or ranges to retain differences in estimates of the 
treatment effect for different straw and 

l developing an overaIl plan to combine various methods strategically. 

The investigator’s choice of a particular option (or decision to develop a 
plan for using a set of options) will depend upon the specific pattern of 
cross design estimates. This includes (1) whether results converge or 
diverge across design strata and (2) whether there are differences in the 
levels of certainty associated with the adjusted multistudy estimates 
derived from the different strata. 

For example, referring back to table 4.2 on page 88, many investigators 
might decide that stratum la results were of better quality than stratum lb 
results. Such investigators might decide to use’ the stratum la results alone 
for patient groups covered by randomized studies. Then, for groups not 
covered by randomized studies, these investigators would use the stratum 
lb projection (based on all other strata) by itself. 

Alternatively, however, suppose that an investigator believed that stratum 
la and stratum 2a had produced estimates of a similar level of quality, all 
things considered. If these two estimates for patient groups covered by 
randomized studies differed from each other, the investigator might 
present a range based on the two different estimates. Then, for patient 
groups not covered by randomized studies, after deriving a projection for 
stratum-ib, the investigator could again present a range of values-this 
time based on the projection for stratum lb and the estimate for stratum 
2b. 

Or suppose that stratum la results and stratum 2a results were nearly 
identical, but that these differed considerably from the estimate for patient 
groups not covered by randomized studies (stratum 2b). It might be 
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appropriate to average only la and 2a.r9 The estimate for stratum 2b would 
then be presented separately. 

Summary of Tasks 3 To summarize, having assessed generalizability problems in existing 

and 4: Adjusting and randomized studies and comparison bias in data base analyses, the cross 
design investigator is faced with the challenges of a&rsting and combining 

Combining Studies studies. These challenges include dealing with known biases in individual 
studies (identified in assessment) and with cross-study differences, which 
include major differences in study designs and in the patient populations 
covered. In adjusting and combining studies, the investigator must 
successfully meet these challenges. The tasks, steps, and methodological 
options for doing so are stmunarr ‘zed in table 4.4. Taken together with the 
assessment methods presented in earlier chapters, these constitute a 
first-cut methodology for an investigator to use in conducting a cross 
design synthesis. However, many refinements are still to be developed. In 
particular, we believe that future developmental work should target new 
procedures to minimize the role of investigator subjectivity in determining 
the conclusions of the synthesis. 

“‘Averaging multlstudy resulta from stratum la and stratum 2a (rather than using results from la 
alone) is appropriate when: (1) the results from the two strata are. similar, (2) the existing randomized 
studies sre few in number or marked by small sample size, and (3) the data base analyses are marked 
by minimal levels of uncertainty regarding comparison bias. Other times, for patient groups covered by 
randomized studies, stratum la results alone may be deemed superior. Such judgments must be made 
by the investigator. 
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Table 4.4: Set of Strategler for Adjurtlng and Combining Diverae Studier 
Major rtepr (from table 4.1) Exampler of methodological optlons for each atop 
1. Adjust each randomized study’s treatment effect. Standardize results to correct for overrepresentation or 

underrepresentation (Fleiss, 1973; Deming, 1984). 
2. Adjust results from each data base analysis. Conduct secondary analysis of data base. Other options 

include use of a ratio (see Eddy, Hasselblad, and Schacter, 
1989). 

3. Create a framework to organize results. Stratify studies by type of design (Light and Pillemer, 1984) 
and by coverage of patient subgroups (Himel et al., 1988). 
Match data base patients to those covered in randomized 
studies (Hlatky, 1991); identify those remaining data base 
patients not covered in randomized studies. 

4. Within each stratum of the framework, combine estimates of the 
treatment effect, adjusting (or otherwise accounting) for differences 
in quality, in studies’ population coverage or procedures, and in 
reliability.a 

Use models that account for differences (Eddy, Hasselblad, 
and Schacter, 1989); take a weighted average with weights 
defined by the inverse of variances (Hedges and Olkin, 1985); 
weight studies according to level of certainty; zero weights 
possible (Rosenthal, 1984); project to ideal study (Rubin, 
1990a). 

Use a range of estimates or separate estimates for substrata 
(defined by different study populations, or by certainty or 
quality level). 

Develop plan (see table 4.3; see also GAO, 1989b) for 
combinina these ootions. 

5. Synthesize estimates across design categories (that is, across 
strata of framework from step 3). As appropriate: 

Provide an estimate for the “null stratum” (stratum 1 b in table 4.2). Project to the empty stratum, using results from other strata 
(see Rubin, 1990a; Colditz, Miller, and Mosteller, 1988). 

Combine estimates across design categories, adjusting (or 
otherwise accounting) for differences in estimates linked to quality 
desian. or reliabilitv.’ 

Same options as for step 4 above (including use of zero 
weights as deemed appropriate by investigator). 

pBy differences in quality, we mean differences in the level of certainty that the cross design 
investigator associates with (1) the adjusted results of each study or (2) the multistudy estimate 
from each design category. 

A 
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List of Experts 

Consultants contributed to this study during different phases of the work. 
Some reviewed our approach at the outset while others reviewed a draft 
as the study neared completion. Some were interested in the “cross design 
synthesis” as an overall approach, while others were helpful primarily for 
a single chapter or for a particular aspect of the discussion that appears in 
several chapters. 

David Cordray, Ph.D., Department of Human Resources, Vanderbilt 
University, Nashville, Term. 

Rebecca Gelman, Ph.D., Dana-Farber Cancer Institute, Harvard University, 
Boston, Mass. 

Henry Krakauer, M.D., Uniformed Services University of the Health 
Sciences, Bethesda, Md. 

William Kruskal, Ph.D., Department of Statistics, University of Chicago, 
Chicago, Ill. 

Richard Light, Ph.D., John F. Kennedy School of Government, Harvard 
University, Cambridge, Mass. 

Mark Lipsey, Ph.D., Psychology Department, Claremont University 
Graduate School, Claremont, Calif. 

Clement McDonald, M.D., Regenstrief Institute, Indiana University School 
of Medicine, Indianapolis, Ind. 

Robert Moffitt, Ph.D., Department of Economics, Brown University, 
Providence, R.I. 

Frederick Mosteller, Ph.D., Technology Assessment Group, Harvard 
School of Public Health, Boston, Mass. 

David Pryor, M.D., Duke University Medical Center, Durham, NC. 

Donald Rubin, Ph.D., Department of Statistics, Harvard University, 
Cambridge, Mass. 

Henry Sacks, M.D., Mount Sinai Medical Center, New York, N.Y. 

Lee Se&rest, Ph.D., Department of Psychology, University of Arizona, 
Tucson, Ariz. 
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George Silberman, Assistant Director 
Judith A. Droitcour, Project Manager 
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Page 99 GAO/PEMD-92-18 Crose Design Syntheeia 



Bibliography 

Altman, Douglas G., and Caroline J. Do&. “Randomisation and Baseline 
Comparisons in Clinical Trials,” Lancet, 335: 149~63,199O. 

Andersen, Tavs Folmer, Henrik Bronmxn-Hansen, Torben Sejr, and 
Christian Roepstorff. “Elevated Mortality FoRowing TransurethraI 
Resection of the Prostate for Benign Hypertrophy! But Why?” Medical 
t&, 28:870-79,199o. 

Angrist, Joshua D. “Lifetime Earnings and the Vietnam Era Draft Lottery: 
Evidence from Social Security Administrative Records,” American 
Economic Review, 80:313-36,1990. 

Armitage, P., and M. Hills. “The Two-Period Cross-over Trial,” Statistician, 
31:119-31, 1982. 

Atlay, R.D., A.R. Weekes, G.D. Entwistle, and D.J. Parkinson, “Treating 
Heartburn in Pregnancy: A Comparison of Acid and Alkali Mixtures,” 
British Medical Journal, 2:919-20,1978. 

Badwe, R.A., W.M. Gregory, M.A. Chaudary, M.A. Richards, A.E. Bentley, 
R.D. Rubens, IS. Fentiman. “Timing of Surgery During Menstrual Cycle 
and Survival of Premenopausal Women With Operable Breast Cancer,” 
Lancet, 3371261~64,199l. 

Barnett, H.J.M., D. Sackett, D.W. Taylor, B. Haynes, S.J. Peerless, I. 
Meissner, V. Hachinski, and A. Fox. “Are the Results of the 
Extracranial-Intracranial Bypass Trial Generalizable?” New England 
Journal of Medicine, 316:820-24,1987. 

Barnow, Burt S., Glen G. Cain, and Arthur S. Goldberger. “Issues in the 
Analysis of Selectivity Bias,” In Ernst W. Stromsdorfer and George Fsrkas I, 
(eds.), Evaluation Studies Review Annual, Vol. 5. Beverly Hi&x Sage, 1980. 

Becker, Betsy Jane. “Synthesizing Standardized Mean-change Measures,” 
British Journal of Mathematical and Statistical Psychology, 41:267-78, 
1988. 

Beecher, Henry K. “The Powerful Placebo,” Journal of the American 
Medical Association, 169:1602-06, 1966. 

Page 100 GAO/PEMD-92-18 Croea De&n Synthesis 



Begg, Colin B., P.B. McGlave, and Louise Pilote. “Bone-marrow 
Transplantation Versus Chemotherapy in Acute Nonlymphocytic 
Leukemia: A Meta-analytic Review,” European Journal of Cancer and 
Clinical Oncology, 25: X19-23,1989. 

Begg, CoIin B., and Louise Pilote. “A Model for Incorporating Historical 
Controls Into a Meta-Analysis,” Biometrics, 47899906,lQQl. 

Bentler, Peter M. “Latent Variable Structural Models for Separating 
Specific From General Effects.* In Lee Se&rest et al. (eds.), Research 
Methodology: Strengthening Causal Interpretations of Nonexperimental 
Data. Rockville, Md.: Agency fdr Health Care Policy and Research, 1990. 

Bentier, Peter M., and Douglas G. Bonett. “Significance Tests and 
Goodness of Fit in the Analysis of Covariance Structures,” Psychological 
Bulletin, 88588-606,1980. 

Berk, Richard A. “An Introduction to Sample, Selection Bias in Sociological 
Data,” American Sociological Review, 48386-981983. 

Biil, J., R. Anderson, J. O’FaIlon, et al. “Development of a Computerized 
Cancer Data Management System at the Mayo Clinic,” International 
Journal of Biomedical Computing, 9:477,1978. 

Boruch, Robert F. “Comparative Aspects of Randomised Experiments for 
Planning and Evaluation.” In Martin BuImer (ed.), Social Science Research 
and Government. Cambridge: Cambridge University Press, 1987. 

Boruch, Robert F., David S. Cordray, and Paul M. Wortman. “Secondary 
Analysis: Why, How, and When.” In Robert F. Boruch, Paul M. Wortman, 
David S. Cordray and Associates (eds.), Reanalyzing Program Evaluations. 
San Francisco: Jossey-Bass, 1981. 

Bracken, Michael, Murray Enkin, Hubert Campbell, and Iain Chalmers. 
“Symptoms in Pregnancy: Nausea and Vomiting, Heartburn, Constipation, 
and Leg Cramps.” In Iain Chalmers, Murray Enkin, and Marc J.N.C. Keirse 
(eds.), Effective Care in Pregnancy and Childbirth. New York: Oxford 
University Press, 1989. 

Byar, David P. “Why Data Bases Should Not Replace Randomized Clinical 
Trials,” Biometrics, 36:337-42,1980. 

Page 101 GAO/PEMD-92-18 Crow Design Synthedn 



BIbUogrnphy 

Byar, David P., David A. Schoenfeld, Sylvan B. Green, et al. “Design 
Considerations for AIDS Trials,” New England JournaI of Medicine, 
323: 134348,lQQO. 

Cain, G. “Regression and Selection Models To Improve Nonexperimental 
Comparisons.” In CA. Bennett and A.A. Lumsdaine (eds.), Evaluation and 
Experiments. New York: Academic Press, 1976. 

CaIiff, Robert M ., David B. Pryor, and Joseph C. Greenfield. “Beyond 
Randomized Clinical Trials: Applying Clinical Experience in the Treatment 
of Patients W ith Coronary Artery Disease,” Circulation, 74: 1191-94, 1986. 

Campbell, Donald T., and A.E. Erlebacher. “How Regression Artifacts in 
Quasi-Experimental Evaluations Can Mistakenly Make Compensatory 
Education Look Harmful.” In J. Hellmuth (ed.), Compensatory, Education: 
A  National Debate, Vol. 3: The Disadvantaged Child. New York: 
Brunner/Mazei, 1970. 

Campbell, Donald T., and Julian C. Stanley. Experimental and 
Quasi-Experimental Designs for Research. Chicago: Rand McNally College 
Publishing Co., 1963. 

Chalmers, Iain. “Evaluating the Effects of Care During Pregnancy and 
Childbirth.” In Iain Chalmers, Murray Enkin, and Marc J.N.C. Keirse (eds.), 
Effective Care in Pregnancy and Childbirth. New York: Oxford University 
Press, 1989. 

Chalmers, Iain, Murray Enkin, and Marc J.N.C. Keirse (&Is.). Effective 
Care in Pregnancy and Childbirth. New York: Oxford University Press, 
1989. 

Chalmers, Thomas C., Harry Smith, Jr., Bradley Blackburn, Bernard 
Silverman, Biruta Schroeder, Dinah Reitman, and Alexander Ambroz. “A 
Method for Assessing the Quality of a Randomized Control Trial,” 
Controlled Clinical Trials, 2:31-49, 1981. 

Chang, I.M ., Rebecca S. Gelman, and M . Pagano. “Corrected Group 
Prognostic Curves and Summary Statistics,” Journal of Chronic Diseases, 
35669-76, 1982. 

Page 102 GAO/PEMD-92-18 Cram Design Synthesis 



Bibliography 

Charison, M .E., P. Pompei, K.L. Ales, C.R. MacKensie. “A New Method of 
Classifying Prognostic Comorbidity in Longitudinal Studies: Development 
and Validation,” Journal of Chronic Diseases, 40:373-83,1987. 

Chassin, Mark R., Jacqueline Kosecoff, R.E. Park, Constance M . W inslow, 
Katherine L. Kahn, Nancy J. Merrick, Joan Keesey, Arlene Fink, David 
Solomon, and Robert H. Brook. “Does Inappropriate Use Explain 
Geographic Variations in the Use of Health Care Services? A Study of 
Three Procedures,” Journal of the American Medical Association, 
268:2633-37, 1987. 

Co&ran, W illiam G. Sampling Techniques, 2nd and 3rd eds. New York: 
W iley, 1963,1977. 

Co&ran, W illiam G. “The Planning of Observational Studies of Human 
Populations,” Journal of the Royal Statistical Society, Series A, 128234-66, 
1966. 

Cochran, W illiam G. “The Combination of Estimates From Different 
Experiments,” Biometrics, 10: lOl-29,1964. 

Cochran, W illiam G. “Problems Arising in the Analysis of a Series of 
Similar Experiments,” Journal of the Royal Statistical Society, Supp. 
4:102-18, 1937. 

Co&ran, W illiam G., and S.P. Carroll. “A Sampling Investigation of the 
Efficiency of Weighting Inversely as the Estimated Variance,” Biometrics, 
9:447-69, 1963. 

Cochran, W illiam G., and G. Cox. Experimental Designs, New York: W iley, 
1967. 

Co&ran, W illiam G., and Donald B. Rubin. “ControIIing Bias in 
Observational Studies: A  Review,” Sankhya: The Indian Journal of 
Statistics, Series A, 35:417-46,1973. 

Colditz, G., J. Miller, and F. MosteIier. “The Effect of Study Design on Gain 
in Evaluation of New Treatments in Medicine and Surgery,” Drug 
Information Journal, 225X3-62,1988. 

Page 103 GAO/PEMD-92-16 Croes Design Syntbeaie 



Bibliomaphy 

Collins, Rory, Richard Peto, Stephen MacMahon, Patricia Hebert, Nicholas 
H. Fiebach, Kimberly A. Eberlein, Jon Godwin, Nawab Qizilbash, James 0. 
Taylor, and Charles H. Hennekens. “Blood Pressure, Stroke, and Coronary 
Heart Disease, Part 2, Short-Term Reductions in Blood Pressure: Overview 
of Randomized Drug Trials in Their Epidemiological Context,” Lancet, 
33682737,lQQO. 

Connell, Frederick A., Paula Diehr, L. Gary Hart. “The Use of Large Data 
Bases in Health Care Studies,” Annual Review of Public Health, 861-74, 
1987. 

Cook, Thomas, and Donald T. Campbell. Quasi-Experimentation: Design 
and Analysis Issues for Field Settings. Chicago: Rand McNally, 1979. 

Cordray, David S. “An Assessment From the Policy Perspective.” In 
Kenneth W . Wachter and Miron L. Straf (eds.), The Future of 
Meta-Analysis. New York: Russell Sage Foundation, 1QQOa. 

Cordray, David S. “Strengthening Causal Interpretations of 
Nonexperimental Data: The Role of Meta-Analysis.” In Lee Se&rest et al. 
(eds.), Research Methodology: Strengthening Causal Interpretations of 
Nonexperimental Data. Rockville, Md.: Agency for Health Care Policy and 
Research, 1QQOb. 

Cornfield, J., W . Haenszel, EC. Hammond, A.M. Lillienfeld, M .B. Shimkin, 
and E.L. Wynder. “Smoking and Lung Cancer: Recent Evidence and a 
Discussion of Some Questions,” Journal of the National Cancer Institute, 
22: 173203, 1969. 

Coyle, Susan L., Robert F. Boruch, and Charles F. Turner (eds.). 
Evaluating AIDS Prevention Programs, Expanded edition. Washington, D.C.: 4 

National Academy Press, 1991. 

Cox, David R. “Partial Likelihood.” Biometrika, 62:269-76,1976. 

Cox, David R. “Regression Models and Life Tables,” Journal of the Royal 
Statistical Society, Series B, 34:187-202,1972. 

Cox, David R. Planning of Experiments. New York: W iley, 1968. 

Cronbach, Lee J. Designing Evaluations of Educational and Social 
Programs. San Francisco: Jossey-Bass, 1982. 

Page 104 GAWPEMD-92-19 Cream Design Syntheab 



Cronbach, Lee J., D.R. Rogosa, R.E. Fioden, and G.G. Price. “Analysis of 
Covariince in Nonrandomized Experiments: Parameters Affecting Bias.” 
Occasional paper. Berkeley, Calif.: Stanford Evaluation Consortium, 1977. 

Davis, K “The Comprehensive Cohort Study: The Use of Registry Data to 
Confirm and Extend a Randomized Trial,” Recent Results in Cancer 
Research, Vol. 111. Berlin-Heidelberg: Springer-Verlag, 1988. 

Davis, Scott, Peter W. Wright, Susan F. Schulman, Lucius D. Hill, Roland D. 
Pinkham, Lloyd P. Johnson, Thomas W. Jones, Howard B. Kellogg, Jr., 
Hubert M. Radke, Wesley W. Sikkema, Philip C. Jolly, and Samuel P. 
Hammar. “Participants in Prospective, Randomized Clinical Trials for 
Resected Non-Small Celi Lung Cancer Have Improved Survival Compared 
With Nonparticipants in Such Trials,” Cancer, 66:1710-18,1986. 

Deming, W. Edwards. Statistical Adjustment of Data New York: Dover, 
1964. 

Deming, W. Edwards. Sample Design in Business Research. New York: 
Wiley, 1960. 

Deming, W. Edwards. Some Theory of Sampling. New York: Dover, 1960. 

Demlo, Linda K. “Measuring Health Care Effectiveness: Research and 
Policy Implications,” International Journal of Technology Assessment in 
Health Care. 6:288-94.1990. 

Devine, Elizabeth, and Thomas D. Cook. “A Meta-Analytic Analysis of 
Effects of Psychoeducational Interventions on Length of PostsurgicaI 
Hospital Stay,” Nursing Research, 32:267-74,1983. 

4 
DuBois, Philip H. Multivariate Correlational Analysis. New York: Harper 
and Row, 1967. 

Eddy, David M. “The Confidence Profile Method: A Bayesian Method for 
Assessing Health Technologies,” Operations Research, 37:2X)-28,1989. 

Eddy, David M., Victor Hasselblad, William McGivney, and William 
Hendee. “The Value of Mammography Screening in Women Under Age 60,” 
Journal of the American Medical Association, 269:1612-19,1988. 

Page 106 GAO/PEHD-92-18 Croes Design SynthesL 



Eddy, David M., Vie Hasselblad, and Ross Shachter. The Statistical 
Synthesis of Evidence: Meta-Analysis by the Confidence Profile Method. 
Report issued by the Center for Health Policy Research and Education, 
Duke University, and by the Department of Engineering-Economic 
Systems, Stanford University, 1989. 

Edhmd, Matthew J., Thomas J. Craig, and Mary Ann Richardson. 
“Informed Consent as a Form of Volunteer Bias,” American Journal of 
Psychiatry, 142:62427,1986. 

Ellenberg, Susan S. “Meta-Analysis: The Quantitative Approach to 
Research Review,” Seminars in Oncology, 16:472-81,1988. 

Ellwood, Paul M. “A Technology of Patient Experience,” New England 
Journal of Medicine, 318~1649~66,1988. 

Fisher, Bernard, and Carol Redmond. “Letter to the Editor,” New England 
Journal of Medicine, 321:472,1989. 

Fisher, Bernard, Nelson Slack, Donna Katrych, and Norman Wolmark. 
“Ten Year Follow-Up Results of Patients With Carcinoma of the Breast in a 
Co-operative Clinical Trial Evaluating Surgical Adjuvant Chemotherapy,” 
Surgery, Gynecology & Obstetrics, 140:628-34,1976. 

Fisher, Ronald A. Statistical Methods for Research Workers, 1st ed. 
Edinburgh: Oliver and Boyd, 1926. 

Fisher, Ronald A. The Design of Experiments. Edinburgh: Oliver and Boyd, 
1936. 

Fleiss, Joseph L. Statistical Methods for Rates and Proportions. New York: 
Wiley, 1973. 

Francis, Thomas, Jr., Robert F. Kerns, Robert B. Voight, Morton Boisen, 
Fay M. Hemphill, John A. Napier, and Eva Tolchinsky. An Evaluation of 
the 1964 Poliomyelitis Vaccine Trials: Summary Report. Ann Arbor, Mich.: 
The Poliomyelitis Vaccine Evaluation Center, University of Michigan, 1966. 

GAO. See U.S. General Accounting Offrce. 

Page 106 GMNPEMD-92-18 Cross Design Syntheeie 



Blbllogmphg 

Garceau, A.J., R.M. Donaldson, E.T. O’Hara, et al. “A Controlled Trial of 
Prophylactic Portacaval-shunt Surgery,” New England Journal of 
Medicine, 270:496600, 1964. 

Gehan, Edmund. “The Evaluation of Therapies: Historical Control 
Studies,” Statistics in Medicine, 3:315-24, 1984. 

Gillings, Dennis, James Grizzle, Gary Koch, Karl Rickels, Ingrid Amara, 
Mary Donelan, Stephen Hardiman, Ralph Nash, W illiam Sollecito, and 
W illiam Stager. “Pooling 12 Nomifensine Studies for Efficacy 
Generalizability,” Journal of Clinical Psychiatry, 45:78&i, 1984. 

Glass, Gene V. Book review of “The Future of Me&r-Analysis,” Journal of 
the American Statistical Association_, 86:1141,1991. 

Glass, Gene V. “In Defense of Generalization,” The Behavioral and Brain 
Sciences, 3:394-96, 1978. 

Glass, Gene V. “Primary, Secondary, and Meta-analysis of Research,” 
Educational Researcher, 6:3-8,1976. 

Glass, Gene V., Barry McGaw, and Mary Lee Smith. Me&Analysis in Social 
Research. Beverly Hills: Sage, 1981. 

Goldberger, AS., and O.D. Duncan (eds.). Structural Equation Models in 
the Social Sciences. New York: Seminar, 1973. 

Greenfield, Sheldon. “The State of Outcome Research: Are We On Target?” 
New England Journal of Medicine, 320:114243,1989. 

Hansen, M .H., and W .N. Hurwitz. “The Problem of Nonresponse in Sample 
Surveys,” Journal of the American Statistical Association, 41:617-29, 1946. 

4 

Harrison, Harriett H., and Julie Morgan. “Quality Control of Screening 
Procedures in the Multiple Risk Factor Intervention Trial,” Controlled 
Clinical Trials, 7:91S-108S, 1986. 

Heckman, James J., and V. Joseph Hotz. “Choosing Among Alternative 
Nonexperimental Methods for Estimating the Impact of Social Programs: 
The Case of Manpower Training,” Journal of the American Statistical 
Association, 84:862-74,198Qa. 

Page 107 GAOIPEMD-92-16 Crone Design Syntheeie 



BlbBogmphy 

Heckman, James J., and V. Joseph Hotz, “Choosing Among Alternative 
Nonexperimental Methods for Estimating the Impact of Social Programs: 
The Case of Manpower Training,” Working Paper No, 2861. Cambridge, 
Mass,: National Bureau of Economic Research, Inc., 198913. 

Heckman, James J., and V. Joseph Hotz. “Rejoinder,” Journal of the 
American StatisticaI Association, 84:87880,1989c. 

Hedges, Larry V. “Directions for Future Methodology.” In Kenneth W . 
Wachter and Miron L. Straf (eds.), The Future of Meta-Analysis. New York: 
Russell Sage Foundation, 1990. 

Hedges, Larry V. “Advances in Statistical Methods for Meta-Analysis.” In 
W iIIiam H. Yeaton and Paul M . Wortman, Issues in Data Synthesis: New 
Directions for Program Evaluation. San Francisco: Jossey-Bass, 1984. 

Hedges, Larry V., and Ingram Olkin. Statistical Methods for Meta-Analysis. 
New York: Academic Press, 1986. 

Himel, Harvey N., Alessandro Liberati, Richard Gelber, and Thomas C. 
Chalmers. “Adjuvant Chemotherapy for Breast Cancer: A  Pooled Estimate 
Based on Published Randomized Control Trials,” Journal of the American 
Medical Association, 266:114&69,1986. 

Hiatky, Mark A. “Using Databases to Evaluate Therapy,” Statistics in 
Medicine, 10547-62, 1991. 

HIatky, Mark A., Robert M . Califf, Frank E. Harrell, Jr., Kerry L. Lee, Daniel 
B. Mark, and David B. Pryor. “Comparison of Predictions Based on 
Observational Data W ith the Results of Randomized Controlled Clinical 
Trials of Coronary Artery Bypass Surgery,” Journal of the American 4 
College of Cardiology, 11:237-46, 1988. 

Holland, Paul W . “It’s Very Clear” (Comment), Journal of the American 
Statistical Association, 84:876-77,1989. 

Holland, Paul W . “Statistics and Causal Inference,” Journal of the 
American Statistical Association, 81:946-70,1986. 

Holland, Paul W ., and Donald B. Rubin. “On Lord’s Paradox.” In H. Wainer 
and S. Messick (eds.), Principals of Modem Psychological Measurement: 
Fe&s&rift for Frederick M . Lord. Hi&dale, N.J.: Erlbaum, 1983. 

Page 108 GAO/PEMD-92-18 Crow De&n Syntheris 



BlbBo(paphy 

Hombrook, Mark C. “Techniques for Assessing Hospital Case Mix,” Annual 
Review of Public Health, &296-324,1986. 

Hove& Melbourne F. “The Experimental Evidence for Weight-Loss 
Treatment of Essential Hypertension: A  Critical Review,” American 
Journal of Public Health, 72:369-68,1982. 

Hrushesky, W iIliam A, Avrum Z. Bhuning, and Scott A. Gruber. “Menstrual 
Influence on Surgical Cure of Breast Cancer” (Letter to the Editor), 
Lance& 336:984,1QQO. 

Hrushesky, W illiam A., Avrum Z. Bhuning, Scott A. Gruber, and Robert B. 
Sothem. “Menstrual Influence on Surgical Cure of Breast Cancer,” Lancet, 
11(8669):Q4Q-62,198Q. 

Hunter, John E., and Frank L. Schmidt. Methods of Meta-Analysis. 
Newbury Park, Calif.: Sage Publications, 1QQO. 

Hyman, Herbert. Survey Design and Analysis, New York: Free Press, 1966. 

Jackson, Gregg B. “Methods for Integrative Reviews,” Review of 
Educational Research, M ):438-60,1980. (Reprinted in Richard J, Light (ed.), 
Evaluation Studies Review Annual, Vol. 8. Beverly Hillsz Sage, 1983.) 

Jenicek, Miles. “Meta-Analysis in Medicine: Where We Are and Where We 
Want to Go,” Journal of Clinical Epidemiology, 42:36-44,1989. 

Joreskog, K.G. “Structural Equation Models in the Social Sciences: 
Specification, Estimation and Testing.” In P.R. Krishnaiah (ed.), 
Applications of Statistics. Amsterdam: North-Holland, 1977. 

Kalton, Graham. Compensating for Missing Data. Ann Arbor, Mich.: 
Institute for Social Research, University of Michigan, lQ83. 

Kaplan, Robert M ., and Charles C. Berry. “Adjusting for Confounding 
Variables.” In Lee Se&rest et al. (eds.), Research Methodology: 
Strengthening Causal Interpretations of Nonexperimental Data Rockviile, 
Md.: Agency for Health Care Policy and Research, 1990. 

Kirsch, Irving, and Lynne J. Weixel. “Double-Blind Versus Deceptive 
Administration of a Placebo,” Behavioral Neuroscience, 102:319-23,1988. 

Page 109 GMWPEMD-92-18 Crow De&n Syntheoia 



Biblio$mphy 

Kish, Leslie. Statistical Design for Research. New York: W iley, 1987. 

Kleinbaum, David G., Lawrence L. Kupper, and HaI Morgenstem. 
Epidemiologic Research: Principles and Quantitative Methods. New York: 
Van Nostrand Reinhold, 1982. 

Krakauer, Henry. “Assessment of Alternative Technologies for the 
Treatment of End-Stage Renal Disease,” Israel Journal of Medical 
Sciences, 22:246-69,1986. 

Krakauer, Henry, and R. Clifton Bailey. “Epidemiologic Oversight of the 
Medical Care Provided to Medicare Beneficiaries,” Statistics in Medicine, 
10:62140,1991. 

Kramer, Michael S., and Stanley H. Shapiro. “Scientific Challenges in the 
Application of Randomized Trials,” Journal of the American Medical 
Association, 262:273946,1984. 

KruskaI, W iUiam and Frederick Mosteller. “Ideas of Representative 
Sampling.” In D. F’iske (ed.), New Directions for Methodology of Social 
and Behavioral Science: Problems W ith Language Imprecision. San 
Francisco: Jossey-Bass, 1981. 

Kurland, L.T., and C.A. Molgasrd. “The Patient Record in Epidemiology,” 
Scientific American, 246:64,1981. 

L’Abbe, Kristan A., AIlan S. Detsky, and Keith O’Rourke. “Me&Analysis in 
Clinical Research,” AnnaIs of Internal Medicine, 107~22433,1987. 

Lsszlo, John, John C. Bailar III, and Frederick Mosteller. Registers and 
Data Bases.” In Frederick Mosteller et al., Assessing Medical Technologies, 
pp. 101-09. Washington, D.C.: National Academy Press, 1986. 

Lavori, Philip W ., Thomas A. Louis, John C. Bailar III, and Marcia 
PoIansky. “Designs for Experiments: Parallel Comparisons of Treatment,” 
New England Journal of Medicine, 309:1291-99,1983. 

Lazarsfeld, Paul, Ann PasaneIIa, and Morris Rosenberg (eds.). Continuities 
in the Language of Social Research. New York: Free Press, 1972. 

Page 110 GAWPEMD-92-18 Crow Deeign Syntheda 



Bibliography 

Leveno, Kenneth J., F. Gary Cunningham, Sheryl Nelson, Micki Roark, M . 
Lynne W illiams, David Guzick, Sharon Dowling, Charles R. Rosenfeld, and 
Ann Buckley. “A Prospective Comparison of Selective and Universal 
Electronic Fetal Monitoring in 34,996 Pregnancies,” New England Journal 
of Medicine, 315:61&19,1986. 

Liberati, Alessandro, Andre L. Bhun, Giovanni Apolone, and Antonio 
Nicolucci. “Basic Principles for Use and Interpretation of Epidemiologic 
Data” In Thomas Chalmers et al. (eds.), Data Analysis for Clinical 
Medicine: The Quantitative Approach to Patient Care in Gastroenterology. 
New York: International University Press, 1988. 

Liberati, Alessandro, Harvey N. Himel, and Thomas C. Chalmers. “A 
Quality Assessment of Randomized Control Trials of Primary Treatment of 
Breast Cancer,” Journal of Clinical Oncology, 4:942-61,1986. 

Lichtman, Stuart M ., and Daniel R. Budman. Letter to the Editor, New 
England Journal of Medicine, 321:470,1989. 

Light, Richard J. “Six Evaluation Issues That Synthesis Can Resolve Better 
Than Single Studies.” In W illiam Yeaton and Paul Wortman (eds.), Issues 
in Data Synthesis: New Directions for Program Evaluation. San Francisco: 
Jossey-Bass, 1984. 

Light, Richard J., and David B. Pillemer. Summing Up: The Science of 
Reviewing Research. Cambridge, Mass.: Harvard University Press, 1984. 

Lind, J. A  Treatise of the Scurvy. Edinburgh: Sands Murray and Co&ran, 
1763. 

Lipsey, Mark. “Juvenile Delinquency Treatment: A  Meta-analytic Inquiry 
Into the Variability of Effects.” In Thomas D. Cook, Harris Cooper, David 
S. Cordray, Heidi Hartmann, Larry V. Hedges, Richard J. Light, Thomas A. 
Louis, and Frederick Mosteller (eds.), Meta-Analysis for Explanation: A  
Casebook. New York: Russell Sage Foundation, 1992. 

4 

Longnecker, Matthew, Jesse A. Berlin, Michele Orza, and Thomas C. 
Chalmers, “A Meta-analysis of Alcohol Consumption in Relation to Risk of 
Breast Cancer,” Journal of the American Medical Association, 260~662-66, 
1988. 

Louis, P.C.A. Recherches sur les Effets de la Saignee. Paris: De Mignaret, 
1836. 

Page 111 GAWPEMD-92-18 Cross Design Syntheth 



Louis, P.C.A. Essay on Clinical Instruction (translated by P. Martin). 
London: S. Highley, 1834. 

Louis, Thomas A., Harvey V. F’ineberg, and Frederick Mosteller. “F’indings 
for Public Health Prom Me&Analyses,” Annual Review of Public Health, 
6: l-20, 1986. 

MacMahon, Stephen, Richard Pete, Jeffrey Cutler, Rory Collins, Paul 
Sorlie, James Neaton, Robert Abbott, Jon Godwin, Alan Dyer, and 
Jeremiah Stamler. “Blood Pressure, Stroke, and Coronary Heart Disease; 
Part 1, Prolonged Differences in Blood Pressure: Prospective 
Observational Studies Corrected for the Regression Dilution Bias,” Lancet, 
335:76b74, 1996. 

McDonald, Clement, and Siu Hui. “The Analysis of Humongous Databases: 
Problems and Promises,” Statistics in Medicine, 10:611-18,lQQl. 

McPeek, Bucknam. “Inference, Generalizability, and a Major Change in 
Anesthetic Practice,” Anesthesiology, 66:723-24,1987. 

Medical Research Council. “Clinical Trials of Antihistaminic Drugs in the 
Prevention and Treatment of the Common Cold,” British Medical Journal, 
ii:42b29,1960. 

Medical Research Council. “Streptomycin Treatment of Pulmonary 
Tuberculosis,” British Medical Journal, iiz769-82,1948. 

Meier, Paul. “The Biggest Public Health Experiment Ever: The 1964 Field 
Trial of the Salk Poliomyelitis Vaccine.” In Judith M. Tanur, Frederick 
Mosteller, William Kruskal, et al. (eds.), Statistics: A Guide to the 
Unknown. San F’rancisco: Holden-Day, 1972. 

4 

Merigan, Thomas. “You Can Teach an Old Dog New Tricks: How AIDS 
Trials Are Pioneering Newtrategies,” New England Journal of Medicine, 
323:134143,1QQO. 

Mike, Valerie. “Clinical Studies in Cancer: A Historical Perspective.” In 
Valerie Mike and Kenneth E. Stanley, Statistics in Medical Research: 
Methods and Issues With AnDhcations in Cancer Research. New York: 
Wiley, 1982. 

Page 112 GMWEMD-92-18 Crow Design Synthesie 



Mishel, Merle H. “Confounding Variables.” In Lee Se&rest et al. (eds.), 
Research Methodology: Strengthening Causal Interpretations of 
Nonexperimental Data. Rockville, Md.: Agency for Health Care Policy and 
Research, 1990. 

Moffitt, Robert. “Program Evaluation With Nonexperimental Data,” 
Evaluation Review, 16(3):291314,19Ql. 

Moffitt, Robert. “Comment,” JournaI of the American Statisticai 
Association, 84:877-78,198Q. 

Moon, Thomas E. “Interpretation of Cancer Prevention Trials,” Preventive 
Medicine, 18:72131,1989. 

Moon, Thomas E., Stephen E. Jones, Gianni Bonadonna, Pinuccia 
VaIagussa, Trevor Powles, Aman Buzdar, and Eleanor Montague. 
“Development and Use of a Natural History Data Base of Breast Cancer 
Studies,” American Journal of Clinical Oncology (CCT), 103396-403,1987. 

Moses, Lincoln E. “Innovative Methodologies for Research Using 
Databases,” Statistics in Medicine, 10~62933,lQQl. 

Mosteller, Frederick. %nproving Research Methodology: An Overview.” In 
Lee Se&rest et al. (eds.), Research Methodology: Strengthening Causal 
Interpretations of Nonexperimental Data. RockviIIe, Md.: Agency for 
Health Care Policy and Research, 19QOa. 

Mosteller, Frederick. “Summin g Up.” In Kenneth W. Wachter and Miron L. 
Straf (eds.), The Future of Meta-Analysis. New York Russell Sage 
Foundation, 199Ob. 

Most&&, Frederick, et al. Assessing Medical Technologies, Chapter 3: 
“Methods of Technology Assessment.” Washington, D.C.: National 
Academy Press, 1986. 

Neaton, James D., Richard H. Grimm, Jr., and Jeffrey A. Cutler. 
‘Recruitment of Participants for the Multiple Risk Factor Intervention 
Trial (MRFIT)," Controlled Clinical Trials, &41563S, 1987. 

Page 113 GAO/PEMD-92-18 Croon Dedgn Syntheslr, 



Bibliography 

Neyman, Jerzy Splawa-. “On the Application of Probability Theory to 
AgricuIturaI Experiments, Essay on Principles, Section 9,” Statistical 
Science, 5:466-80,1990. (Translated and edited by D.M. Dabrowska and 
T.P. Speed from the Polish original, which appeared in Roczniki Nauk 
RoMczych Tom (Annals of Agricultural Science) X:1-61,1923.) 

Pedhazsr, Elazar J. Multiple Regression in Behavioral Research: 
Explanation and Prediction (2nd ed.). New York: Holt Rinehart W inston, 
1982. 

Peto, R. “Why Do We Need Systematic Overviews of Randomized Trials?” 
Statistics in Medicine, 6:233-40,1987. 

Pocock, Stuart. Clinical Trials: A  Practical Approach. New York: W iley, 
1983. 

Poiitz, Alfred, and W illard Simmons. “An Attempt To Get the Not-atrHomes 
Into the Sample W ithout Callbacks,” Journal of the American Statistical 
Association, 44:931, 1949. 

Pryor, David B., Robert M . Califf, Prank E. Harrell, Jr., Mark A. Hlatky, 
Kerry L. Lee, Daniel B. Mark, and Robert A. Rosati. “Clinical Data Bases: 
Accomplishments and Unrealized Potential,” Medical Care, 23(6):623-47, 
1986. 

Pryor, David B., Prank E. Harrell, Jr., Kerry L. Lee, Robert M . Califf, and 
Robert A. Rosati. “Estimating the Likelihood of Significant Coronary 
Artery Disease,” American Journal of Medicine, 75:771-80,1983. 

Rae, Poduri S.R.S. “Cochrsn’s Contributions to Variance Components 
Models for Combining Estimates.” In Poduri S.R.S. Rso and Joseph 
Sedransk (eds.), W .G. Cochran’s Impact on Statistics. New York: W iley, 
1984. 

A  

Reichardt, Charles S. “The Statistical Analysis of Data Prom Nonequivalent 
Group Designs.” In Thomas Cook and Donald CampbeIl, 
Quasi-Experimentation: Design & Analysis Issues for Field Settings. 
Chicago: Rand McNally, 1979. 

Remington, Richard D. “Potential Impact of Exclusion Criteria on Results 
of Hypertension Trials,” Hypertension, Supp. I, 13:1-66-I-68,1989. 

Page 114 GMWEMD-92-18 Croat De&n Syntheola 



Bibliography 

Rindskopf, David. “New Developments in Selection Modeling for 
Quasi-Experimentation.” In W iliiam M . K. Trochim (ea.), Advances in 
Quasi-Experimental Design and Analysis: New Directions in Program 
Evaluation. San Francisco: Jossey-Bass, 1986. 

Rindskopf, David. “Structurai Equation Models in Analysis of 
Nonexperimental Data.” In Robert F. Boruch, Paul M . Wortman, David S. 
Cordray, and Associates, Reanalyzing Program Evaluations. San 
Francisco: Jossey-Bass, 1981. 

ROOS, Noralou P., John E. Wennberg, David J. Malenka, Elliott Fisher, Ki im 
McPherson, Tavs Foimer Andersen, Marsha M . Cohen, and Ernest Ramsey. 
“Mortality and Reoperation After Open and Transurethal Resection of the 
Prostate for Benign Prostatic Hyperplasia,” New England Journal of 
Medicine, 320: 1120-24, 1989. 

Roper, W illiam L., W illiam W inkenwerder, Glenn M . Hackbarth, and Henry 
Krakauer. “Effectiveness in Health Care: An Initiative to Evaluate and 
Improve Medical Practice,” New England Journal of Medicine, 
319:1197-1202,1988. 

Rosenbaum, Paul R. “From Association to Causation in Observational 
Studies: The Role of Tests of Strongly Ignorable Treatment Assignment,” 
Journal of the American Statistical Association, 79:41-48,1984. 

Rosenbaum, Paul R., and Donald B. Rubin. “Reducing Bias in 
Observational Studies Using Subclassification on the Propensity Score,” 
Journal of the American Statistical Association, 79:616-24,1984. 

Rosenbaum, Paul R., and Donald B. Rubin. “The Central Role of the 
Propensity Score in Observational Studies for Causal Effects,” Biometriks, 6 
70:41-66, 1983a. 

Rosenbaum, Paul R., and Donald B. Rubin. “Assessing Sensitivity to an 
Unobserved Binary Covariate in an Observational Study W ith Binary 
Outcome,” Journal of the Royal Statistical Society, Series B, 46:212-18, 
198310. 

Rosenberg, Morris. The Logic of Survey Analysis. New York: Basic Books, 
1968. 

Page 116 GAWPEMD-92-18 Crow Design Syntheeis 



Blbllogrrpby 

Rosenthal, Robert. “Designing, Analyzing, Interpreting, and Summarizing 
Placebo Studies.” In Leonard White, Bernard Tursky, and Gary E. 
Schwartz (eds.), Placebo: Theory, Research, and Mechanisms. New York: 
GuiIford, 1986. 

Rosenthal, Robert. Meta-Analytic Procedures for Social Research. Beverly 
Hilk Sage, 1984. 

Rossi, Peter H., and Howard E. Freeman. Evaluation: A  Systematic 
Approach (3rd ed.). Beverly HiIkx Sage, 1986. 

Rowland, Malcolm, Lewis B. Sheiner, and Jean-Louis Steimer (eds.). 
Variability in Drug Therapy Description, Estimation, and Control. New 
York: Raven Press, 1986. 

Rubin, Donald B. “PracticaI Implications of Modes of Statistical Inference 
for Causal Effects and the Critical Role of the Assignment Mechanism,” 
Biometrics, 47(4):1213-34, December 1991. 

Rubin, Donald B. “A New Perspective.” In Kenneth W . Wachter and Miron 
L. Straf (eds.), The Future of Meta-Analysis. New York: Russell Sage 
Foundation, 19QQa. 

Rubin, Donald B. “Comment: Neyman (1923) and Causal Inference in 
Experiments and Observational Studies,” Statistical Science, 6~472-80, 
1QQQb. 

Rubin, Donald B. “W iiiiam G. Cochran’s Contributions to the Design, 
Analysis, and Evaluation of Observational Studies.” In Poduri S.R.S. Rao 
and Joseph Sedransk (eds.), W .G. Cochran’s Impact on Statistics. New 
York: W iley, 1984. 

Rubin, Donald B. “Bayesian Inference for Causal Effects: The Role of 
Randomization,” AnnaIs of Statistics, 634-68, 1978. 

Rubin, Donald B. “Estimating Causal Effects of Treatments in Randomized 
and Nonrandomized Studies,” Journal of Educational Psychology, 
66688701,1974. 

Page 116 GMMPEMD-@2-18 Crow Dee@n Syntheda 



BiblioOrrpny 

Sacks, Henry S., Jayne Berrier, Dinah R&man, VA. Ancona-Berk, and 
Thomas Chalmers. “Meta-Analyses of Randomized ControIIed Trials,” New 
England Journal of Medicine, 316:460-66,1987. 

Sacks, Henry S., Thomas C. Chalmers, and Harry Smith, Jr. “Sensitivity and 
Specificity of CIinical Trials: Randomized v. Historical Controls,” Archives 
of Internal Medicine, 143:763-66,1983. 

Sandmire, H.F. Whither Electronic Fetal Monitoring?” Obstetrics and 
Gynecology, 76: 113~34,lQQO. 

Schatzkin, A., D.Y. Jones, R.N. Hoover, et al. “Alcohol Consumption and 
Breast Cancer in the Epidemiologic Follow-up Study of the First National 
Health and Nutrition Examination Survey,” New England Journal of 
Medicine, 316: 116Q-73,1987. 

Scheffe, Henry. The Analysis of Variance. New York: W iley, 1969. 

Schooler, Nina R. “How Generahzable Are the Results of Clinical Trials?” 
Psychopharmacology Bulletin, l&29-31,1980. 

Se&rest, Lee, and AureIio Jose Figueredo. “Approaches Used in 
Conducting Outcomes and Effectiveness Research.” Paper presented at a 
conference of the Association for Health Services Research, April 1991. 

Se&rest, Lee, and Maureen Hannah. “The Critical Importance of 
Nonexnerimentsl Data.” In Lee Se&rest. et al. (eds.). Research 
Methodology: Strengthening Causal Interpreta~ons of Nonexperimental 
Data RockviIle, Md.: Agency for Health Care Policy and Research, 1990. 

Senie, Ruby T., Paul Peter Rosen, Philip Rhodes, and Martin L. Lesser. 
“Timing of Breast Cancer Excision During the Menstrual Cycle InfIuences 
Duration of Disease-free SurvivaI,” AnnaIs of Internal Medicine, 116537-42, 
1991. 

Shadish, W illiam R., Jr., Thomas D. Cook, and Arthur C. Houts. 
“Quasi-Experimentation in a Critical MuItipIist Mode.” In W illiam M .K. 
Trochim (ed.), Advances in Quasi-Experimental Design and Analysis: New 
Directions for Program Evaluation. San Francisco: Jossev-Bass. 1986. 

Speed, T.P. “Introductory Remarks on Neyman (1923),” Statistical Science, 
6:463&i, 1990. 

Pqfe 117 GA#PEMD-92-18 Croat De&n Syntheeia 



Bibliography 

Staines, Graham L. “The Strategic Combination Argument.” In Werner 
LeinfeIIner and Eckehart Kiihler (eds.), Developments in the Methodology 
of Social Science. Boston: Reidel Publishing Co., 1974. 

Steimer, Jean-Louis, AIain Mallet, and France Mentre. %stimating 
Interindividual Pharmacokinetic Variability.” In Malcolm Rowland, Lewis 
B. Sheiner, and Jean-Louis Steimer (eds.), Variability in Drug Therapy: 
Description, Estimation, and Control. New York: Raven Press, 1986. 

Steinberg, Karen K., Stephen B. Thacker, S. Jay Smith, Donna F. Stroup, 
Matthew M . Zack, W . Dana Flanders, and Ruth L. Berkehnan. “A 
Meta-analysis of the Effect of Estrogen Replacement Therapy on the Risk 
of Breast Cancer,” Journal of the American Medical Association, 
265:198bQO,lQQl. 

St&horn, Sandra, Kenneth J. Kopecky, Max H. Myers, and Charles BaIi. 
“Characteristics of Colon Cancer Patients Reported in Population-Based 
Tumor Registries and Comprehensive Cancer Centers,” Journal of the 
National Cancer Institute, 70(4):629-34,1983. 

“Student” (Will iam S. Gossett). “The Lana&shire Milk Experiment.” In E.S. 
Pearson and John W ishart. “Student’s” Collected Papers. London: 
University College, 1942. (briginaIIy published in Bibmetrika, 23:398, 
1931.) 

Taylor, Kathryn M ., Richard G. Margolese, and Cohn L. SoskoIine. 
“Physicians Reasons for Not Entering Eligible Patients in a Randomized 
Clinical Trial of Surgery for Breast Cancer,” New England Journal of 
Medicine, 310:1363-67,1984. 

Thompson, Simon G., and Stuart J. Pocock. “Can Meta-analyses Be 
Trusted?” Lancet, 338: 1127-30,lQQl. 

Thompson, Troy L., II, Christopher M . Fiiley, Wayne D. Mitchell, Kathieen 
M . CuIig, Mary LoVerde, and Richard L. Byyny. “Lack of Efficacy of 
Hydergine in Patients with Aizheimer’s Disease,” New England Journal of 
Medicine, 323:445-48, 1990. 

Tierney, W illiam M ., and Clement J. McDonald. “Practice Databases and 
Their Uses in Clinical Research.” Statistics in Medicine, l&641-67,lQQl. 

Page 118 GAO/PEMD-82-18 Croea Design Syntheeia 



U.S. General Accounting Office. Practice Guidelines: The Experience of 
Medical Specialty Societies (GAOIPEMD~1-11). Washington, D.C.: U.S. 
General Accounting Office, 1991. 

U.S. General Accounting Office. Problems of Implementing the National 
Institutes of Health Policy on Women in Study Populations 
(GAO/T-HRD-~8). Testimony, June 18,lQQO. 

US. General Accounting Office. Breast Cancer: Patients’ SurvivaI 
(GAOPEMD-WB). Washington, D.C.: U.S. General Accounting Office, 1989s.. 

US. General Accounting Office. AIDS Forecasting: Undercount of Cases 
and Lack of Key Data Weaken Existing Estimates (GAOPEMD-~!+~~). 
Washington, D.C.: U.S. General Accounting Office, 1989b. 

U.S. General Accounting Office. Medicare: Improvements Needed in the 
Identification of Inappropriate Hospital Care (GA~~PEMD~w). Washington, 
D.C: U.S. General Accounting Office, 1989~. 

Wachter, Kenneth W., and Miron L. Straf. “Introduction.” In Kenneth W. 
Wachter and Miron L. Straf (eds.), The Future of Me&Analysis. New York: 
Russell Sage, 1990. 

Wagner, D.P., W.A. Knaus, and E.A. Draper, “Statistical Validation of a 
Severity of Illness Measure,” American Journal of Public Health 73:878&l, 
1983. 

WaId, Abraham, “The Fitting of Straight Lines If Both Variables Are 
Subject to Error,” Annals of Mathematical Statistics, 11:284-300,1940. 

Wallace, T. DudIey, and J. Lew Silver. Econometrics: An Introduction. 
Reading, Mass.: Addison Wesley, 1988. 

Weiner, Jonathan P. “Ambulatory Case-Mix Methodologies: Application to 
Primary Care Research.” In Heddy Hibbard, Paul A. Nutting, and Mary L. 
Grady (eds.), Primary Care Research: Theory and Methods. RockviiIe, Md.: 
Agency for Health Care Policy and Research, 1991. 

Wennberg, John E., Jean L. Freeman, Roxanne M. Shelton, and Thomas A. 
Bubolz. “Hospital Use and Mortality Among Medicare Beneficiaries in 
Boston and New Haven,” New England Journal of Medicine, 32 1: 116873, 
1989. 

Page 119 GAWPEMD-92-18 Crow Dee&n Syntheeb 



Bibliography 

Wennberg, John E., Jean L. F’reeman, W .J. CuIp. “Are Hospital Services 
Rationed in New Haven or Over-utilised in Boston?” Lancet. 
1(8643): 11889, 1987. 

Wennberg, John E., A.G. MuIIey, Jr., D. HanIey, et ai. “An Assessment of 
Prostatectomy for Benign Urinary Tract Obstruction: Geographic 
Variations and the Evaluation of Medical Care Outcomes,” Journal of the 

’ American Medical Association, 269:3027-30,1988. 

White, B. Alex. “Introduction to Classification and Case Mix in Primary 
Care.” In Heddy Hibbard, Paul A. Nutting, and Mary L. Grady (eds.), 
Primary Care Research: Theory and Methods. RockviIIe, Md.: Agency for 
Health Care Policy and Research, 1991. 

W iIhelmsen, Lam, Staffan I&mgberg, Hans Wedel, and Lars Werko. “A 
Comparison Between Participants and Non-Participants in a Primary 
Prevention Trial,” JournaI of Chronic Diseases, 29:331-39,1976. 

W ilkins, Wallace. “Placebo Controls and Concepts in Chemotherapy and 
Psychotherapy Research.” In Leonard White, Bernard Tursky, and Gary E. 
Schwartz (eds.), Placebo: Theory, Research, and Mechanisms. New York: 
Guilford, 1986. 

W inslow, Constance Monroe, Jacqueline B. Kosecoff, Mark Chassin, David 
E. Kanouse, and Robert H. Brook. “The Appropriateness of Performing 
Coronary Artery Bypass Surgery,” Journal of the American Medical 
Association, 260:606-09,1988. 

Wortman, Paul M ., and Fred B. Bryant. “School Desegregation and Black 
Achievement: An Integrative Review,” Sociological Methods and Research, 
l&289324,1986. 1, 

Wortman, Paul M ., and W illiam H. Yeaton. “Synthesis of Results in 
Controlled Trials of Coronary Artery Bypass Graft Surgery.” In Richard J. 
Light (ed.), Evaluation Studies Review Annual, 8636-61. Beverly Hi&: 
Sage, 1983. 

Yancik, R., L.G. Ries, and J.W. Yates. “Breast Cancer in Aging Women: A  
Population-based Study of Contrasts in Stage, Surgery and Survival,” 

63:976-81,198Q. Cancer, 

Pyle 120 GAWPEMD-92-18 Croea Design Synthesis 



BibUography 

Yeaton, W illiam. “Causal Power: Strengthening Causal Claims Using 
No-Difference Findings.” In Lee Se&rest et al. (eds.), Research 
Methodology: Strengthening Causal Interpretations of Nonexperimental 
Data Rockville, Md.: Agency for Health Care Policy and Research, lQQ6: 

Yeaton, W illiam H., and Paul M . Wortman. “Medical Technology 
Assessment: The Evaluation of Coronary Artery Bypass Graft Surgery 
Using Data Synthesis Techniques,” International Journal of Technology 
Assessment in Health Care, 1:125-46,1986. 

Yusuf, Sahm, Richard Simon, and Susan S. Ellenberg. “Preface to the 
Proceedings of the Workshop on Methodologic Issues in Overviews of 
Randomized Clinical Trials, May 1986,” Statistics in Medicine, 6217-18, 
1987. 

Zelen, Marvin, and Rebecca Gelman. “Assessment of Adljuvant Trials in 
Breast Cancer,” National Cancer Institute Monographs, No. 1,1986. 

(076206) Page 121 GAO/PEMD-@2-18 Croem Design Syntheeia 





Ordering Information 

The first copy of each GAO report and testimony is free. 
Additional copies are $2 each. Orders should be sent to the 
following address, accompanied by a check or money order 
made out to the Superintendents of Documents, when 
necessary. Orders for 100 or more copies to be mailed to a 
single address are discounted 26 percent. 

11.8 General Accounting Office 
P.O. Box 6015 
Gaithersburg, MD 20877 

Orders may also be placed by calling (202)276-6241. 



First-Class Mail 
Postage & Fees Paid 

GAO 
Permit No. GlOO 




