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Foreword 

The U.S. health care system is at an important crossroads as it faces major demographic shifts, 
burgeoning costs, and transformative technologies. By 2030, annual health care spending in the 
United States is expected to reach $6.8 trillion. The government share of this spending is projected 
to be 48 percent by 2030, driven by increases in Medicare enrollment, as more than 10,000 
Americans become eligible for Medicare each day. These realities help illustrate the critical need to 
better address the effectiveness and efficiency of our nation’s health care delivery systems. 

Artificial intelligence and machine learning (AI/ML) is a set of technologies that includes automated 
systems able to perform tasks that normally require human intelligence, such as visual perception, 
speech recognition, and decision-making. AI/ML has promising applications in health care, including 
medical diagnostics. For example, it may result in earlier detection of diseases; more consistent 
analysis of medical data; and increased access to care, particularly for underserved populations. 
However, applying AI/ML technologies within the health care system also raises technological, 
economic, and regulatory questions. 

The Government Accountability Office (GAO) and the National Academy of Medicine (NAM), 
individually and in collaboration, have taken up the charge to explore AI/ML in health care, assess its 
implications, and identify key options available for optimizing its use. In recognition of mutual 
interests and obligations, and to reinforce and complement each other’s work, NAM and GAO have 
cooperated on the development of publications on these topics over the past three years. The two 
most recent publications in the series are this report, GAO’s technology assessment titled Artificial 
Intelligence in Health Care: Benefits and Challenges of Machine Learning Technologies for Medical 
Diagnostics, and NAM’s Special Publication titled Meeting the Moment: Addressing Barriers and 
Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. 

This cooperative effort included an expert meeting in which we convened a diverse, interdisciplinary, 
and cross-sectoral group to gather a range of perspectives on the topic. We are grateful to the 
exceptionally talented staff of NAM and GAO as well as the experts, all of whom worked with 
enthusiasm, great skill, flexibility, clarity, and drive to make this joint publication possible. 

Sincerely, 

  

Karen L. Howard, PhD  
Director,   
Science, Technology Assessment, and Analytics  
U.S. Government Accountability Office 

J. Michael McGinnis, MD, MA, MPP 
Leonard D. Schaeffer Executive Officer, and 
Executive Director, NAM Leadership 
Consortium 
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Executive Summary 

This report is being jointly published by the Government Accountability Office (GAO) and the 
National Academy of Medicine (NAM). Part One of this joint publication is the full presentation 
of GAO’s Technology Assessment: Artificial Intelligence in Health Care: Benefits and Challenges 
of Machine Learning Technologies for Medical Diagnostics. Part Two is the full presentation of 
NAM’s Special Publication: Meeting the Moment: Addressing Barriers and Facilitating Clinical 
Adoption of Artificial Intelligence in Medical Diagnosis. Although GAO and NAM staff consulted 
with and assisted each other throughout this work, reviews were conducted by GAO and NAM 
separately and independently, and authorship of the text of Part One and Part Two of this 
Executive Summary and the following report lies solely with GAO and NAM, respectively. 

OVERVIEW OF PART ONE – GAO Technology Assessment: Artificial Intelligence in 
Health Care: Benefits and Challenges of Machine Learning Technologies for Medical 
Diagnostics 

The GAO report Artificial Intelligence in Health Care: Benefits and Challenges of Machine 
Learning Technologies for Medical Diagnostics is the third in a series of technology assessments 
that GAO conducted at the request of Congress on the use of AI technologies in health care.1 

This report discusses four topics: (1) currently available machine learning (ML) medical 
diagnostic technologies for five selected diseases, (2) emerging ML medical diagnostic 
technologies, (3) challenges affecting the development and adoption of ML technologies for 
medical diagnosis, and (4) policy options to help address these challenges.  

Several ML technologies are available to help medical professionals diagnose the five selected 
diseases we examined: certain cancers, diabetic retinopathy, Alzheimer’s disease, heart disease, 
and COVID-19. These technologies assist medical professionals by augmenting the diagnostic 
process, resulting in benefits that include earlier detection of diseases; more consistent analysis 
of medical data; and increased access to care, particularly for underserved populations. We 
identified a variety of ML diagnostic technologies for the diseases we examined, with most 
technologies relying on data from imaging. According to our expert meeting participants and 
interviewees, many technologies are designed to use radiology image data because such images 
are typically standardized and digitized. Other sources of medical data, such as tissue samples 
for pathology, are generally less available for training ML technologies due to additional steps 
including collecting and digitizing data. 

Although these technologies have potential benefits and are available to assist in diagnosing the 
diseases we examined, they are generally not widely adopted. Companies we interviewed 

                                                            
1Part One of this Joint Publication presents the GAO Technology Assessment: Artificial Intelligence in Health Care: Benefits and 
Challenges of Machine Learning Technologies for Medical Diagnostics. Although NAM staff and leadership provided assistance and 
advice in the identification of issues and experts consulted during the development process (identified in app. II), the contents and 
resulting policy options of this technology assessment are solely those of GAO and the responsibility of GAO 
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reported varying levels of adoption. For example, one company with an ECG monitoring 
technology told us that its technology was being used in most major U.S. medical centers, while 
another company using a technology to detect COVID-19 infection said its technology was only 
being used in a handful of universities and research institutions.  

Academic, government, and private sector researchers are working to expand the capabilities of 
ML-based medical diagnostic technologies for the five diseases we examined. We also identified 
three emerging approaches—autonomous, adaptive, and consumer-oriented ML diagnostics—
that could enhance medical professionals’ capabilities and improve patient treatment. However, 
these approaches also have certain limitations. For example, adaptive ML diagnostic 
technologies, which update their algorithms by incorporating new patient data, may provide 
more accurate diagnoses or improve features for users, but changes in the algorithm data may 
also lead to adverse outcomes such as inconsistent or poorer algorithmic performance. 

Despite the promise of these technologies, we identified challenges affecting the development 
and adoption of ML in medical diagnostics. These challenges, which include demonstrating real-
world performance, meeting medical needs, and addressing regulatory gaps, affect technology 
developers, medical providers, and patients. For example, medical providers may be reluctant to 
adopt an ML technology until its real-world performance has been adequately demonstrated in 
relevant and diverse clinical settings, according to experts, stakeholders, and literature. 
However, developers face difficulties accessing high-quality data to validate their technologies 
and may not be willing to incur the significant costs needed to rigorously evaluate them. 
Medical providers are also less likely to adopt ML technologies that do not address a clear 
clinical need, such as improved accuracy or increased efficiency, and many ML diagnostic 
technologies do not progress from development to adoption for this reason. Lastly, gaps in the 
regulatory framework may also pose a challenge to the development and adoption of ML 
technologies, including emerging types such as adaptive algorithms. Some of these challenges 
are similar to those identified previously by GAO in its first and second publications in this 
series.2 

In this report, GAO describes three options that policymakers—which GAO defines broadly to 
include Congress, federal agencies, state and local governments, academic and research 
institutions, and industry, among others—could use in addressing the challenges for medical 
diagnostics technologies: 

• Evaluation. Policymakers could create incentives, guidance, or policies to encourage or 
require the evaluation of ML diagnostic technologies across a range of deployment 
conditions and demographics representative of the intended use. This could help 
address the challenge of demonstrating real world performance. 

                                                            
2GAO, Artificial Intelligence in Health Care: Benefits and Challenges of Machine Learning in Drug Development, GAO-20-215SP 
(Washington, D.C.: Dec. 20, 2019). GAO, Artificial Intelligence in Health Care: Benefits and Challenges of Technologies to Augment 
Patient Care, GAO-21-7SP (Washington, D.C.: Nov. 30, 2020). 

https://www.gao.gov/products/gao-20-215sp
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• Data Access. Policymakers could develop or expand access to high-quality medical data 
to develop and test ML medical diagnostic technologies. Examples include standards for 
collecting and sharing data, creating data commons, or using incentives to encourage 
data sharing. This could help address the challenge of demonstrating real world 
performance. 

• Collaboration. Policymakers could promote collaboration among developers, providers, 
and regulators in the development and adoption of ML diagnostic technologies. For 
example, policymakers could convene multidisciplinary experts together in the design 
and development of these technologies through workshops and conferences. This could 
help address the challenges of meeting medical needs and addressing regulatory gaps. 

OVERVIEW OF PART TWO – NAM: Meeting the Moment: Addressing Barriers and 
Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis 

Artificial intelligence (AI) carries significant potential in aiding clinical diagnostic decision-
making. AI-assisted diagnostic decision support tools (AI-DDS), given their processing power and 
continuous learning capabilities, can synthesize large volumes of data and perform advanced 
pattern analysis tasks to make diagnostic processes more effective, efficient, and accurate. 
While AI-DDS systems grow increasingly sophisticated and robust, their practical value and 
broader success are contingent upon their adoption by health care providers. To this end, the 
authors present a framework for evaluating and promoting provider adoption of new AI-DDS 
tools, centered on four integrated domains: 1) Reason to Use, 2) Means to Use, 3) Methods to 
Use, and 4) Desire to Use.  

Domain 1, Reason to Use: An initial consideration of the adoption of a novel AI-DDS tool is 
based on its alignment with the patient care missions of health systems and providers. The tool 
must cater to an important clinical need or gap and ultimately contribute to improved patient 
outcomes. Having demonstrated clinical utility, integrating, deploying, and maintaining the tool 
in clinical workflows requires significant financial investment. Therefore, a second critical factor 
in the adoption of a new AI-DDS system is its overall affordability and value proposition to the 
health system, provider, and patients, including appropriate insurance coverage for the use of a 
given tool.   

Domain 2, Means to Use: Once adopted by a health system, a new AI-DDS systems requires 
robust infrastructure to support the efficient and sustainable implementation of the tool. The 
first set of infrastructural elements is the computing hardware and software needed to 1) collect 
and organize relevant health data used by the algorithm, 2) construct and validate an AI 
algorithm at the point of care, and 3) conduct regular maintenance, including troubleshooting of 
technical problems. The second set is the human and operational resources needed to 
effectively maintain AI-DDS systems. Key roles include, but are not limited to, frontline IT staff, 
data architects, and AI-machine learning specialists to understand the context of use and tailor 
the solution to be fit for purpose. The infrastructure also requires information security and data 
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privacy officers, legal and industrial contract officers for business and data use agreements, and 
IT educators to train and retrain providers and staff.  

Domain 3, Methods to Use: Clinical operations differ substantially among health care systems, 
medical specialties, patient populations, and geographic areas. Therefore, operationalizing and 
scaling new AI-DDS technologies, including AI-DDS within and across health systems, can be 
expensive and complex. Effective integration of new AI-DDS tools into existing clinical workflows 
is essential. Equally critical is thoughtful development and deployment of new tools to optimize 
workflow efficiency and enable providers to prioritize cognitive and emotional energy for 
patient interactions. Additionally, AI-DDS must be deliberately designed to minimize detracting 
from the diagnostic process, including limiting interface distractions and data obfuscation. 
Finally, health systems must ensure the technical proficiency of providers in relation to new AI-
DDS tools with in-depth onboarding training and continuous medical education.  

Domain 4, Desire to Use: It is important to attend to psychological factors surrounding the use 
of AI-DDS, such as addressing how these tools can facilitate professional fulfillment among 
providers, including mitigating burnout while enabling provider autonomy. The other 
indispensable element within the desire to use core domain is trust, including the legal and 
ethical considerations of AI-DDS systems. Two significant sources of distrust relevant to the 
adoption of AI-DDS tools by clinicians explored in this paper are 1) bias (real or perceived) and 2) 
liability. Clinicians must be able to trust that these products can deliver quality care outcomes 
for their patients without creating harm or error and align with both patients’ and clinicians’ 
ethics and values. A key factor affecting clinicians’ willingness to adopt AI-DDS tools is whether 
the tools will receive a rigorous, data-driven review of safety and effectiveness before moving 
into clinical use.  

Crosscutting these considerations is the need to be cognizant of the equity implications that 
accompany the adoption of AI-DDS tools. While there is excitement and demonstrated benefits 
to bringing AI-DDS tools into clinical practice, poor data quality and prevalent biases in health 
care can jeopardize progress towards achieving health equity and fuel ongoing uncertainties and 
hesitancies about adopting these tools. In addition, preventing widening disparities in the 
implementation of AI-DDS tools will require addressing the digital gap by developing and 
implementing infrastructure that will support the equitable use of AI. 

AI-DDS systems are becoming increasingly prevalent, sophisticated, and reliable. Across medical 
specialties, these tools demonstrate potential to make the clinical diagnostic process more 
efficient and accurate, ultimately improving patient outcomes. Focused efforts to create 
equitable and robust AI-DDS algorithms, streamline integration of new AI-DDS tools into clinical 
workflows, and train health care providers to effectively use such tools – coupled with strong 
regulatory oversight and financial incentives – will optimize the likelihood that innovative, 
clinically impactful AI-DDS systems are adopted and used responsibly by health care providers to 
the ultimate benefit of their patients. 
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PART ONE 
 

Artificial Intelligence in 
Health Care: Benefits and 
Challenges of Machine 
Learning Technologies for 
Medical Diagnostics 
U. S. Government Accountability Office (GAO) 

Part One of this Joint Publication presents the GAO Technology Assessment: Artificial 
Intelligence in Health Care: Benefits and Challenges of Machine Learning Technologies 
for Medical Diagnostics. Although NAM staff and leadership provided assistance and 
advice in the identification of issues and expertise consulted during the development 
process (identified in Appendix II), responsibility for the text, findings, and options lies 
solely with GAO. 
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TECHNOLOGY ASSESSMENT  
 

ARTIFICIAL INTELLIGENCE IN HEALTH CARE 
Benefits and Challenges of Machine Learning 
Technologies for Medical Diagnostics 

What GAO found 
Several machine learning (ML) technologies are available in the U.S. to assist with the 
diagnostic process. The resulting benefits include earlier detection of diseases; more 
consistent analysis of medical data; and increased access to care, particularly for 
underserved populations. GAO identified a variety of ML-based technologies for five 
selected diseases — certain cancers, diabetic retinopathy, Alzheimer’s disease, heart 
disease, and COVID-19 —with most technologies relying on data from imaging such as x-
rays or magnetic resonance imaging (MRI). However, these ML technologies have 
generally not been widely adopted. 

Academic, government, and private sector researchers are working to expand the 
capabilities of ML-based medical diagnostic technologies. In addition, GAO identified 
three broader emerging approaches—autonomous, adaptive, and consumer-oriented 
ML-diagnostics—that can be applied to diagnose a variety of diseases. These advances 
could enhance medical professionals’ capabilities and improve patient treatments but 
also have certain limitations. For example, adaptive technologies may improve accuracy 
by incorporating additional data to update themselves, but automatic incorporation of 
low-quality data may lead to inconsistent or poorer algorithmic performance. 

Spectrum of adaptive algorithms 

 

We identified several challenges affecting the development and adoption of ML in 
medical diagnostics: 

• Demonstrating real-world performance across diverse clinical settings and in 
rigorous studies.  

• Meeting clinical needs, such as developing technologies that integrate into 
clinical workflows.  

• Addressing regulatory gaps, such as providing clear guidance for the 
development of adaptive algorithms. 

These challenges affect various stakeholders including technology developers, medical 
providers, and patients, and may slow the development and adoption of these 
technologies.  

View GAO-22-104629. For more information, 
contact Karen L. Howard at (202) 512-6888 
or howardk@gao.gov. 

Why GAO did this study 
Diagnostic errors affect more than 12 
million Americans each year, with 
aggregate costs likely in excess of $100 
billion, according to a report by the 
Society to Improve Diagnosis in 
Medicine. ML, a subfield of artificial 
intelligence, has emerged as a 
powerful tool for solving complex 
problems in diverse domains, including 
medical diagnostics. However, 
challenges to the development and use 
of machine learning technologies in 
medical diagnostics raise 
technological, economic, and 
regulatory questions.  

GAO was asked to conduct a 
technology assessment on the current 
and emerging uses of machine learning 
in medical diagnostics, as well as the 
challenges and policy implications of 
these technologies. This report 
discusses (1) currently available ML 
medical diagnostic technologies for 
five selected diseases, (2) emerging ML 
medical diagnostic technologies, (3) 
challenges affecting the development 
and adoption of ML technologies for 
medical diagnosis, and (4) policy 
options to help address these 
challenges. 

GAO assessed available and emerging 
ML technologies; interviewed 
stakeholders from government, 
industry, and academia; convened a 
meeting of experts in collaboration 
with the National Academy of 
Medicine; and reviewed reports and 
scientific literature. GAO is identifying 
policy options in this report. 
 

http://www.gao.gov/products/GAO-22-104629
http://www.gao.gov/products/GAO-22-104629
mailto:howardk@gao.gov
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GAO developed three policy options that could help address these challenges or enhance the benefits of ML diagnostic technologies. 
These policy options identify possible actions by policymakers, which include Congress, federal agencies, state and local 
governments, academic and research institutions, and industry. See below for a summary of the policy options and relevant 
opportunities and considerations. 

Policy Options to Help Address Challenges or Enhance Benefits of ML Diagnostic Technologies  

 Opportunities Considerations 

Evaluation (report page 28) 
Policymakers could create incentives, 
guidance, or policies to encourage or 
require the evaluation of ML 
diagnostic technologies across a 
range of deployment conditions and 
demographics representative of the 
intended use. 
This policy option could help address 
the challenge of demonstrating real 
world performance. 

• Stakeholders could better understand the 
performance of these technologies across 
diverse conditions and help to identify 
biases, limitations, and opportunities for 
improvement. 

• Could inform providers’ adoption decisions, 
potentially leading to increased adoption by 
enhancing trust.  

• Information from evaluations can help 
inform the decisions of policymakers, such as 
decisions about regulatory requirements. 

• May be time-intensive, which could delay 
the movement of these technologies into 
the marketplace, potentially affecting 
patients and professionals who could 
benefit from these technologies. 

• More rigorous evaluation will likely lead 
to extra costs, such as direct costs for 
funding the studies. Developers may not 
be incentivized to conduct these 
evaluations if it could show their products 
in a negative light, so policymakers could 
consider whether evaluations should be 
conducted or reviewed by independent 
parties, according to industry officials. 

Data Access (report page 29) 
Policymakers could develop or 
expand access to high-quality 
medical data to develop and test ML 
medical diagnostic technologies. 
Examples include standards for 
collecting and sharing data, creating 
data commons, or using incentives to 
encourage data sharing. 
This policy option could help address 
the challenge of demonstrating real 
world performance. 

• Developing or expanding access to high-
quality datasets could help facilitate training 
and testing ML technologies across diverse 
and representative conditions. This could 
improve the technologies’ performance and 
generalizability, help developers understand 
their performance and areas for 
improvement, and help to build trust and 
adoption in these technologies. 

• Expanding access could enable developers to 
save time in the development process, which 
could shorten the time it takes for these 
technologies to be available for adoption. 

• Entities that own data may be reluctant to 
share them for a number of reasons. For 
example, these entities may consider their 
data valuable or proprietary. Some 
entities may also be concerned about the 
privacy of their patients and the intended 
use and security of their data. 

• Data sharing mechanisms may be of 
limited use to researchers and developers 
depending on the quality and 
interoperability of these data, and 
curating and storing data could be 
expensive and may require public and 
private resources. 

Collaboration 
(report page 30) 
Policymakers could promote 
collaboration among developers, 
providers, and regulators in the 
development and adoption of 
ML diagnostic technologies. For 
example, policymakers could 
convene multidisciplinary 
experts together in the design 
and development of these 
technologies through workshops 
and conferences. 
This policy option could help 
address the challenges of 
meeting medical needs and 
addressing regulatory gaps. 

• Collaboration between ML developers 
and providers could help ensure that the 
technologies address clinical needs. For 
example, collaboration between 
developers and medical professionals 
could help developers create ML 
technologies that integrate into medical 
professionals' workflows, and minimize 
time, effort, and disruption. 

• Collaboration among developers and 
medical providers could help in the 
creation and access of ML ready data, 
according to NIH officials. 

• As previously reported, providers may not 
have time to both collaborate with 
developers and treat patients; however, 
organizations can provide protected time 
for employees to engage in innovation 
activities such as collaboration.   

• If developers only collaborate with 
providers in specific settings, their 
technologies may not be usable across a 
range of conditions and settings, such 
as across different patient types or 
technology systems. 

Source: GAO.  |  GAO-22-104629 
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441 G St. N.W. 
Washington, DC  20548 

Introduction

September 29, 2022 

Congressional Requesters 

Effective treatment depends on accurate and timely diagnosis which explains a patient’s health 
problem and informs treatment. Diagnostic errors are the most common, catastrophic, and 
costly of medical errors, with annual aggregate costs likely in excess of $100 billion, according to 
a report by the Society to Improve Diagnosis in Medicine.3 Citing a 2014 study, the report states 
diagnostic errors affect more 12 million Americans each year, with perhaps one-third of those 
suffering serious harms.4 Further, a National Academy of Medicine report on improving 
diagnosis states that diagnostic errors contribute to approximately 10 percent of patient deaths 
and 6 to 17 percent of adverse events in hospitals.5 

Artificial intelligence (AI) has emerged as a powerful tool for solving complex problems in 
diverse domains.6 Machine learning (ML), a subfield of AI, could revolutionize diagnosis by 
augmenting clinical diagnostics practice resulting in earlier and better diagnoses, lives saved, 
and avoided costs of time and money. In recent years, for example, ML technology was reported 
to be equivalent to medical professionals in interpreting medical data from fields like radiology 
and dermatology.7 ML technology can assist medical professionals in completing repetitive tasks 
without getting tired, and flagging potential medical issues at the point of care. 

However, challenges to the development and use of ML medical diagnostic technologies 
(diagnostic) raise technological, economic, and regulatory questions. For example, as we have 

                                                            
3Society to Improve Diagnosis in Medicine, “The Roadmap for Research to Improve Diagnosis, Part 1: Converting National Academy 
of Medicine Recommendations into Policy Action” (February 7, 2018), accessed January 28, 2022, 
https://www.improvediagnosis.org/wp-content/uploads/2018/10/policy_roadmap_for_diagnosti.pdf. 
4H. Singh, A.N.D. Meyer and E.J. Thomas, “The frequency of diagnostic errors in outpatient care: estimations from three large 
observational studies involving US adult populations,” BMJ Quality & Safety, 23 (2014): 727-731. 
5National Academies of Sciences, Engineering, and Medicine. Improving Diagnosis in Health Care. (Washington, DC: The National 
Academies Press, 2015). https://doi.org/10.17226/21794. 
6Section 5002 of the National Defense Authorization Act for Fiscal Year 2021, defines AI as: a machine-based system that can, for a 
given set of human-defined objectives, make predictions, recommendations or decisions influencing real or virtual environments. AI 
systems use machine and human-based inputs to—(A) perceive real and virtual environments; (B) abstract such perceptions into 
models through analysis in an automated manner; and (C) use model inference to formulate options for information or action. 
William M. (Mac) Thornberry National Defense Authorization Act for Fiscal Year 2021 (NDAA FY21), Pub. L. No. 116-283, § 5002, 134 
Stat. 3388 (2021). The National Artificial Intelligence Initiative Act of 2020, was enacted as Division E of the NDAA FY21. For 
additional characteristics of AI, see GAO, Artificial Intelligence: An Accountability Framework for Federal Agencies and Other Entities, 
GAO-21-519SP (Washington, D.C.: June 30, 2021). 
7Esteva, A., Chou, K., Yeung, S. et al. Deep learning-enabled medical computer vision. npj Digital. Medicine, 4, 5 (2021). 
https://doi.org/10.1038/s41746-020-00376-2. 

https://www.improvediagnosis.org/wp-content/uploads/2018/10/policy_roadmap_for_diagnosti.pdf
https://doi.org/10.17226/21794
https://www.gao.gov/products/gao-21-519sp
https://doi.org/10.1038/s41746-020-00376-2
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previously reported, AI tools developed using historical data could unintentionally perpetuate 
biases, reduce safety and effectiveness for different groups of patients, and produce disparities 
in treatment.8 

In view of the potential for ML in diagnostics, you asked us to conduct a technology assessment 
in this area. This report discusses (1) currently available ML diagnostics technologies, (2) 
emerging ML diagnostics technologies, (3) challenges affecting the development and adoption 
of ML technologies for medical diagnosis, and (4) policy options to address these challenges. See 
appendix I for additional information on our scope and methodology. 

We conducted our work from November 2020 through September 2022 in accordance with all 
sections of GAO’s Quality Assurance Framework that are relevant to technology assessments. 
The framework requires that we plan and perform the engagement to obtain sufficient and 
appropriate evidence to meet our stated objectives and to discuss any limitations to our work. 
We believe that the information and data obtained, and the analysis conducted, provide a 
reasonable basis for any findings and conclusions in this product. 

  

                                                            
8GAO, Artificial Intelligence in Health Care: Benefits and Challenges of Technologies to Augment Patient Care, GAO-21-7SP 
(Washington, D.C.: Nov. 30, 2020). 

https://www.gao.gov/products/gao-21-7sp
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Part One—(GAO) Artificial Intelligence in Health Care: Benefits and 
Challenges of Machine Learning Technologies for Medical Diagnostics 

1 Background

1.1 Medical diagnosis and diagnostic 
tests 

Medical diagnosis is a key step in patient care, 
in which medical professionals use patient 
history, symptoms, and test results to 
characterize and understand a patient’s 
health problems and inform treatment plans. 
An accurate and timely diagnosis can 
significantly improve a patient’s chance for 
positive health outcomes. 

According to a medical journal, medical 
professionals can use diagnostic testing for a 
number of purposes, such as obtaining a 
diagnosis, monitoring the effectiveness of 
therapeutic interventions, or conducting 
disease surveillance.9 Diagnostic testing can 
also be used to screen patients to help 
identify a condition before signs and 
symptoms become apparent.10 For example, 
certain imaging tests can help identify 
coronary artery disease by indicating the 
presence of coronary artery blockage, even in 
the absence of symptoms like chest pain.

                                                            
9K.A. Fleming, S. Horton, M.L. Wilson, R. Atun, K. DeStigter, J. 
Flanigan, S. Sayed et al. "The Lancet Commission on 
diagnostics: Transforming access to diagnostics." The 
Lancet 398, no. 10315 (2021): 1997-2050.  

Medical professionals use a variety of 
diagnostic tests to inform diagnosis; different 
tests can generate different types of 
information depending on the physiological 
system being examined. Figure 1 describes 
examples of diagnostic tests that medical 
professionals use to help diagnose selected 
diseases. 

10Screening tests are functionally similar to diagnostic tests, 
and can use the same types of tests and technologies. 
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1.2 Selected diseases 

Six in 10 Americans live with at least 1 chronic 
condition, such as cancer, diabetes, 
Alzheimer’s disease or heart disease 
according to a journal article.11,12 The article 
further identifies chronic diseases represent 
seven of the 10 causes of death in the U.S., 
are the leading causes of disability in the U.S., 
and are the leading drivers of the nation’s 
annual health care spending. We explored 
chronic diseases that may benefit from ML 

                                                            
11Chronic diseases are defined broadly as conditions that last 1 
year or more and require ongoing medical attention or limit 
activities of daily living or both according to CDC.  
12K.A. Hacker, P.A. Briss, L. Richardson, J. Wright, and R. 
Petersen, "COVID-19 and Chronic Disease: The Impact Now and 
in the Future," Preventing Chronic Disease, 18 (2021).     

medical diagnostic technologies, as well as 
COVID-19 because of the continuing 
pandemic. From this examination, we focused 
this technology assessment on the following 
five diseases:  the top three causes of death in 
2020 - heart disease, cancer, and COVID-19; a 
leading cause of disability - Alzheimer's 
disease; and the leading cause of adult 
blindness - diabetic retinopathy.13 

13Although the results of our assessment cannot be 
generalized to other diseases, these diseases reflect a range of 
disease types and the potential for distinct challenges to the 
use of machine learning for diagnosis. 
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Note: Cause of death rankings in this table are from provisional 2020 CDC data. 

aGAO, COVID-19: Significant Improvements Are Needed for Overseeing Relief Funds and Leading Responses to Public 
Health Emergencies, GAO-22-105291 (Washington, D.C.: January 27, 2022). 

  

https://www.gao.gov/products/gao-22-105291
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1.3 Machine learning (ML) 

ML is the leading AI approach in recent 
diagnostics development.14 ML technologies 
are trained (see text box) by processing data 
to identify patterns that may be hidden or 
complex. ML relies on large amounts of data 
for this training process. The increased 
availability of such data has enabled many 
recent ML advances, such as in image 
recognition.15 

Selected methods to train ML algorithms 

Supervised ML. An algorithm is provided with labeled data 
to identify logical patterns in the data and use those patterns 
to predict a specified answer to a problem. For example, an 
algorithm trained on many labeled images of malignant 
(cancerous) or benign lesions could then classify whether a 
new unlabeled image with a lesion is cancerous. 

Unsupervised ML. An algorithm is provided with unlabeled 
data to allow the algorithm to identify structure in the data, 
for example by clustering similar data, without a 
preconceived idea of what clusters to expect.  In this 
technique, an algorithm could cluster images into groups 
based on similar features, such as a group of malignant 
lesion images and a group of benign lesion images, without 
the images in the training set being labeled as cancerous or 
not. 

Source: GAO-21-7SP. | GAO-22-104629 

                                                            
14For our analysis, we focused on ML methods relying on 
statistical learning using observed or simulated data. One ML 
algorithm is an artificial neural network; inspired by the brain, 
it contains an input layer that receives data, hidden layers that 
process data, and an output layer. Deep learning uses deep 
neural networks, which contain a large number of hidden 
layers.  
15For additional information on other advances in AI, see 
Artificial Intelligence: Emerging Opportunities, Challenges, and 
Implications, GAO-18-142SP (Washington, D.C.: March 2018). 

1.4 Roles and responsibilities in the 
development of ML medical 
diagnostic technologies 

Three groups of stakeholders are involved in 
the development and deployment of ML 
medical diagnostic technologies: research and 
development entities, end users, and 
regulators.16,17 

Research and development. Research and 
development for ML diagnostics continues 
across multiple stakeholder groups. For 
example, one study by an academic team 
developed an ML technology to assist 
pathologists to differentiate between 
subtypes of liver cancer. Additionally, there 
are commercial efforts to bring ML 
diagnostics to market. For example, one 
company markets an AI-based technology to 
assist pathologists in detecting prostate 
cancer.18 

At the federal level, NIH develops ML 
technologies as well as collaborates with 
others to study such technologies.19 
According to NIH’s website, ML technologies 
are being developed across all 27 of its 
institutes and centers. For example, NIH’s 
National Institute on Aging’s Artificial 
Intelligence for Alzheimer’s Disease Initiative 

16For the remainder of this report, we will refer to ML medical 
diagnostic technologies as ML diagnostics.  
17Though not always directly involved in the development and 
deployment of ML diagnostics, patients, who are affected by 
medical diagnostic decision, are also stakeholders.   
18See chapters 2 and 3 for additional commercial examples.  
19NIH is an agency within the Department of Health and 
Human Services (HHS).  

https://www.gao.gov/products/gao-18-142sp
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aims to leverage ML technologies to support 
diagnostics.20 

Additionally, NIH’s National Cancer Institute 
collaborates with the Department of Energy 
(DOE) and several DOE national laboratories 
in the Joint Design of Advanced Computing 
Solutions for Cancer program. The stated 
goals include understanding the impact of 
new diagnostics through the application of 
advanced computational capabilities to 
population-based cancer data. 

End users. The end users of diagnostic 
technologies, including those using ML, are 
generally medical professionals, including 
nurses, doctors, and others. Medical 
professionals apply clinical reasoning skills as 
they collect and integrate information from a 
patient's history, interview, physical exam, 
diagnostic testing, and consultations with or 
referrals to other medical professionals. 

At the federal level, government agencies are 
at various stages of adopting ML-based 
diagnostic tests. For example, the 
Department of Veterans Affairs (VA), through 
its Veterans Health Administration (VHA), 
operates the largest integrated health care 
system in the U.S. and provides diagnostic 
services in support of 9 million enrolled 
veterans. VHA diagnostic services include 
clinical services of pathology and laboratory 
medicine, radiology, and nuclear medicine. 

                                                            
20NIH Grant PAR-19-269 “Cognitive Systems Analysis of 
Alzheimer's Disease Genetic and Phenotypic Data (U01 Clinical 
Trial Not Allowed)”, https://reporter.nih.gov/project-
details/10028746 
21See 21 U.S.C. § 360c. High-risk devices generally require FDA 
premarket review and approval to determine whether the 
device meets the statutory standard of reasonable assurance of 
safety and effectiveness for its intended use. See 21 U.S.C. § 
360e(c). Moderate-risk and some lower-risk devices may 
require premarket clearance, whereby sponsors demonstrate 

VA officials provided an example of one VA 
facility that recently started using AI to detect 
hemorrhages. According to these officials, the 
process for adopting diagnostic technologies, 
including those using ML, is unique to each 
VHA facility and depends on local 
mechanisms and funding. In addition, the 
Department of Defense’s Defense Innovation 
Unit reported it was working with the 
Defense Health Agency in training ML to help 
diagnose cancer. 

Regulators. The Food and Drug 
Administration (FDA) has a role in regulating 
medical devices under the Federal Food, 
Drug, and Cosmetic Act (FFDCA) and 
implementing regulations. Specifically, FDA 
generally approves or clears devices before 
they can be marketed in the United States, in 
accordance with the level of risk the device 
poses to patients or users.21 In 2019, FDA 
issued a proposed regulatory framework for 
machine learning-based software as a medical 
device (SaMD), but it has not yet promulgated 
any regulations.22 

The Federal Trade Commission (FTC) also has 
a role in protecting consumers from false and 
deceptive advertising, such as by evaluating 
whether health claims made in an 
advertisement are substantiated and 

that the new device is substantially equivalent to a device 
already on the market. See 21 U.S.C. § 360(k). For the purposes 
of our report, we refer to devices that have been approved or 
cleared by FDA as “authorized devices.”  
22FDA, “Proposed Regulatory Framework for Modifications to 
Artificial Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD),” Washington, D.C.: Apr. 
2, 2019.  

https://reporter.nih.gov/project-details/10028746
https://reporter.nih.gov/project-details/10028746
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truthful.23 For example, in 2015, FTC 
challenged and reached settlements with two 
marketers of mobile apps deceptively 
claiming to use algorithms that could detect 
symptoms of melanoma, a form of skin 
cancer.24 FTC also coordinates with FDA to 

                                                            
2315 U.S.C. § 45(a)(1) and (a)(2), and Federal Trade 
Commission, FTC Policy Statement on Deception, appended to 
Cliffdale Associates, Inc., 103 F.T.C. 110, 174 (1984), at 1 
(1983). 

protect consumers from deceptive advertising 
and labeling; for example, FTC officials told us 
these agencies may issue joint warning letters 
to companies making deceptive claims. 

  

24Federal Trade Commission (FTC), “FTC Cracks Down on 
Marketers of “Melanoma Detection” Apps” (Washington, D.C.: 
February 23, 2015), accessed September 24, 2021, 
https://www.ftc.gov/news-events/press-releases/2015/02/ftc-
cracks-down-marketers-melanoma-detection-apps  

https://www.ftc.gov/news-events/press-releases/2015/02/ftc-cracks-down-marketers-melanoma-detection-apps
https://www.ftc.gov/news-events/press-releases/2015/02/ftc-cracks-down-marketers-melanoma-detection-apps
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2 Available ML Diagnostic Technologies

Several ML diagnostic technologies are 
available in the U.S. These technologies assist 
medical professionals by augmenting the 
diagnostic process, resulting in benefits that 
include earlier detection of diseases; more 
consistent analysis of medical data; and 
increased access to care, particularly for 
underserved populations. We identified a 
variety of ML diagnostic technologies for the 
diseases we examined, with most 
technologies relying on data from imaging. 
However, these technologies have generally 
not been widely adopted. 

2.1 Potential benefits of ML 
diagnostic technologies 

Several ML technologies are available to help 
medical professionals diagnose the selected 
diseases we examined. These technologies 
typically do not provide a diagnosis; rather, 
they typically augment the decision-making 
process of medical professionals.  While some 
of these technologies can suggest a specific 
diagnosis, they are not intended or used to 
determine a final diagnosis. Other 
technologies may highlight information, such 
as abnormalities in an MRI image, for a 
medical professional to evaluate more 
closely. 

We identified three key potential benefits of 
ML diagnostic technologies: 

• Early detection. Some ML diagnostic 
technologies can detect certain diseases 
earlier in their progression than 
conventional methods. These 
technologies can accomplish this by 
identifying features before a medical 

professional would be able to or by 
enabling the medical professional to 
screen more patients. Earlier detection of 
diseases may improve treatment plans 
and patient outcomes. According to NIH 
officials, ML technologies can identify 
features that medical professionals may 
not detect because they have higher 
sensitivity and specificity, which allows 
the technologies to better recognize 
patterns in data. The officials also stated 
that ML technologies would allow medical 
professionals to quickly screen patients 
and reduce referral wait times for high-
risk patients because clinics would not 
need to see as many patients. A private 
company official provided an illustrative 
example of such a benefit. The official 
told us that in one locale where the 
company deployed its technology for 
detecting diabetic retinopathy, non-
specialists were able to conduct 
screenings. This meant that patients who 
exhibited early signs of diabetic 
retinopathy could see a specialist quickly, 
sometimes on the same day, instead of 
potentially waiting weeks or months to 
see a specialist. Early detection and 
treatment of this condition can prevent 
vision loss and blindness in patients with 
diabetes. 

• Consistency. ML technologies can also 
provide medical professionals with a more 
consistent analysis of patient data and can 
help them better diagnose a variety of 
diseases. For example, ML technologies that 
analyze medical images can provide 
consistent results, whereas human 
specialists, such as radiologists, may 
misinterpret images due to fatigue, among 
other possible factors. Similarly, ML 
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technologies that analyze mammograms 
can reduce the high level of variation 
among human interpretations. This helps 
ensure that more patients receive high-
quality screening recommendations, 
according to an expert meeting participant 
specializing in breast cancer detection, 
diagnosis, and treatment. Finally, ML 
technologies can also help medical 
professionals track disease progression 
consistently over time. For example, 
according to a company official, one 
available ML technology improves upon 
conventional approaches for diagnosing 
Alzheimer’s disease by taking consistent 
measurements of a patient’s brain images 
over time. This helps medical professionals 
track how the patient’s brain is 
degenerating and compares the 
degeneration to that of healthy individuals. 

• Access. Interviewees said that ML 
technologies could enable more patients 
to access care, particularly in underserved 
areas. NIH officials stated that ML 
diagnostic technologies could allow 
medical professionals to reach larger 
segments of the population in at-home 
care or smaller clinical settings, 
particularly in areas of the country with 
limited resources. These technologies can 
automate certain tasks, which in turn 
reduces the workloads of some medical 
professionals and empowers non-
specialists to perform specialist tasks, 
such as cardiac imaging and analysis.  For 
example, in addition to reducing wait 
times, the diabetic retinopathy screening 
technology noted above allows more 

                                                            
25While some developing ML technologies examine text-based 
electronic health records for diagnostic purposes, such 
technologies are not yet widely available for clinical use. In 
September 2021, FDA published an initial list of AI/ML-enabled 

patients to receive timely care by medical 
professionals and specialists. 

2.2 ML diagnostic technologies by 
disease 

ML technologies can analyze a variety of 
medical data, but most technologies rely on 
medical images, according to agency 
officials.25  According to our expert meeting 
participants and interviewees, many 
technologies are designed to use radiology 
image data because such images are typically 
standardized and digitized. The majority of 
such technologies for imaging have been for 
cancer, but applications for cardiovascular 
and neurological imaging are becoming more 
numerous, NIH officials told us. Other types of 
medical data are less available for training ML 
technologies due to additional steps including 
collecting and digitizing data. For example, 
one cancer researcher noted that data from 
tissue samples are more difficult to acquire 
because they require pathologists to first 
prepare microscope slides and then scan and 
digitize the images. As a result, some ML 
technologies to analyze pathology specimens 
are available but not as mature as ML-based 
medical imaging technologies. 

We identified available ML diagnostic 
technologies for the diseases we examined, as 
shown in table 1 and detailed below.

medical devices marketed in the U.S. as a resource to the 
public about these devices and FDA’s work in this area. Not all 
devices listed are specifically medical diagnostic technologies. 
(See the full list here.) 

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
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Table 1: Types of data used by available ML 
diagnostic technologies for five selected diseases 

Disease Data used by available ML 
technologies 

Cancer Imaging (e.g., magnetic 
resonance imaging (MRI), 
computed tomography (CT), X-
ray) 

Diabetic 
retinopathy 

Imaging (e.g., retinal photos) 

Alzheimer’s 
disease 

Imaging (e.g., MRI) 

Heart disease Electrocardiogram (ECG), heart 
sounds, imaging (e.g., 
ultrasound) 

COVID-19 Biomarker analysis (e.g., 
immunoassay) 

Source: GAO analysis of literature and agency documentation.  |  GAO-22-104629 

Note: These are examples of types of data used, not an 
exhaustive list. 

• Cancer. Available ML technologies for 
cancer diagnosis use data from images—
collected using MRI, CT, pathology slide 
microscopy, and X-rays—to help 
specialists detect, measure, and analyze 
tumors. One company’s ML technology 
analyzes breast MRI data and provide 
radiologists with information such as the 
densities and sizes of lesions. A company 
official told us radiologists can use this 
information to follow up on suspicious 
features or determine whether a lesion is 
cancerous. ML technologies can also be 
used to track the progression of certain 
cancers over time, which can help 
medical professionals better assess 
treatments, according to interviewees 

                                                            
26Bhaskaranand, Malavika et al, “The Value of Automated 
Diabetic Retinopathy Screening with the EyeArt System: A 
Study of More Than 100,000 Consecutive Encounters from 
People with Diabetes,” Diabetes Technology and Therapeutics, 
vol. 21, no. 11 (2019): 635.  

and expert meeting participants. 
However, the ability to validate ML 
technologies for diagnosing cancer varies 
by the type of cancer. For example, an 
official at a VA medical clinic told us that 
it is easier to validate image-based ML 
technologies for diagnosing lung and 
breast tumors than prostate cancer 
because lung and breast tumors are more 
well-defined.  

• Diabetic retinopathy. Available ML 
technologies can detect signs of diabetic 
retinopathy by interpreting retinal images 
captured by a specialty camera. The 
technologies also recommend a diagnosis 
to medical professionals. As noted above, 
these technologies allow medical 
professionals to screen patients efficiently 
and consistently to detect the disease 
earlier than conventional methods, which 
may better inform treatment and 
improve patient outcomes. One 
company’s website states that the 
technology can return a result in less than 
a minute. Further, a research paper 
published by individuals from this 
company noted that this technology can 
be scaled up more effectively than 
manual screening to help meet the needs 
of a growing population with diabetes.26 

• Alzheimer’s disease. Available ML 
technologies augment a clinician’s 
process for diagnosing Alzheimer’s 
disease by analyzing brain images. These 
analyses, based on MRI, are intended to 
help clinicians distinguish changes to 
brain structure resulting from normal 
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aging and those resulting from 
Alzheimer’s disease. For example, one 
company developed an ML technology 
that automatically labels and measures 
brain structures from a set of MRI scans, 
but it does not suggest a diagnosis. Other 
interviewees stated that it can be difficult 
to validate technologies to detect and 
diagnose Alzheimer’s disease, in part 
because of the disease’s ambiguous 
clinical definition and diagnostic criteria. 
An industry coalition official explained 
that some technologies focus on alerting 
clinicians about potential features to 
monitor or analyze closely, such as a 
plaque in the brain, but these features 
may not always be a sign of the disease. 
Similarly, an official from a VA medical 
clinic stated that, in many cases, clinicians 
disagree on the features, biomarkers, and 
definitions for diagnosing Alzheimer’s 
disease. 

• Heart disease. Available technologies 
include devices, sold directly to 
consumers, which track an individual’s 
electrocardiogram (ECG) to detect 
conditions such as atrial fibrillation.27 For 
example, individuals can collect and track 
their ECGs using wearables or other 
smartphone-enabled devices. We 
identified three technology companies 
that have developed wearables to 
monitor ECGs. In addition, one 
smartphone-enabled technology records 
an ECG, analyzes it using an ML algorithm, 

                                                            
27According to CDC, atrial fibrillation, often called AFib or AF, is 
the most common type of treated heart arrhythmia. When a 
person has AFib, the normal beating in the upper chambers of 
the heart is irregular and blood doesn’t flow as well as it should 
to the lower chambers. 

and detects several heart conditions, such 
as atrial fibrillation, bradycardia (slow 
heart rate), and tachycardia (fast heart 
rate). These technologies are not 
intended for consumers to self-diagnose 
specific medical conditions but rather to 
help medical professionals better 
diagnose patients by providing ECG 
information between visits. In addition to 
technologies that monitor ECGs, FDA has 
authorized devices that examine 
radiological images, score the amount of 
calcification in blood vessels, segment the 
amount of plaque buildup within blood 
vessels, and provide an early alert to 
radiologists that a patient may have a 
pulmonary embolism, according to FDA 
officials. 

• COVID-19. Technology developers are 
marketing ML technologies to help 
improve COVID-19 detection methods. 
For example, one company created an ML 
technology that is a non-diagnostic 
screening device to screen asymptomatic 
people who may have active COVID-19 
infections by assessing the pulse 
characteristics within a patient’s arm.28 
According to company officials, their 
technology is advantageous because (1) it 
is faster than a standard molecular test 
which may require samples to be shipped 
to a laboratory for processing and (2) 
their technology can detect active 
infection in the early stages of infection 
when the viral load may not be high 

28As of September 2022, this device was available under an 
emergency use authorization from FDA. FDA may temporarily 
authorize the emergency use of an unapproved medical 
product, provided certain statutory criteria are met. See 21 
U.S.C. § 360bbb-3. For example, it must be reasonable to 
believe that the product may be effective and that the known 
and potential benefits of the product outweigh the known and 
potential risks.  
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enough to be reliably detected by other 
tests. Officials stated that use of this 
technology could help patients quickly 
determine the need to isolate 
themselves, helping to reduce the spread 
of the disease. Another company’s 
technology analyzes biomarkers from 
laboratory blood samples to identify 
patients who may have been infected 
with SARS-CoV-2, the virus that causes 
COVID-19.29 This technology measures 
antibodies against the virus in a patient’s 
blood, and company officials stated that 
the technology can deliver results within 
minutes using only a drop of blood. A 
study, conducted by individuals from the 
company, suggests that the accuracy of 
this technology was comparable to, or 
better than, three other tests.30 
Additionally, company officials stated that 
this technology could differentiate 
between those who recovered from 
infection with the COVID-19 virus and 
those who were vaccinated. Such 
information could help enhance our 
understanding of protection from 
infection by variants of the COVID-19 
virus. 

                                                            
29As of September 2022, this device was available under an 
emergency use authorization from FDA. 
30Ikegami, Sachie et al. "Target specific serologic analysis of 
COVID-19 convalescent plasma," PLOS One, vol. 16, no. 4 
(2021). 

2.3 Adoption 

Although ML diagnostic technologies have 
potential benefits and are available to assist 
in diagnosing the diseases we examined, deep 
learning technologies are generally not widely 
adopted in medical clinics, according to our 
expert meeting participants and interviewees. 
For example, an industry coalition official 
stated that medical professionals have used 
some ML-based tools for over 20 years, but 
deep learning technologies are newer and 
therefore less commonly available. 
Additionally, a survey from the American 
College of Radiology found a modest 30 
percent adoption of AI and ML among 
radiologists.31 This survey also found that 
large practices were more likely to use the 
technologies than smaller ones.32 

The companies we interviewed reported 
various levels of technology adoption. For 
example, one company with an ECG 
monitoring technology told us that its 
technology was being used in most major U.S. 
medical centers, while another company 
using a technology to detect COVID-19 
infection said its technology was only being 
used in a handful of universities and research 
institutions. In addition, some developers 
create ML technologies to use at specific 
institutions and do not market them 
commercially, which limits the extent of their 
dissemination, according to an expert 

31Allen, Bibb, et al., “2020 ACR Data Science Institute Artificial 
Intelligence Survey,” Journal of the American College of 
Radiology, vol. 18, no. 8, (2021): 1153 -1159. (Note: This survey 
may have included AI technologies that may not be diagnostic 
devices, and not all AI technologies are ML. Also, the sample 
used for the survey only included members of the American 
College of Radiology and is not necessarily representative of all 
members.) 
32Allen, Bibb, et al. “2020 ACR Survey,” 1153. 
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meeting participant. Chapter 4 discusses 
reasons medical professionals may be 
reluctant to adopt ML technologies. 

Wider adoption could help improve access to 
these technologies by medical professionals 
and patients across various health care 
settings, geographic locations, and 
demographics. It could also allow broader 
realization of the potential benefits of these 
technologies, including earlier detection of 
disease and improved consistency of 
diagnoses. 
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3 Emerging ML Diagnostic Technologies

Academic, government, and private sector 
researchers are working to expand the 
capabilities of AI and ML-based medical 
diagnostic technologies for the five diseases 
we examined. We also identified three 
emerging approaches—autonomous, 
adaptive, and consumer-oriented ML 
diagnostics—that can be applied to diagnose 
a variety of diseases. These advances could 
enhance medical professionals’ capabilities 
and improve patient treatment but also have 
certain limitations. 

3.1 Emerging improvements to ML 
diagnostic technologies, by disease 

Academic, government, and private sector 
organizations continue to research 
improvements to AI and ML technologies that 
would enhance or expand upon available 
capabilities for diagnosing selected diseases. 
We found examples across the five diseases 
we examined, including the following: 

• Cancer. NIH is funding projects to 
improve available approaches to detect 
lung, prostate, and colon cancer, using 
medical imaging and other data sources 
such as biomarkers. In particular, NIH’s 
National Cancer Institute Cancer Imaging 
Program funds research—primarily 
conducted outside NIH—to reduce 
diagnostic uncertainty and improve early 
detection of aggressive cancers. Similarly, 
another group within the National Cancer 

                                                            
33NIH officials also told us that the National Cancer Institute's 
Cancer Research Data Commons Imaging Data Commons is 
intended to support and speed development of new imaging-
based ML diagnostics. 

Institute told us that they are developing 
ML algorithms to help radiologists and 
pathologists identify prostate cancers, 
score them for aggressiveness, and 
predict the cancer’s severity.33 

• Diabetic retinopathy and other diseases. 
Researchers and companies are working 
to adapt existing ML diabetic retinopathy 
technologies to help diagnose other eye 
diseases. For example, an official from a 
company that developed a diabetic 
retinopathy technology told us that the 
company is working to apply its algorithm 
to detect other eye diseases such as 
macular degeneration and glaucoma. 
Researchers are also exploring the use of 
retinal photos to detect diseases 
elsewhere in the body, including coronary 
artery, liver, and gallbladder diseases, 
according to an expert meeting 
participant.  

• Alzheimer’s disease. NIH officials told us 
that they expect future ML technologies 
to be able to predict an individual’s risk of 
developing Alzheimer’s disease and 
identify the disease subtypes. In addition, 
researchers have published studies using 
AI that demonstrate analyses of voice 
recordings to detect cognitive 
impairments, including Alzheimer’s and 
other types of dementia.   

• Heart disease. An ML diagnostic 
technology in development can interpret 
ECGs to determine a patient’s ejection 
fraction, according to a medical expert at 
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our meeting whose organization is 
developing the algorithm.34 The expert 
further noted that this algorithm can 
detect conditions from ECGs that medical 
professionals cannot easily detect.  

• COVID-19. Researchers are developing 
ML technologies to analyze chest X-rays 
for COVID-19 detection, according to an 
industry coalition official. Some studies 
report that X-rays may help medical 
professionals detect the disease when 
there is a shortage of conventional testing 
kits. Additionally, a medical researcher 
from our expert meeting described using 
ML technologies based on medical 
imaging to evaluate responses to various 
treatments for COVID-19 patients. 

                                                            
34Ejection fraction is a measurement of the percentage of 
blood leaving a patient’s heart each time it contracts. Medical 
professionals can use the measurement to help determine if a 
patient may have certain types of heart failure.  

3.2 Emerging approaches to ML 
diagnostic technologies across 
diseases  

In addition to the examples above, which 
expand on available capabilities for our 
selected diseases, we identified three 
emerging, cross-cutting ML-based approaches 
that can be applied to diagnose a variety of 
diseases: autonomous, adaptive, and 
consumer-oriented technologies (see figure 
3).35 Interviewees and expert meeting 
participants expect continued development of 
technologies that use these approaches. 

35These approaches are not mutually exclusive and emerging 
technologies may incorporate one or multiple approaches. 
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Note: These approaches are not mutually exclusive and emerging technologies may incorporate one or multiple 
approaches.

3.2.1 Autonomous ML diagnostic 
technologies 

Autonomous ML diagnostic technologies 
would interpret images or other patient 
data to render a diagnosis, in contrast to 
the approach discussed in Chapter 2, in 
which medical professionals interpret 
results from ML technologies alongside 
other information to diagnose patients. 
Such technologies could have several 
benefits. First, they may reduce costs and 

provide faster, more consistent information 
to patients and medical professionals at the 
point of care and in real time, according to 
a company official. Second, they may 
improve clinician capacity and patient 
access by removing the need for some 
patients to see specialists. For example, a 
company official noted that ML 
technologies may in the future be able to 
rule out breast cancer, and companies are 
already applying autonomous ML 
technologies to detect diabetic 
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retinopathy.36 Third, such technologies may 
result in earlier and more accurate 
detection than traditional diagnostics and 
thereby improve treatment and patient 
outcomes. 

Some federal agency and company officials 
we spoke with noted that they expect 
researchers to develop an increasing 
number of autonomous ML diagnostic 
technologies. However, other interviewees 
cautioned that such technologies may not 
be widely developed or adopted because 
diagnostics may always need to work in 
tandem with human clinicians. 

In particular, developers may not be able to 
create (and medical professionals may not 
adopt) autonomous algorithms that 
diagnose certain diseases, especially those 
with more complex clinical definitions. FDA 
officials stated that the complexity of the 
diagnosis process may limit autonomous 
diagnostics because many diagnostic tests 
are not binary (i.e., positive or negative) 
and require multiple steps or pieces of 
information, and medical professionals 
need to fill the gap between the tool and 
the outcome. For example, two 
interviewees told us it could be difficult for 
developers to create an autonomous ML 
technology to diagnose Alzheimer’s disease 
because there is little consensus among 
medical professionals about the diagnostic 
criteria. In addition, one VA official noted 
that medical professionals prefer ML 
technologies that inform rather than 
provide a diagnosis, particularly for 

                                                            
36However, available technologies for detecting diabetic 
retinopathy still involve oversight by medical professionals. 

diagnoses that may affect life insurance 
rates or disability payments. 

3.2.2 Adaptive algorithms 

Adaptive ML diagnostic technologies 
update their algorithms by incorporating 
new patient data. In contrast to adaptive 
algorithms, available ML diagnostic 
technologies are typically “locked,” 
meaning that manufacturers cannot update 
algorithms without FDA review. In January 
2021, FDA released an action plan on how it 
may review adaptive algorithms moving 
forward.37 The process outlined in the plan 
requests that companies describe their 
plans for updating an algorithm as part of 
their submissions for premarket approval, 
so FDA can review how these algorithms 
may be modified after entering the market. 

Developers can choose the characteristics 
of the population whose data are used to 
update the algorithm, as well as the 
frequency of updates. For example, the 
technologies may incorporate individual 
patient data to improve performance of an 
individual device, or they may aggregate 
patient data to improve all devices that use 
a given algorithm or that are used for a 
given subpopulation. In addition, the 
frequency of updates can be either 
continuous or periodic (see figure 4). 
Continuous updates change the algorithm 
as new data arrive. With periodic updates, 
data are collected for some period of time, 
followed by a discrete update. This makes it 
easier for developers to confirm that 

37Food and Drug Administration, Artificial Intelligence/ 
Machine Learning (AI/ML)-Based Software as a Medical 
Device (SaMD) Action Plan (January 12, 2021). See action 
plan here.  

https://www.fda.gov/media/145022/download
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performance has indeed improved after the 
update, according to two company officials. 

Adaptive ML diagnostic technologies may 
provide more accurate diagnoses or 
information by incorporating additional 
population or individual data. According to 
a participant at our expert meeting, if the 
technology learns from additional patient 
data, it may be able to develop a better 
diagnosis or information that assists in a 
diagnosis. Also, FDA may be able to limit its 
regulatory review of adaptive algorithms by 
reviewing the total product lifecycle, rather 
than individual updates to algorithms within 
technologies.38 This could allow for rapid 
improvement of algorithms while 
maintaining safety and effectiveness. 
Additionally, in contrast to the “locked” 
approach, adaptive ML diagnostic 
technologies could expand features for 
certain users. For example, an expert 

meeting participant noted that because ML 
diagnostic technologies may vary in 
performance from location to location, 
adaptive technologies could facilitate 
“tuning” of the algorithm to improve local 
performance. 

However, changes in the algorithm data 
may lead to adverse outcomes. For 
example, automatic incorporation of low-
quality data may lead to inconsistent or 
poorer algorithmic performance. According 
to one industry official, it is important for 
developers to ensure that changes to a 
technology’s algorithm in the field do not 
negatively impact patient outcomes. An 
official at a different company said periodic 
updating is the most feasible way to update 
technologies because it allows for testing 
and validation before implementing 
changes. 

                                                            
38For high-risk devices that require FDA premarket review 
and approval, device sponsors are generally required to 
submit an application supplement to FDA before making a 
change affecting the safety or effectiveness of the approved 
device. 21 C.F.R. § 814.39(a) (2021). Similarly, sponsors of 

moderate and low-risk devices that have been cleared by 
FDA must submit a premarket notification to the agency 
before making a change to the device that could significantly 
affect its safety or effectiveness. 21 C.F.R. § 807.81(a)(3) 
(2021). 
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3.2.3 Consumer-oriented ML 
technologies 

Available ML diagnostic technologies are 
typically used in clinical settings such as 
hospitals and doctor’s offices, but certain 
technologies may be used in homes and 
other settings by consumers. This approach 
could help clinicians better monitor 
patients. For example, some ML-enabled 
monitors and wearable devices already 
collect patient data, such as ECGs, at home 
or throughout the day. Developers continue 
to advance sensors and wearables for 
diagnosis and monitoring of different 
conditions, such as coronary heart diseases 
and sleep disorders, according to a 
researcher at our expert meeting. Further, a 
number of consumer electronics companies 
have developed and marketed wearables 
with health monitoring features. According 
to one company official, consumers and 
medical professionals are increasingly 
confident in using the results from these 
technologies to understand patient 
conditions. Also, NIH officials projected that 
more wearable technologies will enter the 
market in the future. 

                                                            
39The use of these data may be limited by existing privacy 
regulations. For example, the Health Insurance Portability 
and Accountability Act (HIPAA) of 1996 and its implementing 
regulations, the Privacy and Security Rules, protect 
individually identifiable health information that is used 
within the patient and provider relationship. However, the 
HIPAA protections do not apply to technologies that use or 
disclose health data outside of this relationship and for 
which the technology developer is not creating, receiving, 
transmitting, or maintaining protected health information 
on behalf of a covered entity or another business associate. 

By deploying ML technologies outside of 
clinical settings, medical professionals can 
collect more information about a patient 
between visits, which may lead to a more 
accurate diagnosis and treatment plan.39 
According to one company official, such 
data provide patients and physicians with 
new opportunities for personalized 
medicine, which involves tailoring 
information and outputs for specific 
patients. Deploying these technologies 
outside of clinical settings may also increase 
access to care for consumers, particularly in 
underserved areas that lack specialists, such 
as rural areas. For example, technologies 
for diagnosing diabetic retinopathy can be 
used in optometry chains or pharmacies, 
which may be easier and more convenient 
for consumers to access.  

However, two expert meeting participants 
cautioned that additional research is 
needed for some wearables to understand 
whether they improve patient outcomes. 
For example, one expert noted that some 
companies overstate the abilities of their 
wearable technologies. Additionally, 
according to another expert meeting 
participant, a patient’s ability to use and 
understand health information from 
wearables may contribute to the wearable’s 
effectiveness, and some general wellness 
applications have not improved health 
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outcomes in the past. Further, while some 
of these wearables are reviewed by FDA 
before marketing, others that are not 
considered medical devices do not fall 

under FDA’s jurisdiction.40 Without FDA 
review, such devices may not be 
independently evaluated for safety and 
effectiveness before being marketed.

  

                                                            
40FDA generally only regulates wearables that meet the 
definition of medical devices, including medical devices that 
are intended for use by consumers who are not medical 

professionals. See 21 U.S.C. §§ 321(h) (defining the term 
“device”) and 360j(o) (describing software functions that are 
excluded from the definition of device). 
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4 Challenges Affecting ML Technologies for Medical Diagnostics 

Drawing on information from experts, 
stakeholders, and the scientific literature, we 
identified several challenges affecting the 
development and adoption of ML in medical 
diagnostics. These challenges affect 
technology developers, medical providers, 
and patients and may slow the adoption of 
these technologies. We highlight the 
following three challenges below: 
demonstrating real-world performance, 
meeting medical needs, and addressing 
regulatory gaps. 

4.1 Demonstrating real-world 
performance  

Medical providers may be reluctant to adopt 
ML technologies until its real-world 
performance has been adequately 
demonstrated in relevant and diverse clinical 
settings, according to experts, stakeholders, 
and literature.41 Before deciding to adopt a 
technology, medical providers want to know 
that it is appropriate for their patients and 
will improve outcomes. According to a review 
article of AI technologies, it is important to 
conduct rigorous studies, publish the results 
in peer-reviewed journals, and establish 
clinical validation in real-world environments 
before roll-out and implementation of a 

                                                            
41In this report, the term medical providers may include 
healthcare systems, such as clinics, hospitals, or medical 
centers, as well as medical professionals, such as physicians. 
42Topol, Eric J. “High-performance medicine: the convergence 
of human and artificial intelligence”. Nature Medicine vol. 25 
(2019): 44-56. 

technology in patient care.42 In order to 
establish clinical validity, ML technologies can 
be trained using high-quality data that are 
representative of the intended patient 
population, then tested and validated on 
diverse external datasets representing a 
range of clinical settings, conditions, and 
patient populations. This can help identify 
biases and limitations of the technology and 
ensure that results are generalizable. 

However, many available technologies have 
not been adequately tested or validated 
across generalizable data sets and settings 
and, as a result, may not transfer from 
development to adoption in clinical 
environments. A review of 516 studies that 
evaluated the performance of image-based AI 
algorithms found only 6 percent of the studies 
performed external validation against data 
sets from institutions or time periods that 
differed from the training data.43 

Further, among ML technologies that have 
been validated externally, performance can 
vary substantially. Participants in our expert 
meeting noted that a key challenge for these 
technologies is that the performance may 
vary across different settings. For example, as 
we have previously reported, a technology 

43Kim, Dong Wook, et al. “Design Characteristics of Studies 
Reporting the Performance of Artificial Intelligence Algorithms 
for Diagnostic Analysis of Medical Images: Results from 
Recently Published Papers.” Korean Journal of Radiology, vol. 
20(3), (2019): 405-410. The literature search in this review 
limited the search period to year 2018, with the search 
updated until August 17, 2018. The report notes that the study 
design features addressed in this study, including external 
validation, are crucial for validating the real-world clinical 
performance of AI but would be excessive for proof-of-concept 
technical feasibility studies, which constituted nearly all of the 
studies published in the study period. 
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may work well in a large high-resource health 
system but may not be work as well in 
smaller, low-resource systems.44 
Furthermore, a journal article reported that 
the performance of diagnostic imaging 
algorithms varies substantially from site to 
site in the real world, and went on to highlight 
the need for validation of algorithm 
performance at each clinical site before 
installation.45 

A lack of prospective studies of these 
technologies may also be hindering adoption. 
Prospective studies are those where the 
outcome has not occurred when the study 
starts and participants are followed over time 
to track eventual outcomes. Most ML 
technologies rely on retrospective data for 
validation studies, but studies based on 
retrospective data may not show clinical 
validity or impact and may not accurately 
reflect real-world conditions.  According to a 
2019 review of available AI-based diagnostic 
technologies, there has been little prospective 
validation of the algorithms reviewed, and 
stakeholders will not know how well AI can 
predict key outcomes in the health care 
setting until there is robust validation in 
prospective studies with rigorous statistical 
methodology and analysis.46 A National 
Academy of Sciences workshop proceedings 

44GAO-21-7SP
45Larson, David B. et al. “Regulatory Frameworks for 
Development and Evaluation of Artificial Intelligence–Based 
Diagnostic Imaging Algorithms: Summary and 
Recommendations.” Journal of the American College of 
Radiology, (October 2022).  
46Topol, “High-performance medicine,” 49.
47National Academies of Sciences, Engineering, and Medicine.
Improving Cancer Diagnosis and Care: Clinical Application of 
Computational Methods in Precision Oncology: Proceedings of 
a Workshop. The National Academies Press (Washington, D.C.: 
2019).  

report on improving cancer diagnosis stressed 
that for clinical validation, algorithms should 
be evaluated in well-designed prospective 
studies.47 Further, two expert meeting 
participants identified a lack of sufficient 
prospective evaluation in relevant clinical 
settings as a key challenge for these 
technologies. 

However, developers face several challenges 
evaluating and validating ML diagnostic 
technologies. First, developers have difficulty 
accessing high-quality representative data to 
train and validate their technologies. 
According to an industry developer, access to 
sufficient amounts of nonbiased, ethnically 
diverse, real-world training data is their 
primary challenge, in part because partnering 
with hospitals and academic centers to obtain 
data sets takes time, including time to build 
trust with these institutions. Institutions are 
often reluctant to share data, especially 
protected health information, due to privacy 
concerns.48 DOE officials stated that those 
who have data are reluctant to share them 
unless the developers can determine how the 
data will be used. Additionally, officials stated 
that data use agreements can take a long 
time to arrange, partly because they typically 
require approval by an institutional review 
board to help ensure adequate patient 

48The HIPAA Privacy Rule generally prohibits the use or
disclosure of protected health information except in the 
circumstances set out in the regulations. Protected health 
information is individually identifiable health information and 
includes information collected from an individual, including 
demographic information, that 1) is created or received by a 
health care provider, health plan, or health care clearinghouse, 
and 2) relates to the past, present or future physical or mental 
health condition of the individual, or the payment for the 
provision of health care, and 3) identifies the individual or with 
respect to which there is a reasonable basis to believe the 
information can be used to identify the individual. 

https://www.gao.gov/products/gao-21-7sp
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privacy.  In addition to concerns over privacy, 
institutions may be reluctant to share 
valuable proprietary data if doing so could 
hurt their competitive advantage. 

Performing and funding evaluations is also 
time and cost intensive and may not be in the 
best interest of developers, according to 
literature and a participant in our expert 
meeting. Rigorous evaluations are expensive 
and could delay the adoption of some 
technologies. In addition, a journal article 
stated that manufacturers of these 
technologies have a strong financial interest 
in showing their products in a positive light, 
and further noted that there is an inherent 
conflict of interest if they are expected to 
fund, conduct, and publish results of objective 
and rigorous evaluations that may highlight 
deficiencies in their products.49 Similarly, one 
expert meeting participant also expressed 
concern about the incentive structure for 
post-market validation, stating that it may not 
be in a developer’s interest to bear the costs 
of such an evaluation if it could show that the 
technology does not work. 

4.2 Meeting medical needs 

Medical providers are less likely to adopt ML 
technologies that do not address a clear 
clinical need, and many ML diagnostic 
technologies do not progress from 
development to adoption for this reason. 
Expert meeting participants told us that 
developers may not understand the clinical 

                                                            
49Larson, et al, “Regulatory Frameworks for Development and 
Evaluation of Artificial Intelligence–Based Diagnostic Imaging 
Algorithms: Summary and Recommendations”, 5. 
50Duke Margolis Center for Health Policy, Current State and 
Near-Term Priorities for AI-Enabled Diagnostic Support 
Software in Health Care, (Durham, N.C.: 2019). 

needs of medical providers and professionals. 
These technologies bring the most value in 
settings where clinical uncertainty is high or 
knowledge is quickly changing, where a need 
exists to reduce specialist referrals or other 
types of diagnostic tests, or where the 
technology can demonstrate significant 
clinical productivity gains, according to a 
white paper by the Duke Margolis Center for 
Health Policy.50 

Developers may struggle to adequately define 
and communicate the uses and benefits of 
their technologies. For example, according to 
an NIH workshop report, the most impactful 
challenge to the adoption of these 
technologies is that clinically effective uses for 
AI have been poorly defined.51 Similarly, an 
expert meeting participant stated that 
providers may not understand the value of 
these technologies and will not change their 
practices to adopt them until developers can 
show the value of their products to help with 
accuracy, increase efficiencies, or reduce 
likelihood of error. 

Additionally, providers and professionals are 
more likely to adopt technologies that 
integrate into existing health care systems 
and clinical workflows, according to studies 
and interviewees. For example, VA officials 
told us that integration with existing 
technology and security tools and systems is 
an important consideration when evaluating 
whether to adopt a technology. These 
technologies may also not scale commercially 

51Bibb, Allen Jr. et al, “A Road Map for Translational Research 
on Artificial Intelligence in Medical Imaging: From the 2018 
National Institutes of Health/RSNA/ACR/The Academy 
Workshop”, Journal of the American College of Radiology, vol. 
16, issue 9, part A (Sept 2019): 1179-1189. 
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if they do not integrate into clinical 
workflows. Clinicians are more likely to adopt 
technologies that integrate into their 
workflows without adding time or effort to 
their workload; for example, they may prefer 
technologies that do not require the clinician 
to log into separate systems or repeat tasks or 
thought processes, as this adds extra time 
and effort for the clinician. Technologies that 
are integrated into the optimal point in the 
clinical workflow can reduce burden and 
maximize effectiveness. The Duke Margolis 
Center for Health Policy white paper found 
that the appropriate fit in the workflow will 
vary based on the technology and application; 
for example, some technologies may work 
best if they proactively alert the clinician 
while others may work best if only activated 
at the request of the clinician.52 

Lastly, providers and professionals are also 
more likely to adopt technologies that they 
can understand, according to studies and 
experts. In particular, they may want to 
understand how a technology works, its 
performance, clinical evidence, and potential 
limitations or biases. In addition, users are 
particularly likely to adopt an ML technology 
if they can verify its findings or 
recommendations, according to a VA medical 
center official. 

However, certain information —such as how 
the technology works — may be confidential, 
unknown, or unexplainable. Developers may 

                                                            
52Duke Margolis Center for Health Policy, Current State and 
Near-Term Priorities for AI-Enabled Diagnostic Support 
Software in Health Care, 24. 
53GAO-21-7SP 

consider certain information proprietary and 
important to their competitive edge. Further, 
as we previously reported, the decision-
making of AI algorithms can be difficult or 
impossible to explain or understand, even for 
their developers. 53 Though some users may 
desire full explainability and transparency of 
ML technologies, achieving this goal may be 
unrealistic.54 According to one study, it may 
not be possible to explain how the technology 
arrived at an individual result or decision; 
rather, the authors recommend thorough and 
rigorous validation across diverse and distinct 
populations to show that patient and health 
care outcomes are improved and that 
marginalized groups are not disadvantaged.55 
This approach may be more consistent with 
the adoption of non-ML technologies; 
according to participants from our expert 
meeting, medical professionals routinely use 
technologies without understanding how the 
technologies work if their performance has 
been adequately demonstrated. 

4.3 Addressing regulatory gaps 

Gaps in the regulatory framework may also 
pose a challenge to the development and 
adoption of ML technologies. Regulatory 
requirements and standards for 
demonstrating real world performance and 
clinical validity are insufficient for wide 
clinical adoption, according to experts, 
stakeholders, and the research literature. As 
previously mentioned, medical providers may 

54Explainability refers to methods and techniques in the 
application of artificial intelligence such that the results of the 
solution can be understood by humans. 
55Marzyeh Ghassemi, Luke Oakden-Rayner, and Andrew L. 
Beam, “The false hope of current approaches to explainable 
artificial intelligence in health care”, Lancet Digital Health, vol. 
3 (Nov 2021): 745-750. 

https://www.gao.gov/products/gao-21-7sp
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be reluctant to adopt ML diagnostic 
technologies without adequate evidence of 
performance and efficacy across diverse 
clinical environments. An industry group 
expressed concern that developers may not 
understand the importance of clinical 
validation and that FDA guidance and 
requirements for clinical validation may not 
address the needs of clinicians and patients. 
As discussed earlier in this report, FDA 
reviews medical devices for safety and 
effectiveness. However, reviews do not 
always include comprehensive information on 
real world performance, clinical outcomes or 
other information that users may deem 
relevant to their adoption decisions.56 FDA 
recognizes the need for more evidence of the 
real world performance of these technologies, 
according to an action plan FDA released in 
January 2021.57 This plan identifies the need 
for improved methods to evaluate bias, 
generalizability, and robustness, as well as the 
need for clearer guidance on real world 
performance monitoring. 

The existing regulations may also limit the 
development of emerging types of ML 

                                                            
56According to FDA officials, reviews are limited to utilizing the 
least burdensome amount of information required to meet the 
particular regulatory standard, set forth in the Federal Food, 
Drug, and Cosmetic Act (e.g., substantial equivalence), and FDA 
is not able to request information that would not aid its 
authorization decision. This information may not be the same 
as what would lead to user adoption of a product. 
57Food and Drug Administration, Artificial Intelligence/ 
Machine Learning (AI/ML)-Based Software as a Medical Device 
(SaMD) Action Plan (January 12, 2021). 

diagnostic technologies. For example, 
industry officials stated that regulators would 
need to change the regulatory environment, 
standards, and expectations in order to 
support the development of autonomous 
technologies. Regulatory gaps may also 
impact the development of adaptive 
algorithms. Changes or modifications to a 
device may require additional review and 
authorization by FDA, which may limit their 
ability to improve by learning from real-world 
use and experience. FDA is working to update 
regulatory guidance; in 2019, FDA issued a 
discussion paper on a proposed regulatory 
framework that includes a “Predetermined 
Change Control Plan” that could allow devices 
to learn and iteratively improve after they are 
in use.58 FDA collected stakeholder input on 
this plan and set a goal to publish draft 
guidance in 2021; however, as of March 2022, 
the draft guidance had not been published 
and, as we have previously reported, draft 
guidance is issued for comment purposes only 
and is not for implementation.59 

  

58FDA, “Proposed Regulatory Framework for Modifications to 
Artificial Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD),” Washington, D.C.: Apr. 
2, 2019. 
59Guidance includes recommendations; stakeholders may use 
an alternative approach if it satisfies the requirements of the 
applicable statutes and regulations. 



 

  GAO Technology Assessment GAO-22-104629   28 

5 Policy Options to Enhance Benefits or Address Challenges of ML 
Diagnostic Technologies 

We developed three policy options that 
policymakers—Congress, federal agencies, 
state and local governments, academic 
research institutions, and industry, among 
others—could take to enhance the benefits of 
ML technologies or to mitigate the challenges 
discussed in the previous chapter. These 
options include encouraging evaluation of 
these technologies, improving high-quality 
data access, and promoting collaboration 
across stakeholders. We present potential 
opportunities and considerations for each 
option. 

While we present options to address the 
major challenges we identified, the list of 
options is not intended to be exhaustive. We 
intend our policy options to provide 
policymakers with a broader base of 
information for decision-making. We also did 
not rank the options in any way. Additionally, 
depending on the options selected, additional 
steps might need to be taken on potential 
design and legal issues. We did not conduct 
work to assess how effective the options may 
be, and express no view regarding the extent 
to which legal changes would be needed to 
implement them. 

5.1 Policy Option: Evaluation 

Policymakers could create incentives, 
guidance, or policies to encourage or require 
the evaluation of ML diagnostic technologies 
across a range of deployment conditions and 
demographics representative of the 
intended use. 

This policy option could help address the 
challenges of demonstrating real world 
performance. 

Description: 

• Policymakers could encourage 
evaluations by providing funding or other 
incentives for more rigorous evaluations, 
according to participants in our expert 
meeting. Policymakers could also create 
guidance, standards or best practices for 
evaluation of these technologies. 
Policymakers could also require post-
adoption evaluation under certain 
conditions. For example, a participant in 
our expert meeting said regulators might 
consider formal processes for ongoing 
review of the accuracy of the technology 
after adoption, especially when the 
algorithm is adapting to different 
institutions or patient demographics.  

Opportunities: 

• More comprehensive evaluation could 
help developers, providers, and 
policymakers better understand the 
performance of ML technologies across a 
diverse spectrum of patients, providers, 
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and other factors. Evaluating technologies 
through rigorous studies, such as through 
external validation or peer-reviewed 
prospective studies, can help 
stakeholders determine a technology’s 
clinical validity, ability to predict 
healthcare outcomes, potential biases 
and limitations, and opportunities for 
improvement. 

• Evaluation could inform providers’ 
adoption decisions. A better 
understanding of these technologies can 
potentially lead to increased adoption by 
enhancing trust, according to FDA 
officials. 

• Information from evaluations can help 
inform the decisions of policymakers, 
such as decisions about regulatory 
requirements. 

Considerations: 

• Rigorous evaluations can be time-
intensive and require collaboration 
between stakeholders that may already 
have limited time, such as medical 
professionals. This could also delay the 
development and adoption processes, 
according to VA officials. This could 
negatively affect the lives of patients and 
professionals who could benefit from 
earlier availability. 

• More rigorous evaluation will likely lead 
to extra costs, such as direct costs for 
funding the studies. As previously 
mentioned, developers may not be 
incentivized to conduct these evaluations 
if it could show their products in a 
negative light, so policymakers could 
consider whether evaluations should be 
conducted or reviewed by independent 
parties, according to industry officials. 

5.2 Policy Option: Data Access 

Policymakers could develop or expand 
access to high-quality medical data to 
develop and test ML medical diagnostic 
technologies. 

This policy option could help the challenge of 
demonstrating real world performance. 

Description: 

• Policymakers can explore opportunities to 
make data sharing easier, faster, or 
cheaper. For example, policymakers could 
reach agreement about data standards or 
share best practices for collecting and 
sharing data. Policymakers could also 
increase data access by, when 
appropriate, creating and participating in 
mechanisms for data sharing, such as 
data commons– cloud-based platforms 
where users can store, share, access, and 
interact with data and other digital 
objects. Policymakers could also use 
incentives, such as grants or access to 
databases, to encourage data sharing. 

Opportunities: 

• Developing or expanding access to high-
quality datasets could help facilitate 
training and testing ML technologies 
across diverse and representative 
conditions, which could improve their 
performance and generalizability. This in 
turn could help developers and other 
stakeholders understand the 
performance of these technologies under 
varied conditions, identify biases or 
limitations, and identify opportunities for 
improvement. According to FDA officials, 
if clinicians can better understand model 
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outcomes, it could build trust and 
adoption in these technologies. 

• Expanding access could enable 
developers to save time in the 
development process, which could 
shorten the time it takes for these 
technologies to be available for adoption. 

Considerations: 

• As discussed in chapter 4, entities that 
own data may be reluctant to share them 
for a number of reasons. For example, 
these entities may consider their data 
valuable or proprietary. Some entities 
may also be concerned about the privacy 
of their patients and the intended use and 
security of their data. 

• As previously reported, data sharing 
mechanisms may be of limited use to 
researchers and developers depending on 
the quality and interoperability of these 
data, and curating and storing data could 
be expensive and may require public and 
private resources.  

5.3 Policy Option: Collaboration 

Policymakers could promote collaboration 
between developers, providers, and 
regulators in the development and adoption 
of ML diagnostic technologies. 

This policy option could help address the 
challenges of meeting medical needs and 
addressing regulatory gaps. 
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Description: 

• Policymakers could promote 
multidisciplinary collaboration between 
medical professionals and developers to 
foster innovation and create technical 
solutions.  Policymakers could convene 
multidisciplinary experts together in the 
design and development of these 
technologies. For example, according to 
an NIH working group report, 
policymakers could convene cross-
disciplinary collaborators, such as through 
workshops, conferences, and other 
opportunities for convening experts from 
different fields.60 Another example of 
collaboration we previously reported are 
hackathons, where computer engineers, 
other technology experts, and providers 
collaborate to solve technical problems. 
Regulators could continue to provide 
public notice and seek public comment 
from stakeholders to tailor the regulatory 
framework or create guidance, standards, 
or best practices for the use and 
development of ML technologies.  

Opportunities: 

• Collaboration between ML developers 
and providers could help ensure that the 
technologies address clinical needs. For 
example, collaboration between 
developers and medical professionals 
could also help developers create ML 
technologies that integrate into medical 
professionals’ workflows, and minimize 
time, effort, and disruption. 
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• Collaboration among developers and 
medical providers could help in the 
creation and access of ML ready data, 
according to NIH officials. 

Considerations: 

• As previously reported, providers may not 
have time to both collaborate with 
developers and treat patients; however, 
organizations can provide protected time 
for employees to engage in innovation 
activities such as collaboration.61 

                                                            
61GAO-21-7SP 

We also reported that if developers only 
collaborate with providers in specific settings, 
their technologies may not be usable across a 
range of conditions and settings, such as 
across different patient types or technology 
systems. 

 

https://www.gao.gov/products/gao-21-7sp
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6 Agency and Expert Comments 

We provided a draft of this report to the Department of Health and Human Services (Food and 
Drug Administration and the National Institutes of Health), the Department of Veterans Affairs, 
the Department of Energy, and the Federal Trade Commission with a request for technical 
comments, and incorporated agency comments into this report as appropriate. 

We also provided a draft of this report to 16 participants from our expert meeting and 
incorporated comments received as appropriate, consistent with previous technology 
assessment methodologies. 

 

We are sending copies of this report to the appropriate congressional committees, relevant 
federal agencies, and other interested parties. In addition, the report is available at no charge on 
the GAO website at http://www.gao.gov.  

If you or your staff members have any questions about this report, please contact me at (202) 
512-6888 or howardk@gao.gov. Contact points for our Offices of Congressional Relations and 
Public Affairs may be found on the last page of this report. GAO staff who made key 
contributions to this report are listed in appendix III. 

 
Karen L. Howard, PhD 
Director 
Science, Technology Assessment, and Analytics 
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PART TWO 
 

Meeting the Moment: 
Addressing Barriers and 
Facilitating Clinical 
Adoption of Artificial 
Intelligence in Medical 
Diagnosis 
National Academy of Medicine 

Part Two presents the NAM publication Meeting the Moment: Addressing Barriers and 
Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis discussing the 
factors influencing the adoption of non-autonomous point-of-care AI technology that can 
assist in the diagnosing of a disease. Although GAO and NAM staff consulted with and 
assisted each other throughout this work, reviews were conducted by GAO and NAM 
separately and independently, and authorship of the text of Part One and Part Two of 
the report lies solely with GAO and NAM, respectively. 
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Introduction 

Clinical diagnosis is essentially a data 
curation and analysis activity through which 
clinicians seek to gather and synthesize 
enough pieces of information about a 
patient to determine their condition. The 
art and science of clinical diagnosis dates to 
ancient times, with the earliest diagnostic 
practices relying primarily on clinical 
observations of a patient’s state, coupled 
with methods of palpation and auscultation 
(Berger, 1999; Mandl and Bourgeois, 2017). 
Following a period of stagnation in clinical 
diagnostic practices, the 17th through 19th 
centuries marked a period of discovery that 
transformed modern clinical diagnostics, 
with the advent of the microscope, 
laboratory analytic techniques, and more 
precise physical examination and imaging 
tools (e.g., the stethoscope, 
ophthalmoscope, X-ray, and 
electrocardiogram) (Walker, 1990). These 
foundational achievements, among many 
others, laid the groundwork for modern 
clinical diagnostics. However, the volume 
and breadth of data for which clinicians are 
responsible has exponentially grown, 

generating challenges for human cognitive 
capacity to assimilate. 

Computerized diagnostic decision support 
(DDS) tools emerged to alleviate the burden 
of data overload, enhance clinicians’ 
decision making capabilities, and 
standardize care delivery processes. DDS 
tools are a subcategory of clinical decision 
support (CDS) tools, with the distinction 
that DDS tools focus on diagnostic 
functions, whereas CDS tools more broadly 
can offer diagnostic, treatment, and/or 
prognostic recommendations. Debuting in 
the 1970s and 1980s, expert-based DDS 
tools such as MYCIN, Iliad, and Quick 
Medical Reference operated by encoding 
then-current knowledge about diseases 
through a series of codified rules, which 
rendered a diagnostic recommendation 
(Miller and Geissbuhler, 2007). While these 
early DDS tools initially achieved pockets of 
success, the promise of many of these tools 
diminished as several shortcomings became 
evident. Most prominently, the capacity of 
data collection and the complexity of 
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knowledge representation prevented 
accurate representation of the 
pathophysiological relationships between a 
disease and treatments. Programmed with 
a limited set of information and decision 
rules, several expert-based DDS tools could 
not generalize to all settings and cases. 
Some suffered from performance issues as 
well, often struggling to generate a result or 
yielding an errant diagnosis. Moreover, 
users were frustrated. Since these tools 
existed outside of the main clinical 
information systems, clinicians had to 
reenter a long list of information to use 
them, which created significant friction in 
their workflows. Similarly, updating the 
knowledge base of a DDS system often 
required cumbersome manual entry. 
Finally, there was a lack of incentives to 
drive adoption. Thus, provider acceptance 
remained low, and expert-based DDS tools 
faded from use (Miller, 1994).  

The revitalization of the artificial 
intelligence (AI) field—the ability of 
computer algorithms to perform tasks that 
typically require human intelligence—offers 
an opportunity to augment human 
diagnostic capabilities and address the 
limitations of expert-based DDS tools (Yu, 
Beam, and Kohane, 2018). Current AI 
techniques possess not only remarkable 
processing power, speed, and ability to link 
and organize large volumes of multimodal 
data, but also the ability to learn and adjust 
based on novel inputs, building upon 
previous knowledge to generate new 
insights. For this reason, AI approaches, 
specifically machine learning (ML), are 
especially well suited to the problems of 
clinical diagnosis, shortening the time for 
disease detection, diagnostic accuracy, and 
reducing medical errors. By doing so, AI 

diagnostic decision support (AI-DDS) tools 
could reduce the cognitive burden on 
providers, mitigate burnout, and further 
enhance care quality.  

While contemporary AI-DDS tools are more 
sophisticated than their expert-based 
predecessors, concerns about their 
development, interoperability, workflow 
integration, maintenance, sustainability, 
and workforce requirements remain, 
hampering the adoption of AI-DDS tools. 

Additionally, the “black box” nature of 
some AI systems poses liability and 
reimbursement challenges that can affect 
provider trust and adoption. This paper 
examines the key factors related to the 
successful adoption of AI-DDS tools, 
organized into four domains: reason to use, 
means to use, method to use, and desire to 
use. Additionally, the paper discusses the 
crosscutting issues of bias and equity as 
they relate to provider trust and adoption 
of these tools. Addressing biases and 
inequities perpetuated by AI tools is 
paramount to preventing the widening of 
disparities experienced by certain 
populations and to engendering confidence 
and trust among clinicians who are 
responsible for providing care to these 
populations. To conclude, the authors 
discuss the policy implications around the 
adoption of AI-DDS systems and propose 
action priorities for providers, health 
systems leaders, legislators, and policy 
makers to consider as they engage in 
collaborative efforts to advance the 
longevity and success of these tools in 
supporting safe, effective, efficient, and 
equitable diagnosis. 
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1 A Primer on AI-Diagnostic Decision Support Tools  

AI-DDS tools come in various forms, use 
myriad AI techniques (see Table 1), and can 
be applied to a growing number of conditions 
and clinical disciplines. In this paper, the 
authors focus on adoption factors as they 
relate to assistive AI-DDS tools. Unlike 
autonomous AI tools, which operate 
independently from a human, assistive AI 

tools involve a human to some degree in the 
analysis and decision-making process (see 
Figure 1) (Bitterman, Aerts, and Mak, 2020). 
The authors in this paper focus on AI-DDS 
tools designed to support health care 
professionals in decision-making processes, 
rather than consumer-facing tools in which a 
layperson interacts with an AI-DDS system. 

Table 1: A Non-Exhaustive Glossary of Key Terms Related to Artificial Intelligence 

Artificial Intelligence (AI) A collection of computer algorithms displaying aspects of human-like 
intelligence for solving specific tasks. 

Machine Learning (ML) A subset of AI that harnesses a family of statistical modeling approaches to 
automatically learn trends from the input data and improve the prediction 
of a target state. 

Deep Learning (DL) A subset of ML consisting of multiple computational layers between the 
input and output that form a “neural network” used for complex feature 
learning. 

Convolutional Neural Networks 
(CNN) 

A subset of DL techniques that is particularly efficient in AI-based pattern 
recognition. It is the foundation of many image processing AI algorithms, 
for instance in radiology. 

Supervised Learning A type of AI/ML algorithm that is trained to “learn” associations from 
labeled data (i.e., input and desired output data). 

Unsupervised Learning A type of AI/ML algorithm that is trained on unlabeled data and intended to 
“independently” find underlying structures of patterns in input data.  

Random Forests Method A type of ML/AI algorithm involving several decision trees, whose output is 
the statistical mode (in classification) or mean (in regression) of each of the 
decision trees. 

Natural Language Processing (NLP) A type of AI that refers to algorithms that employ computational linguistics 
to understand and organize human speech. 

Computer Vision (CV) Scientific field that deals with how computers process, evaluate, and 
interpret digital images or videos.   

AI Diagnostic Decision Support (AI-
DDS)  

A computer-based tool, driven by AI algorithms, that uses clinical 
knowledge and patient-specific health information to inform, aid, and 
augment health care providers’ diagnostic decision making processes. 

Source: Adapted from Abdulkareem, M. and S. E. Petersen. 2021. The Promise of AI in Detection, Diagnosis, and Epidemiology for Combating COVID-19: Beyond the Hype. 
Frontiers in Artificial Intelligence. https://doi.org/10.3389/frai.2021.652669 and Aggarwal, N., M. Ahmed, S. Basu, J. J. Curtin, B. J. Evans, M. E. Matheny, S. Nundy, M. P. Sendak, 
C. Shachar, R. U. Shah, and S. Thadaney-Israni. 2020. Advancing Artificial Intelligence in Health Settings Outside the Hospital and Clinic. NAM Perspectives. Discussion Paper, 
National Academy of Medicine, Washington, DC. https://doi.org/10.31478/202011f. 

 

https://doi.org/10.3389/frai.2021.652669
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Current AI-DDS tools reflect artificial narrow 
intelligence (ANI), i.e., the application of 
high-level processing capabilities on a 
single, predetermined task, as opposed to 
artificial general intelligence (AGI), which 
refers to human-level reasoning and 
problem-solving skills across a broad range 
of domains. AI-aided diagnostic tools are 
designed to address specific clinical issues 

related to a prescribed range of clinical 
data. They do not (and are not intended to) 
comprise omniscient, science-fiction-like 
algorithmic interfaces that can span all 
disease contexts. Ultimately, the purpose of 
AI-DDS tools is to augment provider 
expertise and patient care rather than 
dictate it. 
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Generally, assistive AI-DDS tools currently 
use a combination of computer vision and 
ML techniques such as deep learning, 
working to identify complex non-linear 
relationships between features of image, 
video, audio, in vitro, and/or other data 
types, and anatomical correlates or disease 
labels. The authors highlight a few 
representative examples below. 

Most prominently, assistive AI-DDS tools 
can be found in the field of diagnostic 
imaging, given the highly digital and 
increasingly computational nature of the 
field. In fact, radiology boasts more Food 
and Drug Administration (FDA)-authorized 
(that is, cleared or approved) AI tools than 
any other medical specialty (Benjamens et 
al., 2020). A well-studied algorithm within 
the cardiac imaging space is HeartFlow 
FFRCT. Trained on large amounts of 
computed tomography (CT) scans, this 
algorithm employs deep learning to create a 
precise 3D visualization of a patient’s heart 
and major vessels to assist in the detection 
of arterial blockage (Heartflow, 2014). Deep 
learning methods can also be applied to 
gauge minute variations in cardiac features 
such as ventricle size and cardiac wall 
thickness to make distinctions between 
hypertrophic cardiomyopathy and cardiac 
amyloidosis—two conditions which have 
similar clinical manifestations and can often 
be misdiagnosed (Duffy et al., 2022). Within 
oncology, ML techniques in the form of 
computer-aided detection systems have 
been used since the 1990s to support early 
detection of breast cancer (Fenton et al., 
2007; Nakahara et al., 1998). Since then, 
the FDA has approved several AI-based 
cancer detection tools to help detect 
anomalies in breast, lung, and skin images, 
among others (Shen et al., 2021; Ray and 
Gupta, 2020; Ardila et al., 2019). Many of 
these models have been shown to improve 

diagnostic accuracy and prediction of 
cancer development well before onset (Yala 
et al., 2019). 

Beyond imaging, AI applications include the 
early recognition of sepsis, one of the 
leading causes of death worldwide. 
Electronic health record (EHR)-integrated 
decision tools such as Hospital Corporation 
of America (HCA) Healthcare’s Sepsis 
Prediction and Optimization Therapy (SPOT) 
and the Sepsis Early Risk Assessment (SERA) 
algorithm developed in Singapore draw on a 
vast repository of structured and 
unstructured clinical data to identify signs 
and symptoms of sepsis up to 12–48 hours 
sooner than traditional methods. In this 
regard, natural language processing (NLP) of 
unstructured clinical notes is particularly 
promising. NLP helps to discern information 
from a patient’s social history, admission 
notes, and pharmacy notes to supplement 
findings from blood results, creating a 
richer picture of a person’s risk for sepsis 
(SPOT, 2018; Goh et al., 2021). However, 
there are significant concerns about the 
clinical utility and generalizability of these 
tools across different geographic settings 
(Wong et al., 2021). 

In the fields of mental health and 
neuropsychiatry, AI-DDS tools hold 
potential for combining multimodal data to 
uncover pathological patterns of 
psychosocial behavior that may facilitate 
early diagnosis and intervention. For 
instance, the FDA recently authorized 
marketing of an AI-based diagnostic aid for 
autism spectrum disorder (ASD) developed 
by Cognoa, Inc. As a departure from deep 
learning and CNNs, the Cognoa algorithm is 
based in random forest decision trees. It 
integrates information from three sources 
to provide a binary prediction of ASD 
diagnosis:  
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1. a brief parent questionnaire regarding 
child behavior completed via mobile 
app,  

2. key behaviors identified in videos of 
child behaviors, and 

3. a brief clinician questionnaire.  

The tool has demonstrated safety and 
efficacy for ASD diagnosis in children ages 
18 months to five years, performing at least 
as well as conventional autism screening 
tools (Abbas et al., 2020). There have also 
been promising demonstrations of AI for 
diagnosing depression, anxiety, and post-
traumatic stress disorder (Lin et al., 2022; 
Khan et al., 2021; Marmar et al., 2019).  

AI-DDS systems are also becoming 
increasingly common in the field of 
pathology, particularly in vitro AI-DDS tools. 
Akin to the radiological examples, AI 
techniques can analyze blood and tissue 
samples for the presence of diagnostic 
biomarkers and characterize cell or tissue 
morphology. For example, a model 
developed by PreciseDx uses CNNs to 
calculate the density of Lewy-type 
synucleinopathy, a biomarker of early 
Parkinson’s disease, in the peripheral nerve 
tissue of saliva glands (Signaevsky et al., 
2022). 
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2 Facilitating Provider Adoption of AI-Diagnostic Decision Support 
Tools

Despite the significant potential AI-DDS 
tools hold in augmenting medical diagnosis, 
these tools may fail to achieve wide clinical 
uptake if there is insufficient clinical 
acceptance. A particularly telling example is 
that of many early expert-based DDS 
examples (the forerunners to modern AI-
DDS systems, as discussed in the 
Introduction), which disappointed provider 
expectations because of a host of usability 
and performance issues as discussed in the 
Introduction.  

However, the deficiencies of these early AI-
DDS tools are instructive for facilitating the 
adoption of contemporary AI-DDS tools. 
Additionally, lessons learned from 
implementing current non-AI-based DDS 
tools, or systems that generate 
recommendations by matching patient 
information to a digital clinical knowledge 
base, can offer insight. The authors of this 
paper present a model for understanding 
the key drivers of clinical adoption of AI-
DDS tools by health systems and providers 
alike, drawing from these historical 
examples and the current discourse around 
AI, as well as notable frameworks of human 
behavior (Ajzen, 1985; Ajzen, 1991). This 
model focuses on eight major determinants 
across four interrelated core domains, and 
the issues covered within each domain are 
as follows (see Figure 2): 

• Domain 1: Reason to use explores the 
alignment of incentives, market forces, 
and reimbursement policies that drive 
health care investment in AI-DDS.  

• Domain 2: Means to use reviews the 
data and human infrastructure 

components as well as the requisite 
technical resources for deploying and 
maintaining these tools in a clinical 
environment.  

• Domain 3: Method to use discusses the 
workflow considerations and training 
requirements to support clinicians in 
using these tools.  

• Domain 4: Desire to use considers the 
psychological aspects of provider 
comfort with AI, such as the extent to 
which the tools alleviate clinician 
burnout, provide professional 
fulfillment, and engender overall trust. 
This section also examines medicolegal 
challenges, one of the biggest hurdles 
to fostering provider trust in and the 
adoption of AI-DDS. 
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Domain 1: Reason to Use 

At the outset, the adoption and scalability 
of a given AI-DDS tool are driven by two 
simple but critical factors that dictate the 
fate of nearly any novel technology being 
introduced into a health setting. The first 
factor is the ability of a tool to address a 
pressing clinical need and improve patient 
care and outcomes (alignment with 
providers’ and health systems’ missions). 
Considering that these tools require 
sufficient financial investment for 
deployment and maintenance, the second 
factor is the tool’s affordability both to the 
patient and health system, including the 
incentives for the provider, patient, and 
health system to justify the costs of 
acquiring the tool and investments needed 
to implement it. The issues related to 
Alignment and Incentives and 
Reimbursements are, in practice, deeply 
intertwined and codependent. However, for 
the purposes of the discussion that follows, 
the authors have separated the two for 
clarity, emphasizing the logistical and 
technical steps relevant to Incentives and 
Reimbursement. 

Alignment with Health Care Missions 

AI-DDS tools must facilitate the goals and 
core objectives of the health care institution 
and care providers they serve, although the 
specific impetus and pathway for AI-DDS 
tool adoption can vary by organization. For 
instance, risk prediction and early diagnosis 
AI-DDS tools being developed and 
implemented by the Veterans Health 
Administration (VHA)—the largest 
integrated health care system in the United 
States—were initiated by governmental 
mandates and congressional acts requiring 
VHA to improve specific patient outcomes 
in this population (i.e., the Comprehensive 

Addiction and Recovery Act) (114th 
Congress, 2016b). Such initiatives, 
mandated on a national level, benefit 
immensely because the VHA is a 
nationalized health care service, capable of 
deploying resources in an organized fashion 
and on a large scale. Another pathway by 
which these tools can be introduced into 
clinical settings is through private AI 
developers collaborating with academic 
health centers or other independent health 
systems. These collaborations can result in 
the creation of novel AI-DDS tools or the 
customization of “off-the-shelf” commercial 
tools. A recent example of this type of 
partnership is Anumana, Inc., a newly 
founded health technology initiative 
between Nference (a biomedical start-up 
company) and Mayo Clinic focused on 
leveraging AI for early diagnosis of heart 
conditions based on ECG data (Anumana, 
2022). In this context, the AI-DDS 
development process may be geared 
toward a given health system’s specific 
needs or strategic missions. However, this 
does not necessarily preclude its broader 
utility in other health systems.  

A useful framework for evaluating the 
necessity and utility of AI-DDS tools relates 
to the Quintuple Aim of health care–better 
outcomes, better patient experiences, 
lower costs, better provider experiences, 
and more equitable care (Matheny et al., 
2019). Given the link between patient 
outcomes and provider experience, it is also 
important to establish and validate the 
accuracy of new AI-DDS tools at the start of 
the adoption process and throughout its 
use. However, there are often discrepancies 
between AI-DDS developers’ scope and the 
realities of clinical practice, resulting in 
tools that can be either inefficient or only 
tangentially useful. To reassure providers 
that their tools are optimized for clinical 
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effectiveness, health system leaders must 
be committed to regular evaluations of AI-
DDS models and performance, as well as 
efficient communication with developers 
and companies to update algorithms based 
on changes like diagnosis prevalence and 
risk-factor profiles. As algorithms are 
deployed, and their output is presented to 
providers in EHR systems, special attention 
must be paid to the information design and 
end-user experience to optimize providers’ 
ability to extract key information and act on 
it efficiently (Tadavarthi et al., 2020). 
Another critical step in proving robust 
clinical utility of an AI-DDS tool will be to 
demonstrate low burden of unintended 
harms and consequences with use of a 
given tool (i.e., high sensitivity and high 
specificity) (Unsworth et al., 2022). The 
degree to which provider reasoning impacts 
the AI-DDS will also play a role in this 
regard. Finally, in implementing care plans 
based in part on AI-DDS output, all care 
team members must be coordinated in 
their response and long-term follow-up 
roles (see Domain 2: Means to Use for 
discussion about requisite resources and 
roles to accomplish these tasks). 

Incentives and Reimbursement 

Many health care systems operate on razor-
thin financial margins (Kaufman Hall & 
Associates, 2022). Moving forward, robust 
insurance reimbursement programs for the 
purchase and use of AI-DDS tools will be 
critical to promoting greater adoption by 
providers and health systems (Chen et al., 
2021). However, incentive structures and 
payer reimbursement protocols for AI-DDS 
tools are in their nascent stages. 
Furthermore, insurance dynamics, including 
for AI-DDS systems, are particularly 
complex in the U.S., due in part to the 
heterogeneity of potential payers that 

range from governmental entities to private 
insurers to self-insured employers.  

In the current fee-for-service environment, 
a general trend is for the Centers for 
Medicare and Medicaid Services (CMS), the 
federal agency that is the nation’s largest 
health care payer, to be the first to 
establish payment structures for new 
technologies and for private payers to then 
emulate the standards set by CMS (Clemens 
and Gottlieb, 2017). In determining 
whether to reimburse the use of a novel AI-
DDS tool (and to what extent), a primary 
consideration for payers, regardless of type, 
is to assess whether the technology in 
question pertains to a condition or illness 
that falls under the coverage benefits of the 
organization. For instance, an AI-DDS 
system may be deemed as a 
complementary or alternative health tool, 
which may fall outside the scope of many 
insurance plans and, therefore, be ineligible 
for reimbursement. If the AI-DDS tool is 
indeed related to a covered benefit by an 
insurer [for examples of AI-DDS tools 
currently reimbursed by US Medicare, see 
(Parikh and Helmchen, 2022)], developers 
must provide payers with an adequate 
evidentiary basis for the utility and safety of 
the new tool. For this assessment, payers 
often require data similar to what the FDA 
would require for premarket approval of a 
device–for example, clinical trial data 
showing effectiveness (clinical validity and 
utility) or other solid evidence that clinical 
use of the tool improves health care 
outcomes (Parikh and Helmchen, 2022). 
Developers bringing new DDS systems to 
market through FDA’s other market 
authorization pathways, such as 510(k) 
clearance or de novo classification, may lack 
such data and need to generate additional 
evidence of safety and effectiveness to 
satisfy payers’ data requirements (Deverka 
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and Dreyfus, 2014). Ongoing post-
marketing surveillance to verify the clinical 
safety and effectiveness of new AI-DDS 
tools thus is important not only to support 
the FDA’s continuing safety oversight but 
also as a source of data to support payers’ 
evaluation processes. 

Experts in health care technology 
assessment highlight two components of AI-
DDS evaluation that are of particular 
interest to payers: potential algorithm bias 
and product value. Payers must be 
convinced that a given AI-DDS will perform 
accurately and improve outcomes in the 
specific populations they serve. As 
described later in this paper, algorithm bias 
can arise with the use of non-representative 
clinical data in AI-DDS algorithm 
development and testing and may lead to 
suboptimal performance in disparate 
patient populations based on geographic or 
socioeconomic factors, as well as in 
historically marginalized populations (e.g., 
the elderly and disabled, 
homeless/displaced populations, and 
LGBTQ communities). To avoid such biases, 
monitoring and local validation need to 
incorporated into reimbursement 
frameworks. With regard to product value, 
payers may weigh the potential clinical 
benefits of an AI-DDS tool relative to 
standard diagnostic approaches against the 
logistical and workflow disruptions that 
introducing and integrating a new tool into 
health systems may cause (Tadavarthi et al., 
2020; Parikh and Helmchen, 2022). 
Furthermore, payers can also seek 
assurance of long-term technical support 
from algorithm developers. 

Although there are not direct 
reimbursement channels for many types of 
AI-DDS tools, within the scope of CMS 
payment systems, there are currently two 

primary mechanisms through which AI-DDS 
services can be reimbursed. The first is that 
CMS reimburses physician office payments 
through the Medicare Physician Fee 
Schedule (MPFS). Within MPFS, payment 
details are specified via the Current 
Procedure Terminology (CPT), maintained 
by the American Medical Association 
(AMA). CPT codes denote different 
procedures and services provided in the 
clinic. New AI-CDS/DDS systems that receive 
approval for reimbursement by CMS may 
be assigned a CPT code, as was done in 
2020 for IDx-DR, an autonomous AI tool for 
the diagnosis of diabetic retinopathy 
(Digital Diagnostics, 2022). The second CMS 
mechanism is through the Inpatient 
Prospective Payment System (IPPS) for 
hospital outpatient services. Within IPPS, 
the Diagnosis Related Groups (DRG) coding 
system describes bundles of procedures 
and services provided to clusters of 
medically similar patients. Novel AI-DDS 
tools can be reimbursed in the context of a 
DRG via a mechanism known as the New 
Technology Add-on Payment (NTAP). NTAP, 
created to encourage the adoption of 
promising new health technologies, 
provides supplemental payment to a 
hospital for using a given new technology in 
the context of a broader care plan that may 
be covered in the original DRG (Chen et al., 
2021).  

As AI-DDS systems become more prevalent, 
sophisticated, and integrated into broader 
diagnostic workflows, distinguishing their 
specific role in the diagnostic process and 
ascribing specific reimbursement values to 
an algorithm may become difficult. AI-DDS 
tools may fare better and enjoy greater 
adoption under value-based payment 
frameworks, where efficiency and overall 
quality of care are incentivized rather than 
individual procedures (Chen et al., 2021).    
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Domain 2: Means to Use  

Paramount to establishing the value 
proposition is ensuring that clinical 
environments are properly equipped to 
support and sustain the implementation of 
AI-DDS tools. This consists of two 
interrelated elements: (a) the data and 
computing infrastructure required to collect 
and clean health care data, develop and 
validate an AI algorithm at the point of care, 
and perform routine maintenance and 
troubleshooting of technical problems in a 
high-throughput environment; and (b) the 
human and operational resources needed 
to conduct these technical functions so 
clinicians can seamlessly interface with 
these tools. 

Infrastructure 

Building the necessary infrastructure to 
deploy AI-DDS relies on developing the 
hardware and software capabilities to 
support a range of functions beginning with 
data processing and curation. Concurrent 
with developing and implementing a 
working AI-DDS pipeline, several health IT 
infrastructure and data flow steps are 
required to support the implementation 
and sustainment of an AI-DDS tool. The first 
point of entry into the pipeline is data 
ingestion. This step requires linking a data 
producer, such as an MRI machine, into a 
data collection and processing workflow to 
maintain and represent the data in a way 
that can be leveraged by an AI-DDS 
algorithm. Many AI-DDS systems currently 
in use are “locked,” which means that the 
algorithms are static. However, in the case 
of a continuous learning/adaptive AI 
system, in which the system continuously 
ingests new data to update the algorithm in 
“real-time,” this could be performed on a 
fixed schedule (e.g., every day, month, etc.) 

or a trigger. The next consideration is 
determining where and how the raw data is 
stored (e.g., enterprise data warehouse 
[EDW] versus a data lake). In practice, these 
considerations are constrained by, first, the 
specific clinical problem being addressed 
and, second, the extent to which the 
available resources can accommodate the 
complexity of the pipeline. An EDW, which 
contains structured, filtered data for 
specific uses, may be preferred for 
operational analysis, whereas a data lake 
house, which is a large repository of raw 
data for purposes yet to be specified, may 
be selected by institutions seeking to 
perform deep research analysis. While 
model development is a distinct step in 
building an AI pipeline, it is nonetheless 
interdependent on deployment 
considerations. For example, an institution 
seeking to build analytic tools that are 
robust to future changes in imaging (e.g., 
adding a new MRI machine) may opt for a 
more flexible architecture of a data lake 
house instead of a traditional EDW. This, in 
turn, creates dependency cascades since 
data storage choice changes the order and 
extent to which data cleaning and other 
pre-processing pipelines are implemented. 
Thus, AI-DDS development and 
implementation choices are both business 
operations and data science decisions since 
their steps are codependent. 

Some clinical problems may require more 
frequent data updates or “data meals” to 
ensure that adaptive AI systems can 
appropriately address rapidly evolving 
issues with a nascent foundation of data.  
For instance, a COVID-19 diagnostic model 
at the beginning of the pandemic might 
have been built around admission vital signs 
and complete blood count (CBC) results. 
However, as knowledge about the natural 
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history of the illness progressed, the model 
may have evolved to include additional data 
types such as erythrocyte sedimentation 
rates (ESR), chest X-ray (CXR) images, and 
metabolic panel data. In many hospital 
systems, adding the ESR values is not 
particularly challenging from a data 
ingestion standpoint because this data 
originates from the same system that 
provides the CBC values. However, the 
addition of CXR images is challenging 
because it requires working with another 
department—radiology, in this instance—
and interfacing with another information 
system (picture archiving and 
communication system [PACS]). Finally, 
extending predictions from a single 
outcome at a discrete point in time (i.e., 
cross-sectional analysis) to multiple 
predictions or ones relying on time series 
data can impact upstream choices for data 
ingestion pipelines.  

It is also important to consider that health 
care AI needs to be deployed in clinical 
workflows. In these settings, the demand 
for near real-time data can result in added 
hardware complexity, expense, and risk. 
Notably, for most AI-DDS systems, raw data 
is insufficient; high-quality data that has 
been curated and annotated is required for 
robust algorithm training. At a minimum, 
redundant storage and processing cores 
capable of model training and validation are 
essential. While the granular technical 
requirements are specific to the algorithm 
employed, the amount and type of data 
(e.g., images vs. audio vs. text) institutions 
seek to implement AI-DDS tools may 
necessitate the ability to access storage on 
the terabyte and potentially petabyte scale. 
However, not all data are required to be 

available for real-time access. Furthermore, 
while discussion of data privacy and 
security is beyond the scope of this section, 
there are numerous Health Insurance 
Portability and Accountability Act (HIPAA)-
compliant cloud solutions that could 
address the issues of availability of real-
time data access and storage. These issues 
should be carefully considered in an 
institution’s data plan when seeking to 
develop and deploy AI-DDS tools. 

Another major consideration beyond 
storage is processing power, particularly for 
model development and model updating. 
The types and number of specific chipsets 
that would be most beneficial should be 
determined by expert consultation once 
there is some understanding of the clinical 
use case and the amount and type of 
medical data involved. Due to the 
computational requirements, deep 
learning-based models might require use of 
graphical processing units (GPUs), which, in 
contrast to central processing units (CPUs), 
offer the ability to do parallel processing 
with multiple cores, which is particularly 
useful in deep learning models. While such 
models could be run on conventional CPUs, 
efficiency may be reduced by several orders 
of magnitude depending on model 
complexity, resulting in models that take 
weeks to train rather than hours. 

Finally, with respect to deployment, it is 
essential that there is a local solution 
permitting any mission-critical AI-DDS tools 
to continue to function at times when 
internet connectivity is disrupted. 
Previously, these “downtime” events were 
often limited to a few hours or days. 
However, in the age of hospitals becoming 
an increasing target for ransomware 
attacks, some planning should be made for 
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what to do if a downtime event lasts weeks 
or months.  

With respect to software needs, the ability 
of models to run on mobile devices is 
becoming increasingly important. As such, 
the ability to either securely log on to a 
hospital’s server or perform the 
computations for an AI-DDS on a mobile 
device is becoming the industry standard, 
rather than a bespoke one-off requirement 
for providers enthusiastic about technology. 
The extent to which health systems should 
invest in such technology depends on the 
amount and type of data, the complexity 
and efficiency of AI/ML models, and the 
clinical scenario the AI-DDS is addressing. 
To illustrate, consider an AI-DDS that 
predicts the need for hospital admission 
based on data collected from traveling 
wound care nurse checking capillary blood 
glucose and uploading a picture of a 
patient’s worsening extremity wound. All of 
this can now be done on a mobile device. A 
model could be implemented such that a 
traveling wound care nurse takes a picture 
and runs the model at the point of care 
using an application on a mobile device. 

Another key consideration for deployment 
of AI-DDS tools is system interoperability. 
This issue can be conceptualized from many 
different “pain points”. One occurs at the 
data ingestion stage, as discussed 
previously. This may be due to incompatible 
EHR systems (e.g., the hospital’s inpatient 
system uses Cerner, but the outpatient 
clinics use Epic), which cannot “speak” to 
one another. Alternatively, a health system 
may have hospitals that use the same EHR, 
but the EHRs do not share a common data 
storage repository. Although everyone uses 
the same PACS system, pulling imaging data 
from hospitals A, B, and C requires 

accessing one server, while pulling data 
from hospitals X, Y, and Z across the state 
requires accessing a different server, an 
issue of interoperability related to 
information exchange. A second ingestion 
scenario would require harmonization of 
different sensors into the same repository. 
For example, the hospital may use multiple 
types of point-of-care glucose monitors. 
The workflow workaround is often that the 
bedside technician looks at the monitor 
reading and then types it into the EHR. 
However, if this data needed to be 
transitioned into an automatically collected 
format, there may need to be different 
integrations for each type of glucose 
monitor. A second “pain point” occurs in 
the data cleaning stage, known as the data 
curation stage. Consider the ramifications 
of a hospital changing from reporting 
hemoglobins to hematocrits or traditional 
troponins to high sensitivity troponins. 
While this makes little difference at the 
bedside, it has the potential to significantly 
complicate AI/ML modeling if the change is 
not recognized and a standardized process 
for addressing the inconsistency is not 
developed. Although a hospital’s primary 
focus should be on selecting tools that 
enhance value for patients, some attention 
should be devoted to considering how 
these tools may impact AI-DDS pipelines. As 
the reliance on cyber-physical systems 
grows, health systems should plan to 
mitigate how physical equipment upgrades 
change AI/ML data ingestion and use 
pipelines. Usually, such changes have a 
trivial effect on overall model performance; 
however, they can significantly impact the 
time and effort required to pre-process 
data. The most efficient way would be to 
have members of the AI-DDS team with 
expertise in cyber-physical systems and 
extract, transform, and load (ETL) data 
pipelines. 
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In addition, ensuring providers can readily 
access AI-DDS tools is critical to 
adoption. Successfully deploying an AI-DSS 
tool requires optimizing the multitude of 
human and software factors involved in the 
patient care workflow. However, as a 
preliminary consideration, the essential task 
is building infrastructure that avoids 
clinician devising workarounds. There is 
ample evidence that clinicians will avoid 
using or develop workarounds for poorly 
tailored solution or requirements that are 
perceived as being foisted on them and 
otherwise constitute yet another 
inefficiency in an already inefficient system. 
Regarding software, developers must be 
prepared to ensure that the tool can be 
used and viewed on both desktop and 
mobile devices and potentially by provider-
facing and patient-facing versions of the 
EHR software. Transitioning between these 
various contexts should be seamless and, 
more importantly, provide the same 
information.  

Resources 

Apart from the data and computational 
infrastructure necessary to develop, 
implement, and maintain a health care AI-
DDS solution, there are also significant 
human capital requirements.  Practices and 
health systems often lack the required 
human resources to run a minimum data 
infrastructure that can support AI-powered 
applications. Key requirements include, but 
are not limited to, frontline IT staff, data 
architects, and AI-machine learning 
specialists to understand the context of use 
and tailor the solution to be fit for purpose. 
The infrastructure also requires information 
security and data privacy officers, legal and 
industrial contract officers for business and 
data use agreements, and IT educators to 
train and retrain providers and staff. 

To ensure sustainable and safe integration 
of AI-DDS tools into clinical care, it is crucial 
that the tools meet the clinical needs of the 
institution while also maintaining alignment 
with best practice guidelines, which change 
over time (Sutton et al., 2020). This requires 
a governance process in the health care 
system, with time investments from 
executive leadership and sponsorship as 
well as committee and oversight 
mechanisms to provide regular review 
(Kawamanto et al., 2018). Direct clinical 
champions must also have dedicated time 
to interface between front-line clinicians 
and the leadership, informatics, and data 
science teams. These models and tools 
need to be assessed for accuracy in the 
local environment and modified and 
updated if they do not perform as expected. 
Lastly, they must be surveilled over time 
and checked regularly to ensure 
performance maintenance.  

One of the major challenges in effectively 
deploying AI in health care is managing 
implementation and maintenance costs. 
Nationally, non-profit hospital systems 
report an average profit margin of around 
6.5%. (North Carolina State Health Plan and 
Johns Hopkins Bloomberg School of Public 
Health, 2021). These relatively slim margins 
encourage health care systems to be 
conservative in investing in unproved or 
novel technologies. Robust analysis of cost 
savings and cost estimates in the 
deployment of AI in health care is still 
lagging, with only a small number of articles 
found in recent systematic reviews, most of 
which focus on specific cost elements 
(Wolff et al., 2020). In general, industry 
estimates the overall cost of development 
and implementation of such tools can range 
from $15,000 to $1 million, depending on 
the complexity of the system and 
integration with workflow (Sanyal, 2021). 
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Another challenge is the tension between 
hiring a health care technology firm to 
develop or adapt the algorithms and tools 
into a health care environment versus hiring 
and supporting internal staff, which could 
cost between $600 and $1,550 a day 
(Luzniak, 2021). Even when much of the 
core data science expertise is hired into a 
system, data scientists spend about 45% of 
their time on data cleaning 
(GlobeNewswire, 2020). Because familiarity 
and ongoing business intelligence and 
clinical operations needs require managing 
data, many systems choose to hire 
internally for a portion of their 
infrastructure needs, which require a 
continued injection of capital.  

Domain 3: Method to Use  

Operationalizing and scaling innovations 
within the health care delivery system is 
costly and challenging. This is partly due to 
the heterogeneity of clinical workflows 
across and within organizations, medical 
specialties, patient populations, and 
geographic areas. Thus, AI-DDS tools must 
contend with this heterogeneity by plugging 
into key process steps that are universally 
shared. However, a weakness that limits 
options for reshaping physician workflows is 
the still nascent implementation science for 
deploying interventions that change 
provider behavior as well as the non-
modularity and non-modifiability of extant, 
sometimes antiquated point-of-care 
software, including EHRs (Mandl and 
Kohane, 2012). 

Coupled with workflow challenges is the 
issue of developing and deploying these 
tools in a manner that improves efficiency 
of practice and frees up cognitive and 
emotional space for providers to interact 
with their patients. The risk of unsuccessful 

systems interfering with or detracting from 
the diagnostic process, through user 
interface distractions or data obfuscation, 
exists and must be guarded against. In 
addition, extensive user training, both 
onboarding and ongoing and equally nimble 
educational infrastructure, is necessary to 
ensure technical proficiency.  

Workflow 

AI-DDS tools must be effectively integrated 
into clinical workflows to impact patient 
care. Unfortunately, many integrations of AI 
solutions into clinical care fail to improve 
outcomes because context-specific factors 
limit efficacy when tools are diffused across 
sites. Although numerous details are crucial 
to integrating AI/ML tools into practice, 
three key insights have emerged from 
experiences integrating AI/ML tools into 
practice at various locations and drawn 
from literature reviews of the AI clinical 
care translation process (Kellogg et al., 
2022; Sendak et al., 2020a; Yang et al., 
2020; He et al., 2019; Wiens et al., 2019; 
Kawamoto, 2005). 

First, health systems looking to use AI-DDS 
tools must recognize the factors that shape 
adoption and be willing to restructure roles 
and responsibilities to allow these tools to 
function optimally. The current state of 
health information technology centers 
workflows around the EHR, and AI tools 
often automate tasks that historically 
required manual data entry or review. 
Similarly, AI tools often codify clinical 
expertise and can prompt concern from 
clinicians who value autonomy (Sandhu et 
al., 2020). To navigate these complexities, 
health systems may need to develop new 
workflows that change clinical roles and 
responsibilities, including new ways for 
interdisciplinary teams to respond to AI 
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alerts. For example, an increasing number 
of AI tools require staff in a remote, 
centralized setting to support bedside 
clinical teams (Escobar et al., 2020; Sendak 
et al., 2020b). Many hospitals already 
benefit from more manual remote, 
interdisciplinary support through services 
such as cardiac telemetry, eICU, and 
overnight teleradiology. Similarly, AI can 
decentralize the location of specialized 
services. For example, instead of diabetic 
retinopathy screening requiring a visit to a 
retina specialist, Digital Diagnostics now 
hosts automated AI machines at grocery 
stores (Digital Diagnostics, 2019).  

Second, health systems must closely 
examine the unique impacts of AI 
integration on different stakeholders along 
the care continuum and balance 
stakeholder interests. This is a key facet in 
establishing the value proposition for the 
introduction of a new AI-DDS tool. 
Experience in AI integration reveals that 
“predictive AI tools often deliver the lion’s 
share of benefits to the organization, not to 
the end user” (Kellogg et al., 2022). 
Predictive AI tools often identify events 
before they happen, meaning the optimal 
setting for AI use is upstream of the setting 
typically affected by the event. For 
example, patients with sepsis die in the 
hospital and often in intensive care units, 
but timely intervention to prevent 
complications must occur within the 
emergency department (ED). Similarly, 
patients with end-stage renal disease often 
present to the ED to initiate dialysis, but 
preventive interventions must occur in 
primary care. Project leaders looking to 
integrate AI into workflows must map out 
value streams, and if value is captured by 
downstream stakeholders in a different 
setting, project leaders must identify other 
opportunities to create value for end users. 

One approach is to identify “how a tool can 
help the intended end users fix problems 
they face in their day-to-day work” (Kellogg 
et al., 2022). For example, when a team of 
cardiologists and vascular surgeons aimed 
to reduce unnecessary hospital admissions 
for patients with low-risk pulmonary 
embolisms (PEs), ED clinicians initially 
pushed back. Scheduling outpatient follow-
up for a low-risk PE had historically been 
challenging, so the specialists offered to 
coordinate care for patients identified by 
the AI/ML tool and block off outpatient 
appointments to ensure timely follow-up, 
allowing both the tool and the clinicians to 
operate as efficiently as possible (Vinson et 
al., 2022). 

Third, workflows should be continuously 
monitored and adapted to respond to 
optimize the labor effort required to 
effectively use AI tools. For example, when 
a chronic kidney disease algorithm was 
implemented on a Duke Health Medicare 
population of over 50,000 patients, many 
patients identified by the algorithm as high 
risk for dialysis were already on dialysis or 
seeing a nephrologist outside of Duke 
(Sendak et al., 2017). Early intervention was 
no longer as relevant for these patients, so 
the team agreed to establish a new pre-
rounding process by which a nurse filtered 
out patients already impacted by the 
outcome of interest. However, after months 
of manually reviewing alerts for patients 
identified by an AI tool as high risk of 
inpatient mortality, the lead nurse felt 
confident that the algorithm identified 
appropriate patients (Braier et al., 2020). 
The team agreed to remove the manual 
review step and directly automate emails to 
hospitalist attendings to consider goals of 
care conversations. Lastly, there must also 
be feedback loops with end users to ensure 
that the AI tool continues to be 
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appropriately used. For example, 
hospitalists using the inpatient mortality 
tool inquired about using the tool to triage 
patients to intensive care units. Similarly, 
nurses responding to sepsis alerts began 
asynchronously messaging clinicians in the 
ED through the EHR rather than calling and 
talking directly with provider. These 
changes in communication approach and 
intended use may seem subtle but can 
undermine validity of the tool and 
potentially harm patients. To avoid drift in 
workflow or use of AI tools, project leaders 
should clearly document algorithms and 
regularly train staff on appropriate use 
(Sendak et al., 2020c). 

Efficiency of Practice 

The impact of AI-DDS tools and systems on 
the cognitive and clerical burdens of health 
care providers remains unclear. Successful 
tools would ideally reduce both burdens by 
delivering just-in-time diagnostic assistance 
in the most unobtrusive manner to 
providers while minimizing clerical tasks 
that might be generated by their use (e.g., 
extra clicks, menu navigation, more 
documentation). Experience with 
traditional CDS systems has shown that 
these tools are significantly more likely to 
be used if they are integrated into EHRs 
instead of existing as stand-alone systems. 
However, integration alone is insufficient. 
How that integration is executed—from the 
design of the user interfaces to the way 
alerts and notifications are displayed (e.g., 
triggers, cadence) or handled (e.g., non-
interruptive versus interruptive alert)—is 
critical to practice efficiency and, ultimately, 
provider acceptance and adoption. 

One major impediment is the high degree 
of difficulty integrating new software with 
vendor EHR products. Most integrations are 

“one-offs,” and, therefore, the technology 
fails to diffuse broadly. The 21st Century 
Cures Act (“Cures Act”) specifies a new form 
of health IT interoperability underpinning 
the redesign of provider-facing applications 
as modular components that can be 
launched within the context of the EHR, and 
which may be instrumental in delivering AI 
capabilities to the point of care (114th 
Congress, 2016a). The Cures Act and the 
federal rule that implements 
interoperability provisions require that 
EHRs have an application programming 
interface (API) granting access to patient 
records “with no special effort” (Wu et al., 
2021; HHS, 2020). “APIs are how modern 
computer systems talk to each other in 
standardized, predictable ways. The 
Substitutable Medical Applications, 
Reusable Technologies (SMART) on Fast 
Healthcare Interoperability Resource (FHIR) 
API, required under the rule, enables 
researchers, clinicians, and patients to 
connect applications to the health system 
across EHR platforms” (Wu et al., 
2021). Top EHR vendors have all 
incorporated common API standards 
(“SMART on FHIR”) into their products, 
creating a substantial opportunity for 
innovation in software and data-assisted 
health care delivery. Illustrative of the 
transformative potential of the integration 
of AI-DDS with EHRs is Apple’s decision to 
use the SMART API to connect its Health 
App to EHRs at over 800 health systems, 
giving 200 million Americans the option to 
acquire standardized and computable 
copies of their medical record data on their 
phones. The implementation science 
underpinning translation of machine 
learning to practice is nascent, however. 
Cultivating support for standards is driving 
an emerging ecosystem of substitutable 
apps, which can be added to or deleted 
from EHRs (like apps on a smartphone 
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can). Such apps yield opportunity to deliver 
the output of diagnostic algorithms within 
the provider workflow during an EHR 
session within a patient context (Barket and 
Johnson, 2021; Kensaku et al., 2021; Khalifa 
et al., 2021).  

EHR alert fatigue is a widespread and well-
studied phenomenon among providers that 
has been linked to avoidable medical errors 
and burnout (Ommaya et al., 2018). How 
the introduction of AI-DDS systems into 
next-generation EHRs might affect alert 
fatigue and the provider experience is 
unclear. Successful deployment of these AI-
DDS tools likely requires use of both human 
factors engineering and informatics 
principles, as the problem arises from the 
technology and how busy humans interact 
with it. Diagnostic outputs provided by the 
DDS should be specific, and clinically 
inconsequential information should be 
reduced or eliminated. Outputs should be 
tiered according to severity with any 
alternative diagnoses presented in a way 
that signals providers to clinically important 
data. Alerts must be designed with human 
factors principles in mind (e.g., format, 
content, legibility, placement, colors). Only 
the most important, high-level, or severe 
alerts should be made interruptive.  

While thoughtful human-centered design 
can facilitate adoption to an extent, some 
degree of health care provider training will 
be required to ensure the necessary 
competencies to use AI-based DDS tools. 
The rapid pace of technological change 
requires such educational infrastructure to 
be equally nimble. Training opportunities 
must be integrated across undergraduate 
medical education, graduate medical 
education, and continuing medical 
education. To the extent that some AI-DDS 
tools are designed to support collaborative 

team workflows, interprofessional and 
multidisciplinary training is also necessary. 
While competencies surrounding the use of 
AI-DDS systems are still evolving and yet to 
be established, the authors of this paper 
have identified the following core areas as 
essential: 

1. Foundational knowledge (“What is this 
tool?”);  

2. Critical appraisal (“Should I use this 
tool?”);  

3. Clinical decision making (“When should 
I use this tool?”);  

4. Technical use (“How should I use this 
tool?);  

5. Addressing unintended consequences 
(“What are the side effects of this tool 
and how should I manage them?”) 

For foundational knowledge, health care 
providers need to understand the 
fundamentals of AI, how AI-DDS are created 
and evaluated, their critical regulatory and 
medicolegal issues, and the current and 
emerging roles of AI in health care. For 
critical appraisal, providers need to be able 
to evaluate the evidence behind AI-DDS 
systems and assess their benefits, harms, 
limitations, and appropriate uses via 
validated evaluation frameworks for health 
care AI. For clinical decision making, 
providers need to identify the appropriate 
indications for and incorporate the outputs 
of AI-DDS into decision making such that 
effectiveness, value, and fairness are 
enhanced. For technical use, providers need 
to perform the tasks critical to operating AI-
based DDS in a way that supports efficiency, 
builds mastery, and preserves or augments 
patient-provider relationships. To address 
unintended consequences, providers need 
to anticipate and recognize the potential 
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adverse effects of AI-DDS systems and take 
appropriate actions to mitigate or address 
them. Determining how to integrate this 
education into an already crowded training 
space, whether extra certification or 
credentialing is required for providers to 
use AI- DDS, and how institutions can adapt 
to rapidly changing training needs on the 
frontlines remain open questions. 

Domain 4: Desire to Use  

Ultimately, the success of AI-DDS tools in 
optimizing health system performance is 
dependent on the desire of clinicians to 
incorporate these tools into routine 
practice. Indeed, the factors discussed in 
the previous three core domain sections are 
crucial variables in the “desire to use” 
calculus. Additionally, it is important to 
attend to psychological factors, such as 
addressing how these tools can facilitate 
professional fulfillment among providers, 
including mitigating burnout. The other 
indispensable element within the desire to 
use core domain is trust. Clinicians must be 
able to trust that these tools can deliver 
quality care outcomes for their patients 
without creating harm or error and align 
with both patients’ and clinicians’ ethics 
and values.  

Professional Fulfillment 

Continued alignment of AI technology with 
the element of the Quintuple Aim to 
improve the work-life balance of health 
care professionals remains an indispensable 
aspect of the potential success and 
adoption of AI tools. Health care providers 
report high levels of professional burnout, 
partially attributable to EHRs and related 
technologies (Melnick et al., 2020). 
Generally, for every one hour spent with 
patients, providers spend another two 

hours in front of their computers (Colligan 
et al., 2016). The exponential rise in digital 
work since the COVID-19 pandemic began 
has exacerbated burnout and amplified 
some providers’ deeply rooted reluctance 
to adopt new technologies (Lee et al., 
2022). Successful AI-DDS tools will need to 
overcome this hesitancy and tap into 
positive sources of fulfillment for providers, 
including facilitating professional pride, 
autonomy, and security; reassessing or 
expanding their scope of practice; and 
augmenting their sense of proficiency and 
mastery.  

A major contributing source of professional 
fulfillment is the strength of the patient-
provider relationship. As discussed, AI-DDS 
tools hold the potential to greatly improve 
diagnostic accuracy and reduce medical 
errors. If seamlessly integrated, they could 
also unburden providers of rote tasks, 
enabling them to allocate more attention to 
engaging and establishing meaningful 
bonds with patients. However, by deferring 
certain higher-order data analysis and 
synthesis tasks—functions traditionally 
within the scope of providers—to an AI-
based system, providers may experience a 
sense of detachment from their work. 
There also is concern that AI systems could 
erode the patient-provider relationship if 
patients begin to preferentially value the 
diagnostic recommendation of an AI 
system. While the personal qualities of 
interacting with a human might be 
preferred, some believe that AI’s ability to 
emulate human conversation (via chatbots 
or conversational agents) could eventually 
supplant providers (Goldhahn et al., 2018). 
However, it should be noted that this 
concern only applies to autonomous 
systems, and the assistive systems this 
paper focuses on by definition involve, by 
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definition,  a health care professional in the 
workflow.  

As observed in previous cycles of AI 
diffusion, potential threats to job security 
have negatively impacted provider 
receptivity to AI. Anxiety has been 
particularly acute in certain specialties, such 
as radiology, where in 2016, speculation 
arose that radiologists would be irrelevant 
in five years (Hinton, 2016). However, 
instead of replacing providers, AI in 
radiology has assumed an assistive role, 
supporting providers in the sorting, 
highlighting, and prioritizing key findings 
that might otherwise be missed (Parakh, 
2019). Therefore, to foster the adoption of 
AI-DDS, it is important to uphold the 
paradigm of augmented intelligence—in 
which these tools enhance human 
cognition, and the human is ultimately the 
arbiter of the action recommended. A key 
element of this is to empower providers to 
co-exist in an increasingly digital world 
through skill-building and instilling trust and 
transparency in AI systems. It is also 
important to reconsider expectations about 
provider roles and responsibilities. With the 
potential of increased practice efficiency, 
AI-DDS tools may expand provider 
bandwidth and purview. In this regard, 
providers could see patients in greater 
numbers, through multiple media, and in 
geographically distant areas.  

Despite increasingly sophisticated AI 
algorithms, it is imperative to value the 
human qualities that can correct or 
counteract the shortcomings of AI systems. 
For instance, biased algorithms struggle 
with diagnosing melanoma in darker-
skinned patients (Krueger, 2022). Having a 
provider carefully review and assess results 
produced or interpreted by an AI tool is 
essential to avoiding a missed or erroneous 

diagnosis in this case. Above all, provider 
involvement is critical in shared decision 
making. Even in circumstances when an AI-
DDS tool is highly accurate, providers are 
indispensable in helping patients select the 
right course of treatment based on their 
health goals and preferences.  

Trust 

Trust within human-AI-diagnostic 
partnerships requires a human willingness 
to be vulnerable to an AI system. Trust 
overall is a complex concept and trust in 
technology is equally complex (Lankton et 
al., 2015). A human user may distrust an AI-
DDS tool whose recommendations go 
against their intuitive conclusions, 
especially if that person has professional 
training and significant experience. A user 
may also distrust AI-DDS recommendations 
if the user finds something faulty with the 
development process of the tool, such as 
inadequate testing or a lack of process 
transparency. Another potential 
impediment can include concern that the 
tool’s development and use is motivated by 
profits over people or a lack of professional 
values alignment (Rodin and Madsbierg, 
2021). Clarity in individual clinician and 
health care organizational governance and 
standards setting for various AI tools 
remains unclear, which also may inhibit 
trust. Drivers of trust, on the other hand, 
can include positive past experiences with a 
particular manufacturer or service provider, 
seamless interoperability of a new 
application with an existing suite of tools 
from a familiar and currently trusted 
company or product, or company 
reputation among the professional health 
care community (Adiekum et al., 2018; AI 
HLEG, 2019; Benjamin, 2021). 



 

  National Academy of Medicine GAO-22-104629   55 

In this section of the paper, the authors 
focus on two significant sources of distrust 
with AI-DDS products as especially relevant 
to the adoption of AI-DDS by clinicians:  

1. bias (real or perceived) and  

2. liability. 

Providers may be concerned that AI-DDS 
tools underperform in care for certain 
patients, especially marginalized 
populations, as AI trained on biased data 
can produce algorithms that reproduce 
these biases. However, it is critical to 
recognize that bias has multiple sources. It 
could arise, for example, if the data used to 
train the AI did not adequately represent all 
population subgroups that eventually will 
rely on the AI-DDS tool. It is crucial to 
ensure that training data are as inclusive 
and diverse as the intended patient 
populations, and that deficiencies in the 
training data are frankly disclosed. Using all-
male training data for a tool intended for 
use only in males to detect a male health 
condition would not result in bias, but using 
all-male data would cause bias in tools 
intended for more general use. Other bias 
types could exist, for example, if AI tools are 
trained using real-world data incorporating 
systemic deficiencies in past health care. 
For example, if doctors in the past 
systematically underdiagnosed kidney 
disease in Black patients, the AI can “learn” 
that bias and then underdiagnose kidney 
disease in future Black patients. Thus, it is 
crucial to design and monitor AI tools with a 
lens toward preventing, detecting, and 
correcting bias and disclosing limitations of 
the resulting AI-DDS tools.  

Complicating this issue is the fact that it can 
be very difficult to understand the inner 
workings of many AI-DDS algorithms. The 

terms “transparency” and “explainability” 
can have various technical meanings in 
different contexts, but this paper conceives 
them broadly to denote that the user of an 
AI tool, such as a health care professional, 
would be able to understand the underlying 
basis for its recommendations and how it 
arrived at them. It can be challenging, and 
at times impossible, to understand how an 
AI arrives at its output and to determine 
whether the tool in question 
problematically replicates social biases in its 
predictions. Furthermore, developers rarely 
reveal the underlying data sets used to train 
AI-DDS algorithms, making it difficult for 
providers to ascertain if a particular product 
is trained to reflect their patient 
populations. There may also be tension 
between the AI-DDS purchasing decisions 
made by hospital leadership and the 
providers affiliated with the institutions, 
with the perception that hospital leadership 
is “imposing” use of specific AI-DDS 
algorithms on the providers.  

To foster trust among clinician users, a 
regulatory framework that prospectively 
aims to prevent injuries (see discussion in 
Tools to Promote Trust), coupled with 
mechanisms to assign accountability and 
compensate patients if problematic 
outcomes occur, must exist. Because AI-
DDS tools sit at the intersection of 
technology and clinical practice, there are 
two potential avenues for compensating 
patient injuries through the American tort 
system. The first is medical malpractice, 
which implies that the ultimate 
responsibility for problematic clinical 
decisions rests with the provider. The 
second is product liability, which implies 
that the responsibility for problematic 
clinical decisions rests instead with the 
developer and manufacturer of the AI-DDS 
tool.  
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Currently, the dividing line appears to be 
whether an independent professional, such 
as an end-user provider, could review the 
recommendations from an AI tool and 
understand how it arrived at them. As 
commentators note: 

The Cures Act parses the 
product/practice regulatory distinction 
as follows: Congress sees it as a medical 
practice issue (instead of a product 
regulatory issue) to make sure health 
care professionals safely apply CDS 
[clinical decision support] software 
recommendations that are amenable to 
independent professional review. In 
that situation, safe and effective use of 
CDS software is best left to clinicians 
and to their state practice regulators, 
institutional policies, and the medical 
profession. When CDS software is not 
intended to be independently 
reviewable by the health care provider 
at the point of care, there is no way for 
these bodies to police appropriate 
clinical use of the software. In that 
situation, the Cures Act tasks the FDA 
with overseeing its safety and 
effectiveness. Doing so has the side 
effect of exposing CDS software 
developers to a risk of product liability 
suits (Evans and Pasquale, 2022). 

This distinction is a workable and sensible 
one, reflecting the limitations of the 
average provider’s abilities to evaluate new 
AI-DDS tools. It would be helpful to educate 
providers and hospital administrators on 
the dividing line between explainable CDS 
tools, which allow health care providers to 
understand and challenge the basis for 
algorithmic decision making and “black box” 
algorithms, for which the basis of 
algorithmic decisions making is obscure, on 
the other hand. This distinction carries 

implications for liability insofar as courts 
may hesitate to hold providers accountable 
for “black box” tools that precluded the 
possibility of provider control. Providers 
who hesitate to adopt AI-DDS out of fear of 
medical malpractice liability may find that 
distinction comforting and trust-building. 
For patient injuries arising when AI-DDS 
systems are in use, policymakers and courts 
may wish to consider shifting the balance of 
liability from the current norm (which 
focuses almost entirely on medical 
malpractice) to one that also includes 
product liability in situations where the AI 
tool, rather than the provider, appears 
primarily at fault. This shift could further 
encourage trust and desire to use these 
tools among providers and would 
incentivize developers to design algorithms 
and select training data with a view to 
minimizing poor outcomes. 

Product liability generally arises when a 
product inflicts “injuries that result from 
poor design, failure to warn about risks, or 
manufacturing defects” (Maliha et al., 
2021). Product liability, to date, has only 
been applied in limited and inconsistent 
fashion to software in general and to health 
care software in particular (Brown and 
Miller, 2014). For example, in Singh v. 
Edwards Lifesciences Corp, the court 
permitted a jury to award damages against 
a developer because its software resulted in 
a catheter malfunctioning (CaseText, 
2009b). On the other hand, in Mracek v. 
Bryn Mawr Hospital, a court rejected via 
summary judgment the plaintiff’s argument 
that product liability should be imposed 
when the da Vinci surgical robot 
malfunctioned in the course of a radical 
prostatectomy (CaseText, 2009a). Further 
complicating the product liability landscape, 
the Supreme Court concluded in Riegel v. 
Medtronic that devices going through the 
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FDA premarket approval process, as 
opposed to other market authorization 
pathways such as 510(k) clearance, can 
enjoy certain protection against state 
product liability cases (CaseText, 2008). 
Thus, available redress for patients can vary 
depending on the market authorization 
pathway for the specific AI tool. The 
conflicting and limited case law in this area 
suggests that there is room to explore an 
expanded product liability landscape for AI-
DDS software. One clear point from prior 
case law is that clinicians will bear the brunt 
of liability for injuries that occur when using 
AI-DDS tools “off-label” (e.g., using a tool 
that warns it is only intended for use on one 
patient population on a different 
population). This fact may help incentivize 
AI tool developers to disclose limitations of 
their training data since doing so can shift 
liability to providers who venture beyond 
the tool’s intended use. 

It is also important to note that opening the 
door to product liability suits does not 
foreclose the potential for medical 
malpractice suits against providers who use 
AI-DDS tools. A provider who relies on AI-
DDS tools in good faith could still face 
medical malpractice liability if their actions 
fall below the generally accepted standard 
of care for use of such tools or if the AI-DDS 
tool is used “off label”, i.e. using an AI-DDS 
tool developed for one type of MRI 
interpretation on another type of MRI 
image (Prince et al., 2019). Overall, courts 
are reluctant to excuse physician liability, 
allowing malpractice claims to proceed 
against physicians even in cases where: 

1. there was a mistake in the medical 
literature or an intake form;  

2. a pharmaceutical company failed to 
warn of a therapy’s adverse effect; or  

3. there were errors by system technicians 
or manufacturers (Maliha et al., 2021).  

These cases, taken together, suggest that 
providers cannot simply point to an AI-DDS 
error as a shield from medical malpractice 
liability. 

Eventually, widespread adoption of AI-DDS 
could open the door for medical 
malpractice liability for providers who do 
not incorporate these tools into their 
practice, i.e., “failure to use”. Physicians, 
specifically, open themselves to medical 
malpractice liability when they fail to 
deliver care at the level of a competent 
physician of their specialty (Price et al., 
2019). Currently, the standard of care does 
not include relying on AI-DDS tools. But as 
more and more providers incorporate AI-
DDS tools into their practice, that standard 
may shift. Once the use of AI-DDS is 
considered part of the standard of care, 
medical malpractice liability will create a 
strong incentive for all providers to rely on 
these tools, regardless of their personal 
views on appropriateness. 

Tools to Promote Trust 

Two of the most impactful mechanisms to 
promote trust in AI-DDS among clinicians 
(and, thus, improving desire to use) would 
be to further refine the existing regulatory 
landscape for AI-DDS tools and to promote 
collaborations between stakeholders. This 
section of the paper explores avenues to 
promote trust. 

To minimize concerns about liability, 
nuanced, thoughtful regulation and 
governance from all levels of the U.S. 
government—federal, state, and local—can 
reassure providers that they can trust 
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available AI-DDS tools and move forward 
with implementation. A key factor affecting 
clinicians’ willingness to adopt AI-DDS tools 
is likely whether the tools will receive a 
rigorous, data-driven review of safety and 
effectiveness by the FDA before moving 
into clinical use. A potential concern is that 
some, but not necessarily all, AI-DDS 
software is subject to FDA medical device 
regulation under the Cures Act. It remains 
difficult for providers to intuit whether a 
given type of AI-DDS tool is or is not likely to 
have received oversight under FDA’s 
medical device regulations. Uncertainty 
about which tools will receive FDA 
oversight–and which marketing 
authorization process the FDA may require 
(e.g., premarket approval, 510(k), or de 
novo classification)–likely fuels provider 
discomfort with using AI-DDS tools. 

A key source of this uncertainty, at present, 
is that the Cures Act addresses the scope of 
the FDA’s power to regulate various types 
of medical software but does not itself 
define or use the terms DDS or CDS 
software (114th Congress, 2016a; 21 U.S. 
Code § 360j, 2017).  As used in this paper, 
AI-DDS tools broadly refer to computer-
based tools, driven by AI algorithms, that 
use clinical knowledge and patient-specific 
health information to inform health care 
providers’ diagnostic decision-making 
processes (see Table 1), with DDS tools 
being a subset of CDS tools more generally. 
This paper thus follows the definition 

provided by the Office of the National 
Coordinator for Health Information 
Technology (ONC), which stresses that CDS 
tools “provide … knowledge and person-
specific information, intelligently filtered or 
presented at appropriate times, to enhance 
health and health care” (ONC, 2018). The 
FDA has used this ONC definition when 
discussing how CDS software is broadly 
understood (FDA, 2019b). Central to the 
ONC definition, and this paper, is the notion 
that DDS and CDS tools combine general 
medical “knowledge” with patient-specific 
information to produce recommended 
diagnoses. With AI-DDS systems, that 
knowledge can include inferences 
generated internally by an AI/ML algorithm. 

The Cures Act authorizes the FDA to 
regulate only some of the software that 
might fit into the broader, more common 
conception of AI-DDS systems just 
described. Thus, FDA lacks authority to 
regulate all of the tools that clinicians might 
think of as being DDS/CDS tools. The Cures 
Act expressly excludes five categories of 
medical software from the definition of a 
“device” that FDA can regulate (114th 
Congress, 2016a [21 U.S.C. § 360j(o)(1), 
2017]). One of these exclusions places 
restrictions on FDA’s power to regulate CDS 
and DDS software (114th Congress, 2016a 
[21 U.S.C. § 360j(o)(1)(E)]). Box 1 below 
shows the specific wording of the relevant 
Cures Act exclusion. 
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Box 1 | Provisions of the Cures Act that Exclude Some AI-DDS Tools from FDA Oversight 

Section 3060 of the Cures Act, codified at Title 21 of the U.S. Code, Section 360j(o)(1)(E), excludes certain medical software from 
being treated as a “device” that the FDA can regulate. 

Basic exclusion from the medical device definition. Subject to the two specific exceptions noted below, software is not an FDA-
regulable medical device if it is intended: 
 
“for the purpose of – 
(i) displaying, analyzing, or printing medical information about a patient or other medical information (such as peer-reviewed 

clinical studies and clinical practice guidelines); 
(ii) supporting or providing recommendations to a health care professional about prevention, diagnosis, or treatment of a 

disease or condition; and 
(iii) enabling such health care professional to independently review the basis for such recommendations that such software 

presents so that it is not the intent that such health care professional rely primarily on any of such recommendations to 
make a clinical diagnosis or treatment decision regarding an individual patient.” (21 U.S.C. § 360j(0)(1)(E)(i)-(iii)). 

 
Exceptions. Two exceptions allow software that meets the above description to nevertheless be regulated by the FDA as a medical 
device. These exceptions are: 

1. Jurisdictional saving clause. The opening passage of Section 360j(o)(1)(E) contains a “saving” clause preserving the FDA’s 
authority to regulate certain software that meets the above three conditions. This clause states that the basic exclusion just 
quoted applies to a software tool “unless the function is intended to acquire, process, or analyze a medical image or a signal 
from an in vitro diagnostic device or a pattern or signal from a signal acquisition system” [emphasis added]. Put more simply, 
a tool is not excluded from being an FDA-regulable device, if its function is to acquire, process, or analyze images or signals of 
such types.   

2. 2. Procedure for overriding the basic exclusion. The Secretary of HHS can restore the FDA’s power to regulate a CDS or 
DDS tool that otherwise would fit into the basic exclusion, by making a finding that use of the tool “would be reasonably 
likely to have serious adverse health consequences” and issuing a final order after notice and public comment (21 U.S.C. § 
360j(o)(3)). Through this procedure, the Secretary has the power to determine that the tool is a medical device and 
therefore subject to FDA oversight. 

Source: 114th Congress, 2016a. 

Looking at the basic exclusion in Box 1, the 
first two conditions, (i) and (ii), describe CDS 
and DDS software without using those 
names. The third condition, shown at (iii), 
bears on the concept this paper refers to as 
explainability, again without using that 
term. When all three conditions are met, 
this passage of the Cures Act creates a 
potential exclusion from FDA regulation for 
CDS/DDS software that meets the criterion 
for explainability set out in condition (iii) of 
Box 1. This exclusion, however, is subject to 
the two exceptions shown at the bottom of 
Box 1. 

The first exception–the saving clause–
confirms the FDA’s power to regulate many 

types of software whose function supports 
diagnostic testing, such as software used in 
the bioinformatics pipeline for genomic 
testing. Before the Cures Act, FDA’s medical 
device authority included oversight 
covering both in vitro diagnostic devices 
(which support clinical laboratory testing of 
biospecimens) and in vivo devices (such as 
X-rays and MRI machines that produce 
images of tissues within a patient’s body). 
FDA has long regulated software embedded 
in diagnostic hardware devices, for 
example, software internal to sequencing 
analyzers and MRI machines. The saving 
clause confirms FDA’s power to regulate 
“stand-alone” diagnostic software that is 
not necessarily part of a hardware device 
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but processes signals from in vitro and in 
vivo testing devices. 

This power is crucial in light of the modern 
trend for many clinical laboratories to use 
third-party software service providers and 
vendors for data analysis supporting 
complex diagnostic tests, such as genomic 
tests (Curnutte et al., 2014). In vitro 
diagnostic testing by clinical laboratories is 
subject to the Clinical Laboratory 
Improvement Amendments of 1988 (CLIA) 
regulations (100th Congress, 1988). The 
CLIA framework focuses on the quality of 
clinical laboratory services but does not 
provide an external, data-driven regulatory 
review of the safety and effectiveness of 
tests used in providing those services, nor 
does it evaluate the software laboratories 
use when analyzing and interpreting test 
results. FDA’s authority to regulate stand-
alone diagnostic software positions FDA to 
oversee clinical laboratory software, even in 
situations where FDA exercises discretion 
and declines to regulate an underlying 
laboratory-developed test (Evans et al., 
2020). In a 2019 draft guidance document, 
circulated for comment purposes only, the 
FDA noted that “bioinformatics products 
used to process high volume ‘omics’ data 
(e.g., genomics, proteomics, metabolomics) 
process a signal from an in vitro diagnostic 
(IVD) and are generally not considered to be 
CDS” tools (FDA, 2019b). The saving clause 
clarifies that FDA can regulate such 
software, even in situations where it might 
technically be considered CDS software 
falling within the basic exclusion in Box 1 
(114th Congress, 2016a [21 U.S.C. § 
360j(o)(1)(E)]).   

Much of the AI-DDS software providers use 
in clinical health care settings would not fall 
under the saving clause (see Box 1), which 
seems directed at software processing 

signals from diagnostic devices as part of 
the workflow for producing finished 
diagnostic test reports and medical images. 
However, there is some ambiguity. An 
example would be an AI-DDS tool that 
analyzes several of a patient’s gene variants 
along with the patient’s reported 
symptoms, clinical observations, treatment 
history, and environmental exposures to 
recommend a diagnosis to a clinician. It is 
unclear if the fact that the tool processes 
gene variant data means that it is 
“processing a signal from an IVD device” 
and thus FDA-regulated, or if the saving 
clause only applies when the signal is 
directly fed to the software as part of the 
clinical laboratory workflow. Without 
knowing how the FDA interprets the 
breadth of the saving clause, it is hard for 
clinicians to understand what is and is not 
regulated.   

Assuming the saving clause does not apply, 
AI/DDS tools are generally excluded from 
FDA regulation if they meet all three of the 
conditions listed at (i)-(iii) in Box 1. The first 
two conditions are fairly straightforward, 
but it is still not clear how the FDA plans to 
assess whether the third condition, bearing 
on the concept of explainability, has been 
met. How, precisely, the FDA will decide 
whether an AI/DDS tool is “intended” to be 
“for the purpose of” “enabling [a] health 
care professional to independently review 
the basis for [its] recommendations” (see 
Box 1) is unknown. The FDA’s  regulation on 
the “Meaning of intended uses” offers 
insight into the range of direct and 
circumstantial evidence the agency can 
consider when assessing objective intent 
(FDA, 2017b [21 C.F.R. § 801.4]). Yet how 
the agency will apply those principles in the 
specific context of AI/ML software tools is 
not clear. 
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Without greater clarity on these matters, 
clinicians lack a sense of whether a given 
type of AI-DDS tool usually is, or usually is 
not, subject to FDA oversight or what FDA’s 
oversight process entails. Almost six years 
after the Cures Act, FDA’s approach for 
regulating AI/ML CDS/DDS software 
remains a work in progress, leaving 
uncertainties that can erode clinicians’ 
confidence when using these tools. Through 
two rounds of draft guidance (in 2017 and 
2019), the FDA solicited public comments to 
clarify its approach to regulating CDS/DDS 
tools. A final guidance on Clinical Decision 
Support Software appears on the list of 
“prioritized device guidance documents the 
FDA intends to publish during FY2022” 
(October 1, 2021 – September 30, 2022) 
(FDA, 2021c). As this paper went to press in 
mid-September 2022, the final guidance 
was not yet available, but the authors hope 
it may clarify these and other unresolved 
questions around the regulation of 
CDS/DDS tools. 

Unfortunately, guidance documents–
whether draft or final–have no binding legal 
effect and do not establish clear, 
enforceable legal rights and duties on which 
software developers, clinicians, state 
regulators, and members of the public can 
rely. There is fairly wide scholarly 
agreement that the use of guidance as a 
regulatory tool can be appropriate for 
emerging technologies where knowledge is 
rapidly evolving and flexibility is warranted, 
but there can be long-term costs when 
agencies choose to rely on guidance and 
voluntary compliance instead of 
promulgating enforceable regulations (Wu, 
2011; Cortez, 2014). FDA’s Digital 
Innovation Action Plan (FDA, 2017a; 
Gottlieb, 2017) and its Digital Health 
Software Precertification (Pre-Cert) 
Program (FDA, 2021b) both acknowledge 

that its traditional premarket review 
process for moderate and higher-risk 
devices is not well suited for “the faster 
iterative design, development, and type of 
validation used for software-based medical 
technologies” (FDA, 2017a). The FDA’s 2021 
AI/ML Action Plan envisions incorporating 
ongoing post-marketing monitoring and 
updating of software tools after they enter 
clinical use (FDA, 2021a). This may leave 
health care providers in the uncomfortable 
position of using tools that may be modified 
even after the FDA clears them for clinical 
use and potentially facing liability if patient 
injuries occur. Also, it implies that vendors 
and developers of AI/ML tools will need 
access to real-world clinical health care data 
to support ongoing monitoring of how the 
tools perform in actual clinical use. 

Future reliance on post-marketing 
monitoring offers an example of why 
regulating via non-binding guidance 
documents can create long-term problems. 
The HIPAA Privacy Rule contains an 
exception that lets HIPAA-covered health 
care providers, such as hospitals, share data 
with device manufacturers to help them 
meet their FDA regulatory compliance 
obligations (for example, to help 
manufacturers comply with the FDA’s 
adverse-event reporting requirements) 
(HHS, 2003). Unfortunately, when FDA 
regulates manufacturers by means of 
guidance documents and other non-
mandatory programs, this important HIPAA 
pathway for accessing data may be 
unavailable, because guidance documents 
create no enforceable legal obligations. To 
maximize software developers’ access to 
real-world evidence for post-marketing 
monitoring and updating of AI/DDS tools, 
the FDA will ultimately need to set binding 
regulatory requirements (for example, for 
developers to monitor for racial, gender, or 
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other biases in the post market period). 
Related concerns surround the future 
development of state law, including both 
state regulations and tort law. Safe clinical 
use of AI/DDS tools will ultimately require 
state-level medical practice regulations and 
common law addressing issues such as 
appropriate staffing for, and use of, AI/DDS 
tools in clinical settings. To foster optimal 
development of state law, it is helpful to 
have federal regulations providing a stable 
demarcation between the FDA’s role versus 
that of the states. Federal guidance 
documents, due to their non-binding nature 
and ease of revision, may not meet this 
need. The FDA’s current heavy reliance on 
guidance documents and voluntary 
measures may be appropriate in the early 
years as AI/DDS tools emerge as a new 
technology, but the agency should stay 
mindful of the need to promulgate 
regulations whenever appropriate and 
feasible.     

Apart from the regulatory framework, 
another mechanism to instill trust is 
through increased and consistent 
collaboration among developers, ethicists, 
and clinical diagnosticians during various 
phases of the AI lifecycle. Early innovation 
in the process of AI pre-market design, 
testing, clinical application, and post-market 
oversight resulted in fragmented and siloed 
professional stakeholder groups with 
different goals, expertise, ethical 
frameworks, and paradigms of 
professionalism and professional 
accountability. While a great deal of health 
care professional ethical attention, input, 
and engagement has been integrated into 
AI use and application in the post market 
phase, there has been an important gap in 
full integration of professional end-user 
partnership within the AI tool development 

process needed to build trustworthy AI 
tools. 

Numerous AI and digital health ethical 
frameworks have been published as part of 
the concerted effort to build trustworthy 
human-AI partnerships. For example, the 
European Commission’s Ethics Guidelines 
for Trustworthy AI is a foundational work on 
the topic, with seven key requirements:  

1. Human agency and oversight,  

2. Technical robustness and safety, 

3. Privacy and data governance,  

4. Transparency,  

5. Diversity, non-discrimination and 
fairness,  

6. Environmental and societal well-being, 
and  

7. Accountability (European Commission, 
2019). 

Additionally, over 40 different U.S. 
technology companies and venture capital 
firms have signed on to a Responsible 
Innovations Charter, with similar key 
principles:  

1. Innovating intentionally,  

2. Operating with accountability and 
transparency,  

3. Advancing inclusive prosperity,  

4. Building sustainably,  

5. Respecting people,  

6. Championing diversity, and  

7. Promoting healthy societies 
(Responsible Innovation Labs, 2022). 
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The American Medical Association has 
developed policies and frameworks for 
practicing diagnosticians to govern and 
assess AI integration into clinical practice 
(Crigger et al., 2022). Essentially, the 
structured assessment aids the clinician in 
ascertaining: whether a tool is beneficial to 
patient outcomes; whether a tool appears 

to work; and whether a tool appears to 
work for their patients. These guidelines, 
along with several global government-
produced assessments for organizational 
leaders, provide a systematic and 
structured assessment for providers to 
select and utilize trustworthy and beneficial 
AI for their practice. 
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3 Ensuring and Promoting Health Equity in the Deployment of AI-
Assisted Diagnostic Tools

In addition to facilitating uptake and 
overcoming barriers to the adoption of AI-
DDS tools elucidated in this review, being 
cognizant of the implications for equity 
throughout the life cycle of these tools and 
making a consistent effort to address past, 
current, and potential equity issues are 
critical to preventing widening disparities in 
health care delivery. While there is 
excitement and demonstrated benefits to 
bringing AI-DDS tools into clinical practice, 
poor data quality, prevalent biases in health 
care, and a lack of structural supports 
available to end users jeopardize progress 
toward achieving health equity and fuel 
ongoing uncertainties and hesitancies about 
adopting these tools. 

AI/ML algorithms are often developed using 
limited data samples that may not 
represent the people they are meant to 
impact (Zou and Schiebiner, 2021). 
Furthermore, social determinants of health 
data are generally not well captured in data 
sets used to train these algorithms. Data 
elements derived from diverse sources that 
could help provide a more holistic view of 
the patient may not be available to certain 
care settings due to the limitations of EHR 
systems, data privacy concerns, a lack of 
data standardization, and financial 
constraints on the part of health systems to 
obtain large data sets (Zusterzeel et al., 
2022; Alami et al., 2020). Inaccurate 
representation in training, testing, and 
validation data sets also results in the 
development of flawed models. Models not 
accurately trained in the context that they 
are intended for may also have difficulty 
performing when there is a shift in 

population demographics (Singh et al., 
2020).  

AI tools rely on human interaction from 
their inception to deployment, and AI 
algorithms can replicate explicit and implicit 
biases in human decision making in health 
care settings (Char et al., 2018). Inherent 
discrimination occurring within care 
delivery can be challenging to predict and 
uncover, and biases could easily transfer 
over into the design and use of AI 
algorithms (Leslie et al., 2021; Char et al., 
2018). For example, the biases of 
developers, researchers, and designers can 
manifest early in the development phase if 
they choose target variables and proxies for 
those variables without considering 
upstream social determinants of health and 
related confounders (Leslie et al., 2021). 
Along with the data collection issues 
summarized above, other data extraction 
and measurement errors due to biases built 
into physical devices can negatively 
influence care decisions and perpetuate 
inequities (Leslie et al., 2021; Zou and 
Schiebiner, 2021). In the case of the pulse 
oximeter, this medical device uses infrared 
and red light signaling that interacts with 
skin pigmentation to read the oxygen 
saturation in the patient’s blood and shows 
varying results based on skin color (Zou and 
Schiebiner, 2021). Previous studies have 
shown how patients with darker skin 
received inaccurate oxygen readings 
compared to White patients (Leslie et al., 
2021; Zou and Schiebiner, 2021). This data 
is fed into algorithms to assist with decision 
making, and clinicians may unintentionally 
accept results and act on flawed 
recommendations, affecting the ability of 
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patients to acquire needed care, such as 
supplementary oxygen (Zou and Schiebiner, 
2021; Rajkomar et al., 2018).  

In addition to the adverse effects of 
incorrect data usage and biases, the 
absence of infrastructure to support 
equitable AI in developing and deploying AI-
DDS tools will ultimately widen disparities. 
The digital gap perpetuates inequities 
through many social factors that may 
intertwine, including a lack of broadband 
internet access across regions and an 
inability to purchase up-to-date and well-
equipped devices (Ramsetty and Adams, 
2020). For example, AI tools extracting data 
from EHR systems may be more prevalent 
in larger health care organizations in well-
resourced cities than small rural hospitals or 
physician practices, which have fewer 
resources and expertise readily available 
(Goldfarb and Teodoridis, 2022; Reisman, 

2017). The associated financial costs for 
EHR implementation continue to be a 
primary barrier to the adoption of AI-DDS 
tools (Goldfarb and Teodoridis, 2022). AI 
algorithms applied to clinical settings that 
disproportionately serve populations that 
experience a form of privilege (i.e., wealthy 
populations) marginalize groups that do not 
actively seek care in the same settings 
(DeCamp and Lindvall, 2020; Rajkomar et 
al., 2018). Nevertheless, data collection 
issues persist in settings with EHR systems 
due to the lack of compatibility between 
these systems and certain providers serving 
different hospitals and health care facilities, 
further contributing to data silos and 
insufficiently informed AI tools (Goldfarb 
and Teodoridis, 2022). 
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4 Path Forward – Policy Implications and Action Priorities 

Fostering provider adoption of novel AI-DDS 
systems will require broad infrastructural 
support, beginning with robust tool 
evaluations by health systems and payers, 
clear commitments from health systems 
and developers to regular monitoring and 
updating of algorithms, and training care 
teams to effectively interpret and 
implement changes based on AI-DDS 
outputs. Developers, payers, health 
systems, and providers are becoming 
increasingly aware of potential biases in AI 
algorithms and their deployment. Data 
representativeness and robust model 
training must be a top priority in algorithm 
development to increase trust and adoption 
among all relevant stakeholders. Data 
integrity and reliability are at the very core 
of sound algorithm development, yielding 
better prospects for provider adoption of 
those algorithms. Therefore, collaborative 
efforts aimed at curating rich and 
multimodal patient data—including crucial 
social determinants information—will be 
paramount. Such efforts need to be coupled 
with robust and consistent standards for 
data access, sharing, harmonization, and 
interoperability, while simultaneously 
prioritizing data privacy and security to 
ultimately drive excellent model 
development. In a similar vein, boosting 
provider comfort and adoption may also 
depend on model transparency. Providing 
health care teams with key parameters 
driving an AI-DDS output that can serve as 
modifiable targets for patient outcome 
improvement may facilitate greater 
adoption. To conclude, this paper presents 
key action priorities in each of the four 
domains related to provider adoption of AI-
DDS tools outlined in this paper:  

Domain 1: Reason to Use  

• Establishing clear impetus to 
incorporate novel AI-DDS tools into 
health systems is contingent on a given 
tool’s clinical efficacy, specifically as it 
relates to a health system’s target 
population, and affordability, both to 
the health system and patient. 
Developers, payers, health systems, and 
providers are becoming increasingly 
aware of potential biases in AI 
algorithms and their deployment. Data 
representativeness and robust model 
training and testing must be the top 
priority in algorithm development in 
efforts to increase trust and adoption 
among all relevant stakeholders. 

• Collaborative efforts among multiple 
health care systems aimed at curating 
rich and multimodal patient data—
including essential social determinants 
information—will be paramount. Such 
efforts need to be coupled with robust 
and consistent standards for data 
access, sharing, and interoperability, 
while simultaneously prioritizing data 
privacy and security, to ultimately drive 
excellent model development. 

• In addition to ensuring robust clinical 
utility, algorithm developers must 
design AI-DDS tools to integrate 
seamlessly into existing care team 
infrastructures, ensuring that their 
product value is not diminished by 
logistical inefficiency and cognitive 
burden. 
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Domain 2: Means to Use  

• Policy makers and payers should 
consider promoting sustainability 
through reimbursement to create a 
sustainable environment for the 
adoption and continual use of AI-DDS 
tools and to further promote capital 
infrastructure investments by health 
systems to facilitate this goal. 

• If consensus-based standards do not 
emerge, ensuring interoperability could 
require a “top-down” regulatory 
approach. For instance, the United 
States Office of the National 
Coordinator for Health Information 
Technology (ONC) could develop health 
IT certification criteria that assess the 
ability of EHR systems to support data 
lifecycles. However, given the nascent 
understanding of ideal workflows and 
life cycles, standardization at this time 
is likely premature.  

• Policy makers and payers should 
consider using incentives to encourage 
the use of evidence-based AI-DDS in 
clinical practice. As per prior payment 
models, if adoption is sufficient and the 
evidence of improved processes and 
outcomes becomes established, AI-DDS 
tools may become the standard of care 
in specific clinical scenarios. 

Domain 3: Method to Use 

• Public and private research funders 
should increase focus and funding 
opportunities to advance the still 
nascent implementation science of AI-
DDS, for example, through RFPs that 
focus on integrating AI-DDS into clinical 
workflows and health IT systems and its 

impact on the behaviors of clinical 
teams. 

• Institutions of medical education and 
accreditation organizations should 
review emerging competencies for the 
use of AI-DDS and consider how to 
integrate these into the current training 
and certification ecosystem to adapt to 
the rapidly changing needs of the 
clinical front line. 

• Professional societies, trade 
associations, and health care quality 
organizations should identify diagnostic 
centers of excellence that specialize in 
AI-DDS to facilitate the surfacing and 
effective diffusion of best practices 
through interdisciplinary learning 
networks and capacity-building 
programs. 

• Software and algorithm designers of 
point-of-care AI-DDS for providers and 
patients at home should leverage the 
public SMART on FHIR and SMART/HL7 
Bulk FHIR APIs regulated under the ONC 
21st Century Cures Act Rule, so that 
algorithms can be widely and uniformly 
integrated into care across EHR vendor 
products and other IT tools. 

• Regulators should monitor, for example 
through the 21st Century Cures Act EHR 
Reporting Program, EHR vendor 
implementation of public FHIR APIs to 
ensure their turnkey use by apps made 
accessible at the point of care. 

Domain 4: Desire to Use 

• Professional societies, trade 
associations, and health care quality 
organizations should center AI-related 
efforts to promote clinician well-being 
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through human-centered design in AI 
technology, aligned with the work-life 
balance of health care professionals 
outlined in the Quintuple Aim. The FDA 
should offer guidance and/or other 
communications, specifically tailored to 
health care providers tasked with using 
AI/DDS tools, to aid their understanding 
of the types of software are – and are 
not – likely to receive FDA oversight 
under 21 U.S.C. § 360j(o)(1)(E). 
Specifically, it will be imperative to 
clarify how broadly the agency 
construes the saving clause for 
“software that processes signals…”, and 
the agency’s approach for assessing 
whether software is “intended … for the 
purpose … of enabling” a health care 
professional to independently review 
the basis of its recommendations. 
Encouraging clinicians to trust these 
tools may require helping them develop 
an intuitive grasp of the FDA’s role and 
its jurisdictional limits. 

• The FDA should continue to explore the 
special considerations affecting  design, 
validation review, market authorization, 
and post marketing oversight for AI-DDS 
tools, offering timely guidance while 
recognizing that, over the long term, 
notice-and-comment rulemaking may 
offer advantages over the continued 
use of guidance documents – for 
example – to enhance developers’ 
access to HIPAA-protected real-world 
data for use in regulatory compliance 
activities, and to provide needed clarity 
and stability to foster development of 
state regulations and common law 
addressing clinical use of AI-DDS 
systems. 

• Professional medical, nursing, and other 
health care societies should develop 
clinical practice guidelines for AI system 
applications. 

• The FDA, CDC, and ONC should ensure 
transparency and publicly accessible 
reporting for flaws and safety incidents 
related to AI-DDS tools, malfunctions, 
and patient harm.  

• Software developers should integrate 
human clinical diagnosticians at all 
phases of software development, 
design, validation, implementation, and 
iterative improvements. 

AI-DDS systems are becoming increasingly 
prevalent, sophisticated, and reliable. 
Across medical specialties, these tools 
demonstrate potential to make the clinical 
diagnostic process more efficient and 
accurate, ultimately improving patient 
outcomes. Focused efforts to create 
equitable and robust AI-DDS algorithms, 
streamline integration of new AI-DDS tools 
into clinical workflows, and train health care 
providers to effectively use such tools—
coupled with strong regulatory oversight 
and financial incentives—will optimize the 
likelihood that innovative, clinically 
impactful AI-DDS systems are adopted and 
used responsibly by health care providers to 
the ultimate benefit of their patients. 
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Appendix I: Objectives, Scope, and Methodology

We describe our scope and methodology for 
addressing the four objectives outlined 
below: 

Objectives 

1. What machine learning (ML) technologies 
are currently available for the medical 
diagnosis of diseases such as cancer and 
heart disease in the U.S.? 

2. What ML technologies are emerging for 
medical diagnosis of diseases such as 
cancer and heart disease?  

3. What challenges affect the development 
or use of ML technologies for medical 
diagnosis? 

4. What policy options could help address 
these challenges, and what are the 
potential opportunities and 
considerations? 

Scope and methodology  

To address all four research objectives, we 
assessed available and emerging ML 
technologies for medical diagnosis as well as 
the benefits and challenges associated with 
their use. To do so, we reviewed reports and 
scientific literature describing current and 
emerging ML technologies; interviewed a 
variety of stakeholders, including agency 
officials, industry members, and academic 
researchers; and conducted an expert 
meeting in conjunction with the National 
Academy of Medicine. 

Limitations to scope 

We focused our review on five select 
diseases, and the available and emerging ML 
technologies designed to render a diagnosis 
or directly support a medical professional’s 
diagnosis for these diseases. We excluded AI 
methods using expert or rules-based systems, 
and focused on AI methods relying on 
statistical learning using observed or 
simulated data. ML techniques discussed are 
examples and not an exhaustive list of all ML 
techniques available, or in development, for 
medical diagnosis purposes. 

Literature Search 

In the course of our work we conducted two 
literature searches. To establish background 
and identify appropriate technologies, we 
reviewed articles from scientific literature. 
Our second search targeted survey and 
review articles on machine learning using the 
same search terms adding the terms “review” 
and “meta-analysis”. We filtered the search 
by journals with the highest count of studies, 
reviewed the abstracts, and selected the most 
relevant articles for further review based on 
our objectives. Another source of literature 
we reviewed were recommendations from 
interviewees and the National Academies. 
Throughout our work, we monitored 
literature to identify new articles appropriate 
to addressing our objectives. 

Interviews 

We interviewed key stakeholders in the field 
of ML medical diagnostic technologies, 
including: 
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• relevant federal agencies including the 
Federal Trade Commission, the 
Department of Energy, the Department of 
Veterans Affairs including two Veterans 
Affairs Medical Centers, the National 
Institute of Health, and the Food and 
Drug Administration; 

• seven private companies focused on 
developing machine learning based 
medical diagnostics and three 
industry/professional organizations; and 

• five academic researchers. 

Because this is a small and non-generalizable 
sample of the stakeholders involved in using 
ML medical diagnostic technologies, the 
results of our interviews are illustrative and 
represent important perspectives, but are not 
generalizable. 

Expert Meeting 

We collaborated with the National Academy 
of Medicine to convene a meeting of 16 
experts over three days on available and 
emerging ML technologies for medical 
diagnostics. We worked with National 
Academy of Medicine staff to identify experts 
from a range of stakeholder groups including 
federal agencies, academia, industry, and 
legal scholars, with expertise covering all 
significant areas of our review, including 
individuals with research or operational 
expertise in using ML technologies for 
medical diagnosis.62 We evaluated the 

                                                            
62This meeting of experts was planned and convened with the 
assistance of the National Academy of Medicine to better 
ensure that a breadth of expertise was brought to bear in its 
preparation, however all final decisions regarding meeting 
substance and expert participation were the responsibility of 
GAO. Any conclusions and recommendations in GAO reports 
are solely those of GAO. 

experts for any conflicts of interest. A conflict 
of interest was considered to be any current 
financial or other interest (such as an 
organizational position) that might conflict 
with the service of an individual because it 
could (1) impair objectivity or (2) create an 
unfair competitive advantage for any person 
or organization. The 16 experts were 
determined to be free of reported conflicts of 
interest, except those that were outside the 
scope of the forum or where the overall 
design of our panel and methodology was 
sufficient to address them, and the group as a 
whole was determined to not have any 
inappropriate biases.63 (See Appendix II for a 
list of these experts and their affiliations).  

We divided the meeting into six moderated 
discussion sessions: (1) existing AI/ML tools 
and technologies in medical diagnostics; (2) 
emerging AI/ML tools and technologies in 
medical diagnostics; (3) challenges to 
development; (4) challenges to adoption; and 
(5) policy options to address challenges to 
development; (6) policy options to address 
challenges to adoption. Each session featured 
an open discussion among all meeting 
participants based on key questions we 
provided. The meeting was transcribed to 
ensure that we accurately captured the 
experts’ statements. After the meeting, we 
reviewed the transcripts to characterize their 
responses and to inform our understanding. 
Following the meeting, we continued to seek 
the experts’ advice to clarify and expand on 
what we had heard. We provided our draft 

63For example, one expert had equity interest in companies 
developing ML technologies for medical diagnostics. We 
determined the expert’s relationship did not prevent them 
from serving on the panel, as the discussion was not planned to 
revolve around any specific technology or vested interest.  
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report to the experts for their technical 
review, consistent with previous technology 
assessment methodologies. 

Policy Options 

We intend policy options to provide 
policymakers with a broader base of 
information for decision-making.64 The 
options are neither recommendations to 
federal agencies nor matters for 
congressional consideration. They are also not 
listed in any specific rank or order. We are not 
suggesting that they be done individually or 
combined in any particular fashion. 
Additionally, we did not conduct work to 
assess how effective the options may be, and 
express no view regarding the extent to which 
legal changes would be needed to implement 
them. 

We present three policy options in response 
to the challenges identified during our work 
and discuss potential opportunities and 
considerations of each. While we present 
options to address the major factors we 

                                                            
64Policymakers is a broad term including, for example, 
Congress, federal agencies, state and local governments, 
academic and research intuitions, and industry.  

identified, the options are not inclusive of all 
potential policy options. The policy options 
and analyses were supported by the above 
evidence. Policy ideas, identified from the 
evidence above, were: (1) adapted into policy 
options by combining similar ideas that were 
duplicative, (2) grouped into a higher-level 
policy option, (3) examples of how to 
implement a policy option, or (4) did not fit 
into our scope.  

We conducted our work from November 2020 
through September 2022 in accordance with 
all sections of GAO’s Quality Assurance 
Framework that are relevant to technology 
assessments. The framework requires that we 
plan and perform the engagement to obtain 
sufficient and appropriate evidence to meet 
our stated objectives and to discuss any 
limitations to our work. We believe that the 
information and data obtained, and the 
analysis conducted, provide a reasonable 
basis for any findings and conclusions in this 
product. 
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Appendix II: Expert Participation 

We collaborated with the National Academies of Science, Engineering, and Medicine to convene 
a meeting of experts over three days to inform our work on artificial intelligence, particularly 
machine learning, in medical diagnostics. The meeting was held virtually on June 2, 3, and 8, 
2021. Experts who participated in this meeting are listed below. We corresponded with experts 
for additional assistance throughout our work. We provided our draft report to the experts for 
their technical review, consistent with previous technology assessment methodologies.

Hugo Aerts 
Director of Artificial Intelligence in Medicine 

Program 
Mass General Brigham 

Pat Baird 
Sr. Regulatory Specialist 
Philips 

Barbara Evans 
Professor of Law and Engineering 
University of Florida 

Richard Frank 
Chief Medical Officer 
Siemens Heathineers 

Maryellen Giger 
A.N. Pritzker Distinguished Service Professor 

of Radiology 
University of Chicago 

Kenneth Goodman 
Director, Institute for Bioethics and Health 

Policy 
University of Miami 

John Halamka 
President 
Mayo Clinic Platform 

Eric Horvitz 
Chief Scientific Officer 
Microsoft 

Constance Lehman 
Chief of Breast Imaging 
Massachusetts General Hospital 

Mia Levy 
Director of Cancer Center 
Rush University 

Anil Parwani 
Professor of Pathology; Vice Chair and 

Director of Anatomical Pathology 
Ohio State University 

Lily Peng 
Physician-Scientist and Product Manager 
Google 

Bruce Pyenson 
Principal and Actuary 
Milliman 

Berkman Sahiner 
Senior Biomedical Research Scientist and 

Biomedical Product Assessment Service 
Expert 

Center for Devices and Radiological Health, 
U.S. Food and Drug Administration
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Robert Sparrow 
Professor of Philosophy 
Monash University 

Eric Topol 
Professor of Molecular Medicine and 

Executive Vice-President 
Scripps Research 
Founder and Director 
Scripps Research Translational Institute 
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GAO contact 
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