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What GAO found 
GAO found that machine learning, a type of artificial intelligence (AI) that uses 
algorithms to identify patterns in information, is being applied to forecasting models for 
natural hazards—such as severe storms, hurricanes, floods, and wildfires—that can lead 
to natural disasters. A few machine learning models are used operationally—in routine 
forecasting—such as one that may improve the warning time for severe storms. Some 
uses of machine learning are considered close to operational, while others require years 
of development and testing.  

GAO identified potential benefits of applying machine learning to this field, including: 

• Reducing the time required to make forecasts by replacing components of models 
that are slow and that increase the cost of modeling.  

• Increasing model accuracy by more fully exploiting available data, using other data 
that traditional models cannot, and creating synthetic data to fill gaps. 

• Reducing the uncertainty of model output by improving ensemble modeling—the 
processes of generating combined predictions from numerous models—and making 
better use of historical data.  

Forecasting natural disasters using machine learning 

 
GAO also identified challenges to the use of machine learning. For example:  

• Data limitations hamper the training of machine learning models and can reduce 
accuracy in some regions, such as rural areas where weather observations are 
sparse. 

• A lack of trust and understanding of the algorithms as well as concerns about bias 
can make forecasters and other users hesitant to use machine learning models. 

• Limited coordination and collaboration create challenges for fully developing some 
machine learning models. For example, some forecasters told us they lack 
opportunities to interact with researchers and convey their needs. 

• Workforce and resource gaps also create challenges. For example, the upfront costs 
to develop and run machine learning models are high, and some companies 
working on these models do not fully understand the data and phenomena they are 
modeling, according to academic researchers. 

View GAO-24-106213. For more information, 
contact Brian Bothwell at (202) 512-6888 or 
BothwellB@gao.gov. 

Why GAO did this study 
Natural disasters cause on average 
hundreds of deaths and billions of 
dollars in damage in the U.S. each 
year. Forecasting natural disasters 
relies on computer modeling and is 
important for preparedness and 
response, which can in turn save lives 
and protect property. AI is a powerful 
tool that can automate processes, 
rapidly analyze massive data sets, 
enable modelers to gain new insights, 
and boost efficiency.  

This report on the use of machine 
learning in natural hazard modeling 
discusses (1) the emerging and current 
use of machine learning for modeling 
severe storms, hurricanes, floods, and 
wildfires, and the potential benefits of 
this use; (2) challenges surrounding the 
use of machine learning; and (3) policy 
options to address challenges or 
enhance benefits of the use of 
machine learning. 

GAO reviewed the use of machine 
learning to model severe storms, 
hurricanes, floods, and wildfires across 
development and operational stages; 
interviewed a range of stakeholder 
groups, including government, 
industry, academia, and professional 
organizations; convened a meeting of 
experts in conjunction with the 
National Academies; and reviewed key 
reports and scientific literature. GAO is 
identifying policy options in this report 
(see next page). 
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GAO identified five policy options that could help address these challenges. These options are intended to inform policymakers, 
including Congress, federal and state agencies, academic and research institutions, and industry of potential policy implementations. 
The status quo option illustrates a scenario in which government policymakers take no additional actions beyond current ongoing 
efforts. 

Policy Options to Help Address Challenges to the Use of Machine Learning in Natural Hazard Modeling 

Policy Option Opportunities Considerations 
Facilitate improved data collection, 
sharing, and use (report p. 37). 
Government policymakers could expand use 
of existing observational data and 
infrastructure to close gaps, expand access 
to certain data, and (in conjunction with 
other policymakers) establish guidelines for 
making data AI-ready.  

• Efforts to address gaps in data sets can 
improve machine learning model 
performance. 

• Expanded access to existing data would 
improve the ability of researchers and groups 
to develop and test machine learning 
technologies. 

• Adopting standards for AI-ready data could 
reduce resources needed to curate data and 
facilitate more efficient modeling. 

• Expanding observational infrastructure 
can be expensive and could divert 
limited resources from other efforts. 

• Agencies need to weigh the benefits of 
greater data sharing against any 
increase in risks related to data security 
and privacy. 

• Strict data standards may slow research 
and innovation if they burden or 
constrain machine learning researchers. 

Expand education and training (report 
p. 38). 
Government policymakers could update 
education requirements to include machine 
learning-related coursework and expand 
learning and support centers, while 
academic policymakers could adjust physical 
science curricula to include more machine 
learning coursework.  

• Updating education requirements would 
better prepare students to use machine 
learning in government. 

• More robust education can better prepare 
both researchers and end users in fields like 
meteorology and climatology to develop and 
use machine learning. 

• Education and training reforms may 
need to be repeatedly adjusted, as 
technological change in this space can 
be rapid and unpredictable.  

• Establishing and expanding professional 
development and training opportunities 
throughout government may require 
substantial investment. 

Address hiring and retention barriers 
and certain resource shortfalls (report 
p. 39). 
Government policymakers could address pay 
scale limitations for positions that include 
machine learning expertise and work with 
private sector policymakers to expand the 
use of public-private partnerships (PPPs). 

• Providing workforce incentives to government 
employees for machine learning development 
could allow agencies to bolster workforce 
capacities. 

• Expanding PPPs might help agencies overcome 
computational resource shortfalls and help 
industry draw on government expertise. 

• Increasing salary limits for some 
employees would require agency budget 
increases or cuts to other budget items. 

• Expanding the use of PPPs could magnify 
resource disparities between 
government and private industry. 

• PPPs that entail hosting government 
data on collaborator systems may pose 
security risks that would need to be 
considered and addressed. 

Take steps to mitigate bias and foster 
trust in data and machine learning 
models (report p. 40). 
Policymakers could establish efforts to 
better understand and mitigate various 
forms of bias, support inclusion of diverse 
stakeholders for machine learning models, 
and develop guidelines or best practices for 
reporting methodological choices. 

• Sustained efforts to address bias in data sets 
can reduce the likelihood of models negatively 
affecting certain communities. 

• Acquiring diverse stakeholder perspectives 
throughout machine learning models’ life 
cycles can help reduce certain types of bias in 
data and models. 

• Fostering machine learning model 
transparency could improve end-user and 
decision-maker trust. 

• Embedding efforts to address bias 
throughout the model life cycle may 
increase model costs and slow model 
development. 

Maintain status quo efforts (report p. 
41). 
Government policymakers could maintain 
existing policy efforts and organizational 
structures, along with existing strategic plans 
and agency commitments. 

• Some agency efforts are underway to address 
the challenges described. 

• The extent to which agencies will meet 
their commitments under status quo 
efforts is unclear. Status quo efforts may 
not fully address challenges specific to 
the use of AI in natural hazard modeling. 
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441 G St. N.W. 
Washington, DC  20548 

Introduction

December 14, 2023  

Congressional Addressees 

Since 1980, the U.S. has sustained 363 weather disasters that caused damages of $1 billion or 
more.1 These disasters caused nearly 16,000 deaths and totaled an estimated $2.6 trillion in 
damages.2 In 2022, there were 18 such “billion-dollar disasters” in the U.S. More than 80 
percent of the damage between 1980 and 2023 was caused by four types of weather-related 
disasters: severe storms, hurricanes, floods, and wildfires.3  

Forecasting natural disasters is important for preparedness and response, which can in turn save 
lives and protect property. The World Meteorological Organization estimates the global 
socioeconomic benefits of weather forecasting to be at least $158 billion per year.4  

Computer modeling is a critical tool for natural disaster forecasting. Models are representations 
of real-world systems and can be used to approximate the real system’s behavior. For severe 
weather systems, computer modeling allows forecasters to predict the system’s behavior, such 
as the likely intensity of a hurricane or the location of flooding, and relay those predictions to 
the public and to emergency responders.  

Artificial intelligence (AI) is a powerful tool that can automate processes, rapidly analyze massive 
data sets, enable modelers to gain new insights, and boost efficiency. It has already started to 
transform some sectors, such as finance and manufacturing, and has the potential to do so for 
many others. In natural disaster forecasting, modelers are beginning to use AI to efficiently 
harness more of the information that is available about the environment to significantly improve 
the timeliness, accuracy, and precision of natural disaster forecasting. They are doing this in a 
range of ways, from running AI models along with traditional models, to incorporating AI into 
traditional models, to fully replacing traditional models with AI models. However, these efforts 
are largely in the research and development phases and continued testing in operational 
settings will be needed to further mature the field. Proper safeguards will likewise be important 

 
1Dollar amounts in this paragraph are in 2023 dollars. 
22023 damage statistics were partial due to the timing of this publication and are through August 8, 2023. 
3The National Oceanic and Atmospheric Administration distinguishes hurricanes (tropical cyclones with wind speeds in excess of 74 
miles per hour) from severe storms (winds in excess of 58 miles per hour or at least ¾-inch diameter hail). Multiple disasters may 
happen concurrently. For example, flooding may occur during a hurricane. 
4Socioeconomic benefits include cost savings associated with disaster management, construction, water supply, transportation, 
agriculture, and energy. Systematic Observations Financing Facility, Information Brief: The Value of Surface-Based Meteorological 
Observation Data: Costs and Benefits of the Global Basic Observing Network (Geneva: World Meteorological Organization, 2020). 
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to minimize the risk of conveying inaccurate or otherwise harmful information, which can cost 
lives and property. 

In light of broad congressional interest in forecasting natural disasters, we prepared this report 
under the authority of the Comptroller General to assist Congress with its oversight 
responsibilities. In the context of AI for modeling severe storms, hurricanes, floods, and 
wildfires, this report discusses (1) the emerging and current use of AI and potential benefits of 
this use, (2) challenges concerning the use of AI, and (3) policy options to address challenges or 
enhance benefits of the use of AI. 

We collected evidence for this report from peer-reviewed articles and other reports, 
stakeholder interviews, and a meeting of experts we convened with the assistance of the 
National Academies of Sciences, Engineering, and Medicine. Our scope is limited to models that 
incorporate or use AI techniques (specifically machine learning) to enhance model input, output, 
or performance, or to predict the aforementioned hazards. We primarily focused on modeling 
for civilian use. We did not examine risk models, seasonal forecasting, long-term climate 
modeling, or hazard mitigation efforts. See appendix I for a full discussion of the objectives, 
scope, and methodology and appendix II for a list of experts who participated in our meeting. 

We conducted our work from August 2022 through December 2023 in accordance with all 
sections of GAO’s Quality Assurance Framework that are relevant to technology assessments. 
The framework requires that we plan and perform the engagement to obtain sufficient and 
appropriate evidence to meet our stated objectives and to discuss any limitations to our work. 
We believe that the information and data obtained, and the analysis conducted, provide a 
reasonable basis for any findings and conclusions in this product.  
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1 Background 

1.1 Modeling for natural hazard 
forecasts 

A natural hazard is an environmental 
phenomenon that poses a potential harm to 
society and the human environment. A 
natural disaster is the negative impact 
following an actual occurrence of a natural 

hazard in the event that it significantly harms 
a community. This report examines four 
hazards that can lead to billion-dollar 
disasters: severe storms, hurricanes, floods, 
and wildfires. Table 1 shows which federal 
agencies are primarily responsible for 
modeling these hazards for civilian 
applications.

Table 1: Key federal agencies involved in modeling for natural hazard forecasts 

Department/Agency Description of role 

Department of 
Commerce/National Oceanic 
and Atmospheric Administration 
(NOAA) 

NOAA is the primary federal entity responsible for modeling and forecasting 
severe storms and hurricanes. NOAA provides forecasts for flooding driven by 
rain, as well as for flooding of rivers and coasts. NOAA supports wildfire 
modeling with fire weather forecasts and monitoring for potential wildfires. 

Department of the Interior 
(DOI)/U.S. Geological Survey 
(USGS) 

USGS’s Natural Hazards Mission Area includes programs supporting emergency 
management, including flood and wildfire forecasting and response. 

Department of Homeland 
Security/Federal Emergency 
Management Agency (FEMA) 

FEMA leads coordination within the federal government to help communities 
prepare for and respond to disasters. Severe storm, hurricane, flood, and 
wildfire modeling is an essential component of FEMA’s mission. FEMA relies on 
other federal, state, local, and tribal entities to lead some modeling efforts. 

National Aeronautics and Space 
Administration (NASA) 

NASA conducts monitoring and modeling of severe storms, hurricanes, floods,  
and wildfires.  

Department of Defense 
(DOD)/U.S. Army Corps of 
Engineers (USACE) 

The USACE uses various types of flood models to support efforts, such as 
emergency management, infrastructure development, and evacuation 
planning. They also employ a hurricane storm surge prediction model that uses 
forecast data from NOAA’s National Hurricane Center to help forecast coastal 
flooding. 

Department of Agriculture/U.S. 
Forest Service  

The Forest Service manages all national wildland fires with the support of other 
federal, state, local, and tribal entities. For example, the National Predictive 
Services Oversight Group—an interagency group that includes the Forest 
Service, DOI, DOD, and others – provides fire weather and climate forecasts, 
combustible material (i.e., fuel) and fire danger models, and more. 

Source: GAO analysis of agency documents.  |  GAO-24-106213 

Note: Includes key agencies responsible for modeling or forecasting severe storms, hurricanes, floods, and wildfires 
primarily for civilian applications. 

Forecasters have used computer models for 
weather prediction since at least the 1960s. 
Models for flooding and wildfires have also 
been in use for decades. The basic function of 
a model is to use data from current conditions 
and generate useful predictions. For example, 

one inland flood model takes data inputs like 
precipitation, temperature, and relative 
humidity and predicts future water flow in a 
river or stream. A different flood model may 
use sea level rise as an input for predicting 
storm surge flooding. Traditionally, these 
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models are based on scientists’ understanding 
of the physical laws governing weather 
patterns and natural hazard event behaviors 
in the real world. 

Forecasting is a multi-step process that 
includes modeling, which is represented in 
figure 1.

Note: Observations from step 2 to step 5 can be used directly to improve the interpretation of the forecast. 

To start, data must be collected about real-
world weather and environmental conditions. 
These data can come from satellites, field 
surveys, volunteer observers, thermometers, 
flood gauges, ocean buoys, weather towers, 

and other sources—collectively called 
observational infrastructure. Next, model 
developers, who may have domain expertise 
(e.g., atmospheric science, forestry, 
hydrology, and other fields), select the most 
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relevant environmental data from past and 
current conditions. In doing so, they attempt 
to ensure a complete and representative data 
set to minimize bias (i.e., systematic errors 
due to a variety of causes). The completeness 
of the data set, among other factors, can help 
to increase the performance of the output of 
the model and decrease different biases that 
might influence the model’s output. 

The modelers then assimilate (combine) 
these data into specialized computer software 
and perform quality assurance and quality 
control (QA/QC) steps to verify the accuracy 
of data inputs. These and other preparatory 
steps are called pre-processing. The software 
then uses algorithms—quantitative rules 
programmed by a modeler, at least initially—
to perform calculations. Modelers perform 
post-processing on the computer output, 
often corroborating model results by 

comparing the predictions of several models 
or of the same model run several times with 
different starting conditions (called ensemble 
modeling). The result is a useable output such 
as a flood map, the probability of a tornado, 
or the likely extent of wildfire spread. Finally, 
if the hazard is likely to pose a threat to life or 
property, forecasters communicate warnings 
based on these predictions to the public, 
government officials, and emergency 
responders to help inform on-the-ground 
actions. For example, a forecaster may use 
model results to issue a hurricane warning to 
a county, which can prompt residents to 
evacuate and government officials to prepare 
search-and-rescue personnel.  

In the following vignettes, we provide 
background on the modeling of severe 
storms, hurricanes, floods, and wildfires.



VIGNETTE

Source: Gavin/stock.adobe.com.  |  GAO-24-106213

Traditional Modeling

Severe Storms
Severe storms, which include severe winds, 
tornadoes, or hailstorms, cause an average 
of 48 deaths and $10.2 billion in damages in 
the U.S. each year, according to NOAA.5 The 
National Weather Service (NWS), part of NOAA, 
issues more than 15,000 severe storm and 
tornado watches and warnings each year.
Severe storms can also disturb ecosystems, for example 
by knocking down large swaths of forest. Models and 
observations are essential to predicting storm location 
and intensity, as well as the likelihood of hail and 
strong winds.

Modeling
The primary method for weather modeling is known 
as Numerical Weather Prediction (NWP). Modeling and 
forecasting of severe storms and weather in general is 
the responsibility of the NWS. The NWS uses several 
models that rely on NWP to predict the weather. These 
models range in their focus from short-term predictions 
for the U.S., to longer-
term predictions for the 
entire globe.

NWP models the 
atmosphere by mapping 
current observations of 
temperature, moisture, 
and other variables onto 
a three-dimensional grid 
that covers the globe 
(see figure). It then 
uses a set of equations 
and estimates based 
on fundamental laws 
of physics to forecast 
how those variables will 
change in the next time 
step of the model (which 
can be anywhere from a 
few seconds to several 

minutes). By repeating these calculations many 
times over, the model generates a forecast that 
extends over hours or days and can be updated 
as new observations come in.

Example of how numerical weather prediction models 
the atmosphere and generates a forecast

Source: GAO (analysis and illustrations); chones/stock.adobe.com (earth).  |  GAO-24-106213

Source: Unless specified, all graphics on this page were created by GAO. AI in Natural Hazard Modeling  |  GAO-24-106213  |  6

5These statistics represent billion-dollar events from 1980 through 2023 and are not representative of all severe storms that occur throughout the year across 
the U.S. See National Oceanic and Atmospheric Administration National Centers for Environmental Information, U.S. Billion-Dollar Weather and Climate 
Disasters Summary Stats (2023), https://www.ncei.noaa.gov/access/billions/summary-stats.
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Data sources
The data underlying severe storm models come from 
an array of sensors and other sources, including:

At least 17 different 
satellites, in polar orbits 
(which observe the same 
location twice a day) 
and geostationary orbits 
(which are fixed over one 
location and take many 
images per day), provide 
data on temperature 
and humidity variations, 
clouds, aerosols, winds, 
and other parameters.
 

Weather balloons 
launched twice a day 
at almost 100 stations 
across North America, 
the Pacific, and the 
Caribbean are the 
primary source of data 
on upper atmosphere air 
pressure, temperature, 
relative humidity, 
wind speed and wind 
direction.

Example of a severe storm warning generated within an 
Advanced Weather Interactive Processing System

Source: NOAA.  |  GAO-24-106213

Limitations
The accuracy of NWP short-term forecasts 
depends heavily on how well recent observations 
are assimilated into a model. New storms are 
often poorly represented because observations 
arrive too late or are not available to be fed into 
a model in a timely fashion. It is also difficult 
for models using traditional NWP to make 
predictions at a small scale for a large area, such 
as the behavior of an individual thunderstorm 
anywhere in the U.S.

AI in Natural Hazard Modeling  |  GAO-24-106213  |  7

Over 150 surface radar 
stations provide data 
on precipitation, the 
rotation of thunderstorm 
clouds, airborne tornado 
debris, and wind 
strength and direction.

Thousands of surface 
weather stations provide 
data on precipitation, 
temperature, and wind 
up to 12 times an hour 
across the U.S.

Networks of thousands of 
volunteer observers send 
firsthand observations 
that provide additional 
temperature, snowfall, 
and rainfall data.

Source: Unless specified, all graphics on this page were created by GAO.

Source: Gavin/stock.adobe.com.  |  GAO-24-106213

Observations from 
commercial aircraft on 
temperature, wind, and 
humidity.



Source: elroce and NASA/stock.adobe.com.  |  GAO-24-106213

VIGNETTE

Traditional Modeling

Hurricanes
A hurricane, also known as a tropical 
cyclone or typhoon, is a rotating cloud and 
thunderstorm system that forms over tropical 
waters. Hurricanes form from a combination 
of persistent storms, warm oceans, and 
moisture, and can produce violent winds, 
large waves, and torrential rains. Hurricanes 
cost an average of $31.2 billion and cause 
157 deaths in the U.S. per year, according 
to NOAA.6 They can also negatively affect 
ecosystems and seafood safety.
Hurricanes are projected by NOAA experts to become 
more intense due to changing climate patterns, and 
modeling these events is vital for mitigation strategies 
such as issuing evacuation alerts.

Modeling
Hurricane forecast models use mathematical equations 
to predict the future behavior of a hurricane, including its 
path and intensity. Numerical weather prediction (NWP) is 
a widely used method for weather modeling. It analyzes 
current atmospheric observations (wind, pressure, 
temperature, and moisture) and, for hurricanes, uses 

physics to predict how the wind speed and direction 
in and around a hurricane will change over time.

The primary method for estimating hurricane 
intensity is the Dvorak technique. This method uses 
automated processes to recognize cloud patterns 
in satellite data. Forecasters also use models that 
rely on historical relationships within hurricane 
data, such as behavior, location, and time of year, to 
provide a quick, statistical prediction. These models 
can be used alongside and integrated with NWP 
models to improve accuracy. Another technique 
is to use ensemble models, which either combine 
forecasts from several different models into a 
single forecast or use one single model several 
times with different parameters to make several 
forecasts. Ensemble model forecasts are generally 
more accurate because they combine several 
approaches, and the individual model errors get 
canceled out.

Forecasters use different models to predict a 
hurricane’s impacts, such as storm surge, because 
hurricane forecast models are not suited to this 
purpose.

Example of ensemble model forecasts of a hurricane

Source: GAO analysis of ensemble modeling for hurricanes; GAO (illustration).  
|  GAO-24-106213

6These statistics represent billion-dollar events from 1980 through 2023 and are not representative of all hurricanes that occur throughout the year across the 
U.S. See NOAA National Centers for Environmental Information, U.S. Billion-Dollar Weather and Climate Disasters (2023), https://www.ncei.noaa.gov/access/
billions/summary-stats.

Source: Unless specified, all graphics on this page were created by GAO. AI in Natural Hazard Modeling  |  GAO-24-106213  |  8
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Data sources
Hurricane specialists at NOAA use observational 
infrastructure to forecast, observe, and track hurricanes:

Satellites, such as NOAA’s 
Geostationary Operational 
Environmental Satellites, 
are fixed over one part of 
the Earth to continuously 
observe hurricanes. NOAA 
also has low-orbiting 
satellites that orbit the 
Earth typically about 
every 90 minutes and can 
help determine a storm’s 
structure.

Reconnaissance aircraft 
operated by the U.S. Air 
Force Reserve and NOAA’s 
Aircraft Operations Center 
collect data by flying through 
storms.

Ships routinely collect 
weather observations, 
such as air pressure, air 
temperature, sea surface 
temperature, and wind. 

Buoys provide standard, 
hourly information about 
waves, winds, and the 
temperature of the air and 
sea surface.

Radar measure the 
concentration of 
precipitation in the air 
by transmitting pulses of 
energy and measuring the 
amount reflected.

Other monitoring systems, 
such as land-based 
monitoring stations, capture 
important data needed for 
hurricane forecasts.

Example of a ship used to collect weather observations, 
NOAA’s Ronald H. Brown

Source: Joseph Creamer/stock.adobe.com.  |  GAO-24-106213

Limitations
There is uncertainty in hurricane predictions 
due in part to changing atmospheric 
conditions. Once a hurricane has formed, 
scientists can forecast its potential track, 
and the error in its prediction gets smaller 
as the hurricane is closer to making landfall. 
Predicting hurricane intensity, however, is 
more challenging. For example, a strong 
and destructive Atlantic hurricane in 2019, 
initially predicted to be a modest storm, 
rapidly intensified to a category 5 hurricane 
and left little time to prepare for its impacts. 

Ensemble models for hurricanes also have 
limitations. For example, their forecasts 
typically have relatively low resolution and 
do not include the finer-scale details found 
in individual model forecasts.

Source: elroce and NASA/stock.adobe.com.  |  GAO-24-106213

Source: Unless specified, all graphics on this page were created by GAO. AI in Natural Hazard Modeling  |  GAO-24-106213  |  9
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VIGNETTE

Traditional Modeling

Floods
Floods can result from events such as heavy 
rains, ocean waves, quickly melting snow, 
or broken dams or levees. They are the 
most widespread of all natural disasters. 
Flood events, on average, cost $4.4 billion 
and cause 16 deaths in the U.S. per year, 
according to NOAA.7

Although they can be beneficial to ecosystems, 
such as wetlands, they can also destroy homes and 
crops, and cause disease outbreaks. According to 
one study, the proportion of the world’s population 
exposed to floods grew by at least 20 percent since 
2000,  and improved modeling could help decision-
makers better prepare and respond. Floods can 
occur within minutes or over a long period, and may 
last days, weeks, or longer.

Modeling
Federal, state, and local government agencies, as well 
as those in academia and industry, use flood models 
and tools for forecasting, disaster preparedness and 
response, risk management, insurance services, 
and other purposes. A widely used flood modeling 
software application is the U.S. Army Corps of 
Engineers’ Hydraulic Engineering Center River 
Analysis System (HEC-RAS). It simulates floods using 
equations that represent fundamental principles such 
as conservation of mass and momentum to predict the 

flow characteristics of rivers, floodplains, and other 
areas. Users can build different kinds of models for 
their specific circumstances by inputting or creating 
data on terrain, soil, and more, and receiving 
detailed maps and graphs in return.

For example, once a model has run, the system 
allows the user to create visual representations 
of the model results, such as an inundation map. 
The HEC-RAS system includes a variety of one-
dimensional and two-dimensional models, including 
shallow water, steady and unsteady flow, water 
quality analyses, and sediment transport.

Example of an inundation map

Source: GAO (illustration).  |  GAO-24-106213

7These statistics represent billion-dollar events from 1980 through 2023 and are not representative of all floods that occur throughout the year across the U.S. 
See NOAA National Centers for Environmental Information, U.S. Billion-Dollar Weather and Climate Disasters (2023), https://www.ncei.noaa.gov/access/billions/
summary-stats.
8Beth Tellman, et al., “Satellite Imaging Reveals Increased Proportion of Population Exposed to Floods,” Nature, vol. 596 (2021): 80–86. https://doi.org/10.1038/
s41586-021-03695-w.

Source: Unless specified, all graphics on this page were created by GAO. AI in Natural Hazard Modeling  |  GAO-24-106213  |  10
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Limitations
HEC-RAS was introduced in 1995 and is 
now used by agencies, industry, universities, 
and others. However, some models within 
the system are not able to capture physical 
processes accurately. For example, some of 
the mathematical models included in HEC-
RAS assume the input variables are stationery 
but, over long periods of time, parameters 
describing flood-prone areas can change. 
This limitation may create model output that 
is not entirely representative of actual flood 
characteristics, and in-depth knowledge and 
expertise of the model’s parameters are often 
required to interpret the results. There are 
companion tools to HEC-RAS for use in flood 
forecasting that allow modelers to customize 
simulation time windows and refine model 
parameter to represent the current state of the 
system. 

More generally, in some instances, flood 
models may be computationally demanding to 
run and require significant computer resources, 
which could impact who has access to the 
models and their ability to make short-term 
forecasts.

There are 4 main data sources used for flood detection 
and forecasting:

Databases, such as 
the gridded Soil Survey 
Geographic Database, 
which has detailed soil 
geographic data, provide 
various input data for flood 
models.

Radar can estimate the 
duration of rainfall, helping 
forecasters assess the 
threat of a flood.

Data sources

Diagram of a typical stream gauge

Water gauges measure the 
depth of water. For example, 
a stream gauge contains 
instruments that measure 
and record the amount of 
water flowing. Generally, 
these measurements occur 
automatically every 15 
minutes, or more frequently 
during flooding. The USGS 
operates a network of more 
than 9,000 stream gauges 
nationwide.

Satellites produce less 
accurate estimates of rainfall 
than water gauges. They 
provide high-resolution 
coverage over oceans, 
mountains, and sparsely 
populated areas that may 
not have radar or gauge 
coverage.

Source: GAO diagram adapted from U.S. Geological Survey.  |  
GAO-24-106213

VIGNETTE

Source: Unless specified, all graphics on this page were created by GAO.

Source: oobqoo/stock.adobe.com.  |  GAO-24-106213
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VIGNETTE

Traditional Modeling

Wildfires
A wildfire is an unplanned fire that occurs in 
a natural area, such as a forest or grassland. 
Wildfires cause an average of 12 deaths and 
cost $3.2 billion per year, according to NOAA.9 
USGS reports that wildfires burn about seven 
million acres each year in the U.S. They can 
disrupt power services and damage homes and 
infrastructure.
Wildfires play an important ecological role. For example, 
a wildfire can promote vegetation growth when it 
burns through dead leaves and other debris. However, 
wildfires can also cause soil erosion, increase the 
likelihood of landslides, damage vegetation, or otherwise 
harm ecosystems. Wildfires can be caused by natural 
phenomena (e.g., lightning) or human activity. The size 
and intensity of wildfires are expected to increase, 
making efforts to predict fire behavior an important step 
in mitigating their harmful impacts.

Modeling
The Rothermel surface fire spread model is a commonly 
used wildfire model in the U.S. It uses a variety of data, 
including data on wind, slope, the amount of dead and 
living vegetation (known as fuel), and the moisture 
content of the fuel. These variables, and others, are put 

into a mathematical model that uses the laws of 
physics to estimate how fast a wildfire will spread 
based on the relationship between fuel and the 
amount of heat required to ignite that fuel type. The 
model uses these variables to predict fire spread 
based on when the estimated heat generated 
exceeds the heat needed to ignite adjacent 
unburned fuel.

Fuel type is a key variable when modeling wildfires. 
For example, live trees generally require more heat 
to ignite than other fuels because they contain 
more moisture. To represent different fuel type 
characteristics, scientists have developed 53 fuel-
specific models to use with the Rothermel model. 
Additional models are also available for different 
kinds of fires, such as those that spread across 
treetops. Another model can use information on 
slope, shading, elevation, and weather to more 
precisely estimate the flammability of dead fuels. 

Analysts use additional support tools and systems 
when modeling wildfire behavior. For example, 
FlamMap is a fire mapping and analysis system 
developed, in part, by the U.S. Forest Service 
(USFS) to forecast wildfire growth and behavior with 
detailed sequences of weather conditions. FlamMap 
is an ensemble simulation system, combining 
multiple fire behavior models, such as the Rothermel 
model, with environmental input variables.

Simplified representation of the Rothermel fire spread model

Source: GAO analysis of Rothermel fire spread model; GAO (illustration).  |  
GAO-24-106213
Note: This is an oversimplified representation of the Rothermel fire spread 
model and does not include all needed input variables or physical processes.

9These statistics represent billion-dollar events from 1980 through 2023 and are not representative of all wildfires that occur throughout the year across the U.S. 
See NOAA National Centers for Environmental Information, U.S. Billion-Dollar Weather and Climate Disasters (2023), https://www.ncei.noaa.gov/access/billions/
summary-stats.

Source: Unless specified, all graphics on this page were created by GAO. AI in Natural Hazard Modeling  |  GAO-24-106213  |  12
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Limitations
The Rothermel model has been used in fire 
and fuels management systems since 1972, 
but it does have limitations. For example, 
it assumes that fuel type is consistent in 
a given area and is evenly distributed. 
Real ecosystems often have multiple fuels 
distributed unevenly. The model also 
assumes that the fire is primarily spread by 
dead fuel and that moisture alone can stop 
it. In fact, other firefighting measures can be 
effective, including fuel breaks and chemical 
fire retardants. These limitations can cause 
the model to over- or under- predict the rate 
of spread of any given fire.

Wildfire analysis tools and systems also 
have limitations. For example, FlamMap 
will not simulate variations in fire behavior 
caused by weather fluctuations.

Databases, such as those 
accessed through Landscape 
Fire and Resource 
Management Planning 
Tools (LANDFIRE), a shared 
program between the 
wildland fire management 
programs of the USFS and 
U.S. Department of the 
Interior, provide data on 
vegetation, fuel, and other 
factors across the U.S.

Satellites operated by NASA 
and NOAA orbit the earth 
and provide information 
at various intervals to 
help monitor wildfires. 
For example, NASA has a 
satellite that filters light to 
help detect wildfires.

Data sources

Examples of outputs from FlamMap

Radar sensors can estimate 
fire fuel and monitor long-
term vegetation recovery 
after a fire, which helps 
scientists, researchers, and 
decision makers prepare 
for and respond to wildfire 
events.

Airborne instruments 
measure fire temperature 
and fuel conditions.

Source: U.S. Department of Agriculture, Forest Service.  |  
GAO-24-106213

Source: Unless specified, all graphics on this page were created by GAO. AI in Natural Hazard Modeling  |  GAO-24-106213  |  13
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1.2 AI and machine learning 

AI is a set of technologies able to perform 
tasks that normally require human 
intelligence. Machine learning, a type of AI, 
uses algorithms to identify patterns in 
information. In this report, we focus on 
machine learning since it is the predominant 
form of AI undergoing research and 
development for natural hazard modeling. In 
instances where we refer to AI, it is in 
reference to a certain requirement, capability, 
or use of AI other than machine learning. 

The life cycle of an AI system (including a 
machine learning system) generally involves 
four phases: design, development, 
deployment, and continuous monitoring. 
These phases are often iterative and not 
necessarily sequential. This report assesses 
the use of machine learning in natural hazard 
modeling for technologies across this life 
cycle, from models that are undergoing 
research and development to operational 
models. The latter category denotes models 
routinely used and maintained to support 
important decisions, such as when to issue a 
storm warning or where to deploy 
firefighters. 

1.3 Machine learning in natural 
hazard modeling 

Machine learning can employ a fundamentally 
different approach to natural hazard 
modeling than physics-based traditional 
models. Many traditional models use 
algorithms that are designed and coded by 
developers, who sometimes have domain 
expertise, to mathematically represent the 
physical laws of nature. In contrast, machine 
learning is trained through many steps to 
detect patterns from large data sets (for 

example, many years of historical data on 
wind speed or temperature; see text box). In 
this way, a machine learning algorithm can 
generate outputs that are based on the 
patterns and statistical relationships within 
the training data, rather than on physical laws 
that are programmed into the model 
explicitly. At the same time, some of the 
patterns machine learning generates may 
reflect physical laws because the data inputs 
represent real-world natural hazard events, 
which are governed by physics. There are also 
hybrid models that employ both programmed 
physical laws and machine learning. 

Machine learning can be applied to each step 
of the natural hazard forecasting process (fig. 
1), and its use ranges from minor 
modifications to a traditional model (e.g., 
using machine learning to assimilate input 
data into a physics-based algorithm) to 
complete replacement of a traditional model 
using the machine learning algorithms 

Key concept: Machine learning models and 
training data 

Machine learning algorithms learn the mathematical 
relationships between inputs and outputs from a training 
data set. Training data are historical data and can be 
numbers, images, audio, or text. For modeling hazards, 
these data may include temperature measurements, wind 
speeds, and satellite images. Machine learning uses these 
data to create formulas based on mathematical patterns it 
identifies within the training data set. These formulas are 
what allow the machine learning algorithm to generate 
predictions when exposed to new data. The quality and 
quantity of a training data set are significant factors in a 
machine learning model’s performance. A diverse, 
representative data set containing many examples of 
historical natural hazard events (e.g., hurricane landfalls) 
helps ensure that a machine learning model learns 
patterns that represent the range and complexity of real 
events. Machine learning models that are trained on data 
that are not diverse risk producing outputs that are 
inaccurate and not generally representative of real-world 
events. Some algorithms require training data that are 
extensively labeled and curated. 

Source: GAO analysis of scientific literature.  |  GAO-24-106213 
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described above. A variety of machine 
learning algorithms can be employed for 

natural hazard modeling, depending on 
needs, as shown in table 2.

Table 2: Selected machine learning algorithms 

Algorithm Key features and use 

Neural network   Groups of artificial “neurons” in layers of interconnected nodes. Typically 
process data by making a random guess regarding what the data mean, then 
correcting itself by adjusting its internal structure. Useful for identifying 
complex, nonlinear relationships in large data sets, which can help predict 
hazards that have nonlinear behavior, like flash floods. 

Convolutional neural network A specialized type of neural network with layers structured to detect patterns 
and features in images. Useful for translating visual hazard data into numerical 
data. 

Generative adversarial network 
(GAN) 

Uses two neural networks to create realistic data from a training set while also 
evaluating the accuracy of the generated data. GANs have been used to create 
better initial conditions for weather models. 

Isotonic regression Identifies a relationship between a predicted and observed value to minimize 
errors. Useful for calibrating forecast probabilities. 

K-nearest neighbor Predicts the classification of unlabeled data by looking at the nearest neighbors 
of those data. Useful when the data needed to model hazards have missing 
values. 

Multilayer perceptron A simple neural network with connected hidden layers that are used to learn 
complex, non-linear relationships in large data sets. 

Random forest Uses groups of “decision trees” to classify data into groups or measure 
relationships. Useful for identifying variables that can improve hazard 
prediction. 

Source: GAO analysis of scientific literature.  |  GAO-24-106213

1.4 Policy environment 

AI has received significant attention from 
recent presidential administrations and 
Congresses. Existing federal laws and policies 
are meant to, among other things, “ensure 
continued United States leadership in artificial 
intelligence research and development; lead 
the world in the development and use of 
trustworthy artificial intelligence systems in 

 
10National Artificial Intelligence Initiative Act of 2020, Pub. L. 
No. 116-283, § 5101(a), 134 Stat. at 4525, to be codified at 15 
U.S.C. § 9411(a), (referring to the National Artificial Intelligence 
Initiative). The National Artificial Intelligence Initiative Act of 
2020 was enacted as Division E of the William M. (Mac) 

the public and private sectors; prepare the 
present and future United States workforce 
for the integration of artificial intelligence 
systems across all sectors of the economy and 
society; and coordinate ongoing artificial 
intelligence research, development, and 
demonstration activities among the civilian 
agencies, the Department of Defense and the 
Intelligence Community to ensure that each 
informs the work of the others.”10 Most 

Thornberry National Defense Authorization Act for Fiscal Year 
2021. Although there have been numerous other recent laws 
and Executive Orders addressing the use of AI in the U.S., the 
purposes of this act made clear that its purpose through the 
Initiative was a comprehensive national strategy led by the 
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recently, in October 2023, President Biden 
issued an Executive Order on the Safe, Secure, 
and Trustworthy Development and Use of 
Artificial Intelligence, calling on federal 
agencies to lead both the advancement of AI 
development and efforts to mitigate risks 
related to its development and use. It also 
sets new policies and principles for the 
responsible development and use of AI.11 In 
general, these efforts have not been specific 
to natural hazard modeling.12  

Some agencies also have individual AI 
strategies. For example, in 2020, NOAA 
published two strategies. The NOAA Data 
Strategy: Maximizing the Value of NOAA Data 
seeks to ensure “readiness for artificial 
intelligence, machine learning, analytics, and 
other data science techniques,” while the 
NOAA Artificial Intelligence Strategy: Analytics 
for Next-Generation Earth Science seeks to 
advance the national AI strategy by 
strengthening coordination, operational 
capabilities, workforce proficiency, and 
multisector partnerships within and beyond 
NOAA.13 These initiatives funded items such 

 
National Artificial Intelligence Initiative Office. 15 U.S.C. §§ 
9411(a) and 9412. 
11Exec. Order No. 14110, Safe, Secure, and Trustworthy 
Development and Use of Artificial Intelligence (Oct. 30, 2023), 
88 Fed. Reg. 75,191 (Nov. 1, 2023). 
12One exception was in December of 2022, Congress enacted 
the Flood Level Observation, Operations, and Decision Support 
Act, or FLOODS Act. The FLOODS Act included a single provision 
that would support the integration of AI in natural hazard 
forecasting. It established a Hydrologic Research Fellowship 
Program within NOAA and prioritized the research fellows work 
which may include, among other priorities “apply[ing] artificial 
intelligence and machine learning capabilities to advance 
existing hydrologic modeling capabilities.“ The Flood Level 
Observation, Operations, and Decision Support Act, Pub. L. No. 
117-316, § 14, 136 Stat. 4406, 4415 (2022), to be codified at 15 
U.S.C. § 9709(b)(7)(B). 
13These initiatives have been funded with appropriations from 
the Infrastructure Investment and Jobs Act, the Inflation 
Reduction Act of 2022, disaster relief supplemental 
appropriations, and annual appropriations laws. Infrastructure 

as supercomputing for developing weather 
and climate models, wildfire research and 
infrastructure, and flood mapping and 
forecasting.14 

Investment and Jobs Act (IIJA), Pub. L. No. 117-58, div. J, tit. II, 
135 Stat. 429, 1355-57 (2021), and see, e.g., Extending 
Government Funding and Delivering Emergency Assistance Act, 
Pub. L. No. 117-43, div. B, tit. II, 135 Stat. 344, 358 (2021), 
Consolidated Appropriations Act, 2023, Pub. L. No. 117-328, 
div. B, tit. I, 136 Stat. 4459, 4516-17 (2022).  
14For instance, the Infrastructure Investment and Jobs Act 
(IIJA) appropriated $672 million for these items. The 
appropriation provisions in the IIJA supporting research 
supercomputing infrastructure and wildfire infrastructure are 
to remain available until Sept. 30, 2024. The provision 
supporting wildfire prediction, detection, observation, 
modeling, and forecasting was for fiscal year 2022 only and the 
provision supporting coastal and inland flood mapping and 
forecasting was appropriated funds to be expended in equal 
amounts in each of fiscal years 2022 through 2026 (5 years). 
IIJA, Pub L. No. 117-58, 135 Stat. at 1356-57, Procurement, 
Acquisition, and Construction (PAC) for supercomputing at (2); 
Operations, Research, and Facilities (ORF) for wildfire research 
at (5), PAC for wildfire infrastructure at (1); and ORF for flood 
mapping and forecasting at (3), respectively. 
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2 Machine Learning May Significantly Enhance Natural Hazard 
Modeling

Machine learning has shown potential to 
significantly improve modeling capabilities for 
severe storms, hurricanes, floods, and 
wildfires. Machine learning is being used in at 
least one active, operational forecast model, 
for each of these natural hazards, according 
to agency officials and industry 
representatives. Other machine learning uses 
are getting close to operational 
demonstration, but most of the efforts to use 
machine learning for hazard models are still in 
research and development, according to 
agency officials. Machine learning can be used 
in many ways for modeling severe storms, 
hurricanes, floods, and wildfires and can lead 
to multiple benefits. In some research studies, 
machine learning has shown the potential to 
significantly speed up modeling results, 
leading to quicker forecasts and more timely 
responses that can save lives and property. 
Other research has suggested machine 
learning can increase the accuracy of models 
by more quickly incorporating and using data 
from existing sensors. We describe a range of 
these potential improvements, followed by a 
series of vignettes on how machine learning is 
being applied to each of the four hazards, 
from research efforts through operational 
forecast models. 

2.1 Machine learning may speed up 
forecasting 

Many traditional models repeatedly solve 
formulas based on the physics of the 
phenomenon being modeled (e.g., the flow of 
water or the spread of wildfire). Some of 
these calculations can take a long time to run 
and consume large amounts of energy. Two 
machine learning technologies—emulators 
and digital twins—could replace all or part of 
such models with components that require 
fewer calculations. These technologies have 
the potential to speed up predictions, reduce 
the cost of running the models, and reduce 
model uncertainty. 

Emulators are designed to approximate 
physical processes represented in physics-
based traditional models based on statistical 
patterns in the inputs and outputs of those 
models, as shown in figure 2. Once trained, 
they replace certain parts of the traditional 
models. Machine learning emulators vary in 
terms of their technical maturity. Emulators 
for natural hazard modeling are being widely 
researched but are generally still in 
development, although some private-sector 
companies are currently using emulators in 
modeling. One example is using an emulator 
to approximate rainfall for flood modeling.
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For severe storms, emulators can increase the 
speed and resolution of model predictions by 
replacing a component of the traditional 
model that slows down processing time. 
Traditional weather models can spend 30 to 
80 percent of their computation time 
estimating how energy from sunlight moves 
through the atmosphere. An emulator that 
was trained on the existing observations of 

this process generated this estimate about 
1,000 times faster than the traditional model. 
However, emulators initially require extensive 
training data, computational resources for 
that training data, and expertise to develop. 
Emulators also need to be tested under 
operational conditions to ensure their 
reliability. According to NOAA officials, these 
emulators are largely still in development.
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2.2 Machine learning may improve 
the use of data 

Machine learning offers multiple potential 
benefits related to better use of data. It could 
increase the speed of some modeling tasks, 
such as data assimilation and quality 

assurance. It can also quickly translate 
imagery data into usable numerical inputs for 

Looking forward: Digital twins 

Digital twins are like emulators in that they are representations of physical processes that rely on large amounts of data from real-
world observations, as shown in figure 3. However, as their name implies, they would represent multiple interrelated processes to 
create a (digital) “twin” of a natural hazard event. Digital twins for different applications vary in their level of maturity, but for the 
natural hazards we examined, they are still in an early research stage and require years of development. Digital twins for weather 
applications could use near-real-time observations to make much faster and higher-resolution predictions. This capability would 
allow decision-makers to see the impact of different scenarios faster, at different timescales, and with greater geographic 
specificity. For example, modelers are working to develop a wildfire digital twin to predict how a fire may respond to efforts to 
fight the fire.a Such a digital twin could help identify patterns of firefighting tanker plane deployment that best slow the spread of 
a fire. Digital twins need extensive training data to capture the range of potential hazard behavior. As a result, their predictions for 
rare but high-impact events could be inaccurate. 

aSeong-Jin Yun,  Jin-Woo Kwon, and Won-Tae Kim, “A Novel Digital Twin Architecture with Similarity-Based Hybrid Modeling for 
Supporting Dependable Disaster Management Systems,” Sensors, vol. 22 (2022): 1-16. 

Source: GAO analysis of scientific literature.  |  GAO-24-106213 
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a model.15 At the same time, preparing data 
for machine learning use can be a costly and 
labor-intensive process and machine learning 
can sometimes lead to inaccurate results 
when data sets are incomplete.16  

Improving data assimilation. Machine 
learning can speed up data assimilation—the 
process of updating forecast models by 
repeatedly integrating the most current 
environmental observations to best represent 
the initial conditions for a prediction (e.g. the 
condition of the atmosphere for storms and 
hurricanes). Faster data assimilation could 
allow models to use more data, such as 
satellite data that is significantly 
underutilized.17 This in turn would provide a 
more accurate picture of current conditions 
and should result in a more accurate forecast. 
Machine learning could also be used to 
produce model results more quickly. For 
example, in one study, a machine learning 
algorithm for assimilating satellite data used 
to model storms and hurricanes was able to 
process approximately 100 times as much 
data as the non-machine learning approach.18 
Several studies have shown benefits of using 
machine learning to enhance data 
assimilation, but it has yet to be implemented 
operationally, according to NOAA officials. 

 
15Sarah M. Griffin, Anthony Wimmers, and Christopher S. 
Velden, “Predicting Rapid Intensification in North Atlantic and 
Eastern North Pacific Tropical Cyclones Using a Convolutional 
Neural Network,” Weather and Forecasting. vol. 37 (2022): 
1333-1355. https://doi.org/10.1175/WAF-D-21-0194.1.  
16Zihung Sun et al. “A Review of Earth Artificial Intelligence,” 
Computers & Geosciences, vol. 159 (2022): 1-16. 
https://doi.org/10.1016/j.cageo.2022.105034.  
17For example, the traditional weather model that drives 
severe storm and hurricane prediction currently uses only 1 to 

Increasing the speed of quality assurance 
review. Machine learning could also improve 
the use of data by speeding up the quality 
assurance and quality control (QA/QC) 
processes used for natural hazard models. 
QA/QC is a pre-processing step to review 
incoming observations and ensure that 
inaccurate or unreliable data do not influence 
models. With NOAA hurricane data, pre-
processing can delay transmission of new 
data to hurricane models by up to 30 
minutes. Because the volume of data 
gathered is increasing, NOAA expects this 
delay to generally increase and that they will 
need to use machine learning to flag potential 
inaccuracies in incoming data for human 
review. By decreasing the amount of time 
required for QA/QC, NOAA officials said they 

3 percent of relevant available satellite data due in part to its 
computational limits. 
18Eric S. Maddy and S. A. Boukabara, “MIIDAPS-AI: An 
Explainable Machine-Learning Algorithm for Infrared and 
Microwave Remote Sensing and Data Assimilation 
Preprocessing - Application to LEO and GEO Sensors,” IEEE 
Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, vol. 14 (2021): 8606-8616. 
https://doi.org/10.1109/JSTARS.2021.3104389.  

Looking forward: Generative AI and Flood 
Modeling 

One expert we spoke with described how generative AI 
may be able to use textual reports of rainfall and flooding 
from across the globe and learn the relationship between 
the rainfall reports and the likelihood of neighborhood 
flooding. According to the expert, a user could ask a 
chatbot linked to such a model whether a recent storm in 
a city will lead to floods in a certain neighborhood. If 
enough rainfall reports are published online about that 
storm event, the expert said the answer a chatbot 
provides now is surprisingly accurate. Combining a 
generative AI chatbot that anyone could access via the 
internet with machine learning flood models could 
provide forecasts to people who may otherwise lack 
access to traditional real-time flood monitoring networks, 
such as in some lesser developed countries. 

Source: Expert meeting and GAO analysis of scientific literature.  |  GAO-24-
106213 

https://doi.org/10.1175/WAF-D-21-0194.1
https://doi.org/10.1016/j.cageo.2022.105034
https://doi.org/10.1109/JSTARS.2021.3104389
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hope machine learning will improve the use 
of data by their hurricane models.  

Expanding use of satellite imagery. In a 
research setting, machine learning can be 
used to translate satellite imagery into 
numerical probability outputs that can be 
used to forecast hurricane intensity. For 
example, a machine learning model called AI-
RI (RI is for “rapid intensification”) can expand 
use of satellite imagery of a hurricane’s 
structure to predict the probability of a 
hurricane rapidly gaining in strength within 12 
to 72 hours. Rapid hurricane intensification is 
difficult for traditional models to forecast, but 
it is key for potentially life-saving decisions, 
such as when to issue an evacuation order. 
For wildfires, researchers have used machine 
learning to combine satellite imagery with 
existing ground surveys to estimate the 
amount of vegetation and other fuel in areas 
where data were sparse or outdated. In one 
study, machine learning use improved the 
accuracy of wildfire model estimates by 38 
percent.19 These machine learning 
applications are also still in the research 
stage, but some are close to being 
operational, including AI-RI, according to 
researchers.  

Drawbacks. Although machine learning could 
help some aspects of data use in modeling, it 
also can require extensive up-front work to 
ensure the data are readily usable by machine 
learning. Machine learning can initially 
require large amounts of training data in a 
specific format, but there is currently a lack of 

 
19Amy L. DeCastro et al., “A Computationally Efficient Method 
for Updating Fuel Inputs for Wildfire Behavior Models Using 
Sentinel Imagery and Random Forest Classification,” Remote 
Sensing vol. 14, no. 6 (2022): 1-12, 
https://doi.org/10.3390/rs14061447.  

“benchmarked” environmental data sets 
formatted and ready for machine learning 
training.20 Pre-processing these data to make 
them “AI ready” requires input from 
researchers and modelers who are versed in 
both machine learning and the specific hazard 
being modeled and can be costly and time 
consuming. In addition, machine learning 
modeling based on data sets that aren’t “AI 
ready” can sometimes lead to results worse 
than what a traditional modeling approach 
would yield (see text box). We discuss 
multiple data-related challenges later in this 
report.  

2.3 Machine learning may improve 
predictions in the absence of data 

Machine learning has the potential to reduce 
uncertainty in some situations where data 
don’t exist or are insufficient by creating 
plausible synthetic data based on prior 
information. Synthetic data are new data 
generated by machine learning models after 

20M.G. Schultz et al., “Can Deep Learning Beat Numerical 
Weather Prediction?” Philosophical Transactions A, vol. 37 
(2020): 1-22. https://doi.org/10.1098/rsta.2020.0097. 

Key concept: Overfitting 

Overfitting can occur when there is insufficient training 
data to represent all conditions that could be modeled, 
the data contain too much irrelevant or “noisy” data, or a 
model is overly complex and learns too much from the 
irrelevant data. A model that is overfit does not produce 
reliable predictions because it describes a limited set of 
hazard conditions that cannot be generalized to hazard 
scenarios that differ from the training data set. If machine 
learning applications used for hazard modeling are built 
without sufficient training data and domain expertise, 
they are more likely than traditional models to “overfit” to 
a particular set of data. 

Source: GAO analysis of scientific literature.  |  GAO-24-106213 
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they have been trained on a data set of 
historical, real-world weather conditions. 
These data may be useful for modeling in 
locations that lack reported data, are difficult 
to track in real time (e.g., fuel moisture data), 
or are sparsely populated (e.g., data on the 
distribution of wildfire fuel).  

For example, researchers have developed a 
machine learning algorithm that may be able 
to recreate radar observations of severe 
storms from satellite data for use in 
traditional models. These synthetic 
observations may be able to extend “radar” 
coverage to areas that currently lack it, such 
as mountainous areas in the western U.S.21 
However, this method still requires domain 
expertise of the simulated hazards, extensive 
training (and possible retraining) of the 
machine learning algorithm, and further 
research to confirm that the algorithm is 
generalizable to areas other than where it 
was trained. 

2.4 Machine learning can help 
leverage multiple models to improve 
predictions 

Machine learning has the potential to 
improve ensemble modeling. Ensemble 
modeling can reduce the uncertainty in model 
predictions by using multiple models (rather 
than one) and combining their predictions. 

 
21In this study the researchers trained a machine learning 
algorithm on the occurrence of lightning observed in the tops 
of clouds by satellites with radar observations from multiple 
sources. Once the algorithm learned how lightning occurrence 
corresponded to radar observations, it could create “synthetic” 
radar observations for severe storms that lacked radar 
coverage by using the relationship between cloud-top lightning 
flashes and radar observations of severe storms. Kyle A. 
Hilburn, Imme Ebert-Uphoff, and Steven D Miller, 
“Development and Interpretation of a Neural-Network-Based 

This enables modelers to better represent the 
ways hazard may behave. This approach 
enables a larger range of potential outcomes 
to be forecast which helps to determine the 
most likely outcome. The result of ensemble 
models is generally a better forecast than that 
of a single model run. However, because of 
computational resource limits in traditional 
modeling, the number of model projections 
an ensemble model can incorporate is 
generally limited to 20 to 50 projections.22 
Studies indicate that because machine 
learning can use fewer computational 
resources than traditional models, machine 
learning may be able to create ensembles 
with hundreds of models, which could reduce 
uncertainty and produce more reliable 
forecasts. However, the machine learning 
techniques used to create these especially 
large ensemble models are more complex, 
harder to train, and potentially harder to 
understand and troubleshoot than other 
machine learning methods.  

Another machine learning technique to 
improve ensemble forecasting, which is more 
efficient than traditional methods of 
ensemble modeling, uses machine learning to 
improve the post-processing and combination 
of ensemble model results. However, one 
study did not show large improvements in 
short-term predictions as a result of using 

Synthetic Radar Reflectivity Estimator Using GOES-R Satellite 
Observations,” Journal of Applied Meteorology and 
Climatology, vol. 60 (2021): 3-21. 
https://doi.org/10.1175/JAMC-D-20-0084.1. 
22Kirsten I. Tempest, George C. Craig, and Jonas R. Brehmer, 
“Convergence of Forecast Distributions in a 100,000-member 
Idealised Convective-scale Ensemble,” Quarterly Journal of the 
Royal Meteorological Society vol. 149 (2023): 677-702. 
https://doi.org/10.1002/qj.4410.    

https://doi.org/10.1175/JAMC-D-20-0084.1
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machine learning for post-processing.23  
Machine learning ensemble applications are 
still in the research stage, according to NOAA 
officials. 

 
23Vladimir M. Krasnopolsky and Y. Lin, “A Neural Network 
Nonlinear Multimodel Ensemble to Improve Precipitation 

Forecasts over Continental US,” Advances in Meteorology, 
(2012): 1-11. https://doi.org/10.1155/2012/649450. 

Looking forward: climate change 

Machine learning models depend on the availability of 
historical training data that are relevant to current 
environmental conditions. If climate change significantly 
alters the behavior of real-world natural hazards over time 
(e.g., the average hurricane becomes stronger, rainfall 
patterns across the U.S. change), then historical training 
data may not represent the hazard characteristics as 
accurately. It is not yet clear the extent to which this 
complication might affect the utility of machine learning 
models nor how best to mitigate it. 

Source: GAO analysis of scientific literature and expert interview.  |  GAO-24-
106213 
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Severe Storms
Severe storms can be difficult to model because their 
features (e.g. tornadoes, hail, and strong wind) occur over 
a small area and can intensify within minutes. Traditional 
severe storm models are not able to predict at this small 
of a scale and typically only provide hourly forecasts.

Machine learning has the potential to improve 
forecasting by allowing modelers to incorporate larger 
data sets, discover new relationships in the data, correct 
bias, and produce faster and more frequent forecasts. 
One of the most common uses of machine learning to 
severe storm models is to refine the output of traditional 
models, also known as post-processing.

Benefits of Machine Learning
Machine learning models have been able to address 
some key limitations of traditional severe storm modeling. 
For example, studies have shown that, once trained, 
machine learning models produce quicker predictions 
than traditional models. In addition, machine learning 
can uncover relationships within data, which could help 
scientists find new features that were not previously 
considered in a model.

The following are two of the studies we found 
demonstrating the potential benefits of machine learning 
for severe storm forecasting: 

 ● To predict hail, scientists used isotonic regression, 
which identifies relationships between a predicted and 
observed value, and random forest, which classifies data 
into groups to measure relationships, based machine 
learning models trained on traditional model output and 
observational data. The resulting forecasts were more 
reliable and had lower bias than traditional methods.24

 ● Scientists used a random forest-based machine learning 
model trained on data from traditional models and storm 
reports to produce better forecasts of severe hail and 
wind than a traditional model. However, the traditional 
model performed better for tornadoes than the machine 
learning model.25

Operational Use
Machine learning use for severe storm modeling 
is still largely in the research and development 
phase. One exception is ProbSevere (version 
2), which is a machine learning model that has 
improved forecasters’ ability to issue warnings 
of severe thunderstorms and tornadoes. 
Forecaster feedback suggests that ProbSevere 
allows them to warn of severe weather about 5 
to 10 minutes earlier than they otherwise would 
have, providing more time to prepare for these 
hazards.26 However, more research is needed 
to quantify exactly how ProbSevere affects lead 
time. Forecasters who evaluated the model 
said it increased their confidence in issuing 
warnings 95 percent of the time and increased 
lead time 76 percent of the time. Forecasters 
at the National Weather Service currently 
use ProbSevere as an additional tool when 
predicting severe weather.

Limitations of Machine Learning
Many types of machine learning models rely 
on traditional model output for training data, 
which could cause the machine learning 
models to have errors as a result of the existing 
errors within traditional models. Machine 
learning models can also be difficult to make 
generalizable which means their performance 
may vary based on location.

Source: Gavin/stock.adobe.com.  |  GAO-24-106213
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24Amanda Burke et al., “Calibration of Machine Learning-Based Probabilistic Hail Predictions for Operational Forecasting,” Weather and Forecasting, 
vol. 35, no. 1 (2020): 149-168. https://doi.org/10.1175/WAF-D-19-0105.1.
25Eric D. Loken, Adam J. Clark, and Christopher D. Karstens, “Generating Probabilistic Next-Day Severe Weather Forecasts from Convection-Allowing 
Ensembles Using Random Forests,” Weather and Forecasting, vol. 35, no. 4 (2020): 1605-1631. https://doi.org/10.1175/WAF-D-19-0258.1.
26John L. Cintineo et al., “NOAA ProbSevere v2.0 ProbHail, ProbWind, and ProbTor,” Weather and Forecasting, vol. 35, no. 4 (2020): 1523-1543. 
https://doi.org/10.1175/WAF-D-19-0242.1.
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Hurricanes
Hurricanes are difficult to forecast due to their 
complex physical processes and interactions with 
the environment. Traditional hurricane models 
have improved in the past few decades, especially 
for forecasting the path of a hurricane. However, 
forecasting when a hurricane will form and how 
intense it will become remains a challenge.

Benefits of Machine Learning
Machine learning has shown promise in helping to 
address some of the key limitations of traditional 
hurricane modeling. For example, studies have 
shown that machine learning models have provided 
more accurate hurricane intensity forecasts and 
reduced forecast lead time. Machine learning has also 
enhanced research and understanding of hurricanes 
by discovering new relationships in data. Machine 
learning models can also incorporate more data and 
decipher patterns that traditional techniques may miss.

The following are two of the studies we found that 
demonstrate these potential benefits:

 ● To predict hurricane intensity, scientists used a 
machine learning model based on a “multi-layer 
perceptron”—a simple neural network that learns 
complex, non-linear relationships in large datasets—
and trained on traditional model output and 
observational data. It produced lower forecast error 
and correctly identified more rapid intensification 
events than a traditional model it was compared to.27

 ● To predict the locations of a hurricane’s maximum 
wind speeds and wind radii, scientists used a 
convolutional neural network—which is structured to 
detect patterns and features in images—trained on 
satellite data and global track datasets. The model 
reduced forecast error of a traditional wind radii 
estimation method by 32 percent.28

Limitations of Machine Learning
Machine learning shares some of the limitations of 
traditional numerical weather prediction models, 
such as a reliance on large amounts of data and 
high computational costs. Machine learning models 
also may perform worse than traditional models in 
forecasting high-intensity hurricanes because there 
are not enough data for them to train on.

Operational Use
Despite its potential benefits, machine learning 
does not yet appear to be widely used for 
hurricane forecasting and is still largely in the 
research and development phase. One exception 
is the Statistical Hurricane Intensity Prediction 
Scheme (SHIPS), which uses a simple form of 
machine learning to more accurately predict rapid 
intensification. SHIPS has historically outperformed 
most operational hurricane intensity models 
through the mid-2010s and still provide skillful 
intensity guidance. In 2021, it was the best of 48 
models evaluated by the National Hurricane Center 
at providing intensity guidance for hurricanes 
in the Pacific at longer lead times. The center 
currently uses SHIPS, along with other models, to 
help forecasters predict hurricane intensity.

27Wenwei Xu et al., “Deep Learning Experiments for Tropical Cyclone Intensity 
Forecasts,” Weather and Forecasting, vol. 36 (2021): 1453–1470. https://doi.
org/10.1175/WAF-D-20-0104.1.
28Jing-Yi Zhuo and Zhe-Min Tan, “Physics-Augmented Deep Learning to 
Improve Tropical Cyclone Intensity and Size Estimation from Satellite Imagery,” 
Monthly Weather Review, vol. 149 (2021): 2097-2113. https://doi.org/10.1175/
MWR-D-20-0333.1.
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Floods
Floods can be very difficult to forecast with 
traditional models, requiring complex data inputs 
and equations. These factors result in long run times 
for traditional flood models, which makes them less 
useful for sudden events, such as flash floods.

Benefits of Machine Learning
Machine learning has the potential to model floods 
based only on historical data and current observations 
and without the complex equations of traditional 
models. It therefore shows promise in helping to 
address some of traditional modeling’s key limitations. 
For example, machine learning models can be 
quicker to develop and, once trained, use far fewer 
computational resources. They can provide predictions 
faster than traditional models because they require 
fewer computing resources, making them more useful 
for flash floods.

In addition, machine learning may be able to analyze 
large data sets for insights into causes of flooding, 
which could lead to improved traditional models. One 
type of machine learning algorithm (artificial neural 
networks) can also deal with incomplete data sets, 
a major challenge for all environmental models. And 
machine learning models may be able to incorporate 
certain sources of data—such as satellite and road 
camera images—more efficiently than traditional 
models, according to researchers we interviewed.

The following describes three of the studies we found 
that demonstrate these potential benefits:

 ● A model using “multilayer perceptrons” has predicted 
water levels during a flash flood. In one study, the 
model was able to make real-time predictions of 
maximum water levels in an urban flooding scenario, 
which traditional models struggle to do.29

 ● A convolutional neural networks has been used to 
predict the depth and extent of flooding throughout 
a flood event. In one study, the network was able 
to predict the depth, size, and location of a flood 

from a relatively small amount of data, and 
more accurately than a commonly used type of 
traditional model.30

 ● A generative adversarial network has been used 
to predict maximum flood extent and depth based 
solely on rainfall images. Such models have 
been able to predict flood depth with reasonable 
accuracy, but they have struggled with shallower 
flooding.

Limitations of Machine Learning
Machine learning is often unable to extrapolate from 
its training data to new situations, an issue known 
as the “generalization problem.” For example, some 
machine learning algorithms may perform well for 
short-term but not long-term predictions, or for 
lower flood volumes but not higher volumes, or for 
locations without prior flood data.

Operational Use
In the federal government, current flood models 
do not use machine learning, according to agency 
officials. In the private sector, one company used 
machine learning to reduce its computational 
costs for flood modeling by completely replacing 
a traditional flood model with a machine learning 
model. This change allowed the model to be applied 
on a larger scale than before. During the 2021 
monsoon season in India and Bangladesh, the model 
outperformed the traditional model and enabled the 
company to help send 100 million alerts to people in 
flooded areas and to relevant authorities.31

Source: oobqoo/stock.adobe.com.  |  GAO-24-106213

29Simon Berkhahn, Lothar Fuchs, and Insa Neuweiler, “An Ensemble Neural Network Model for Real-Time Prediction of Urban Floods,” Journal of 
Hydrology, vol. 575, (2019): 743-754. https://doi.org/10.1016/j.jhydrol.2019.05.066.  
30Hossein Hosseiny, “A Deep Learning Model for Predicting River Flood Depth and Extent,” Environmental Modelling & Software, vol. 145, (2021): 
1-7. https://doi.org/10.1016/jenvsoft.2021.105186. 
31Sella Nevo et al. “Flood Forecasting with Machine Learning Models in an Operational Framework,” Hydrology and Earth System Sciences, vol. 36, 
(2022): 4013-4032. https://doi.org/10.5194/hess-26-4013-2022.
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Traditional, physics-based models of wildfire use 
equations describing canopy biomass, heat transfer, 
and fluid mechanics to model fire behavior in space 
and time. These models demand detailed data sets 
on such factors as the location and dimensions of 
trees or fuel. These data are difficult to obtain for 
large areas, and the resulting models often require 
too much computing power to run in real-time. 
Some other traditional models are faster and can 
be adequate for large areas, but they are often 
less accurate because they leave out some of the 
complexity of wildfire spread

Benefits of Machine Learning
According to wildfire researchers we interviewed, the 
majority of machine learning applications to wildfire 
modeling have been for model inputs. Applying 
machine learning to wildfire spread models is a 
promising research area still in the early stages of 
development. 

Machine learning techniques may help address 
some of traditional modeling’s key limitations. For 
example, researchers have used machine learning to 
better estimate fuel data based on multiple sources, 
thereby improving inputs to traditional models with 
more updated data. Others have replaced model 
components with a machine learning emulator, leading 
to faster predictions. And they have improved model 
outputs by overlaying historical information onto an 
ongoing fire, providing insight into where firefighting 
activities could be more successful based on past 
fires. Machine learning can also generally make more 
effective use of a wider variety of data.

The following describes three of the studies we found 
that demonstrate these potential benefits:

 ● One study trained random forest algorithms on radar 
data from satellites, data on land cover, and tree 
mortality surveys. It created more accurate estimates 
of wildfire fuel than previous estimates, although often 
did not correctly classify clusters of dead trees.32

 ● A type of K-nearest neighbor algorithm called 
“SMOTE” has been used to generate synthetic 
data to model large wildfires. Since these 
wildfires occur infrequently, this could address 
the challenge of a lack of training data for other 
machine learning models.

 ● Convolutional neural networks can learn spatial 
relationships and are used to predict how a 
forest fire will evolve. One study also showed 
they could be useful for detecting fires using 
satellite images.33 However, they are harder to 
interpret than other models.

Limitations of Machine Learning
Machine learning can be expensive and difficult to 
scale. It requires a large amount of training data, 
which are frequently unavailable for wildfires, and 
significant computing power during training. Machine 
learning accuracy also requires domain expertise in 
wildfire research to ensure realistic modeling.

Operational Use
U.S. Forest Service officials told us three of their six 
models use machine learning. One of them, Potential 
Control Locations, was used in a 2022 wildfire in 
Colorado and discovered that the western side of 
the operating area offered a higher probability of 
success for controlling the fire. Responders used 
this information to plan their response and deploy 
resources to contain the fire.

Source: mbafai/stock.adobe.com.  |  GAO-24-106213

32Amy L. DeCastro et al., “A Computationally Efficient Method for Updating Fuel Inputs for Wildfire Behavior Models Using Sentinel Imagery and 
Random Forest Classification,” Remote Sensing, vol. 14 (2022): 1-12. https://doi.org/10.3390/rs14061447.
33Piyush Jain et al., “A Review of Machine Learning Applications in Wildfire Science and Management,” Environmental Review, vol. 28 (2020): 
478–505. https://doi.org/10.1139/er-2020-0019. 
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3 Challenges to Applying Machine Learning in Natural Hazard 
Modeling

Using the information we gathered from 
agency officials, academic researchers, 
industry representatives, and the scientific 
literature, we identified several challenges 
affecting the development and use of 
machine learning for modeling severe storms, 
hurricanes, flood, and wildfires. Some of 
these challenges may slow the adoption of 
machine learning technologies, hinder their 
use, or lead to inequitable outcomes across 
society. 

3.1 Data gaps, bias, and 
incompatibility 

The development and performance of 
machine learning models depend on data. If 
the necessary data are missing or flawed, it 
can hinder the use of the technology for its 
intended purpose. We identified three broad 
categories of data challenges: gaps in 
observational data, incompatible data, and 
difficulty accessing data. Addressing these 
issues could improve forecasting of severe 
storms, hurricanes, floods, and wildfires. 

3.1.1 Observational data gaps 

Data gaps (insufficient data) have long posed 
challenges for natural hazard modeling. 
Availability of observational infrastructure, 
rarity of certain weather events, and limited 
access to certain data are common challenges 
for both traditional and machine learning 
modeling. However, data gaps may pose 
more challenges for machine learning models, 
in part because of the models’ complexity. For 
example, using some machine learning 
technologies requires much more effort to 

understand why and when they produce 
unreliable or inaccurate results. With 
traditional models, forecasters and decision-
makers may sufficiently understand how the 
models operate to interpret their outputs and 
recognize when they are usable, to what 
extent, and whether there may be flaws in 
the data the model relies on. For example, 
Forest Service officials told us that wildfire 
expertise can compensate for flaws in 
traditional models because those who 
understand the physical principles 
programmed into the models can recognize 
when the model makes a prediction at odds 
with those principles. In contrast, some 
machine learning models are based on 
patterns the algorithm finds in the data, and 
these patterns may not have a basis in 
previously understood physical processes.  

The following are key gaps in observational 
data.  

• Geographic gaps. Observational 
infrastructure (e.g., weather stations and 
stream gauges) tend to be located where 
extreme events are expected to happen, 
according to an expert. This limits model 
usability in areas where natural hazards 
may not have been historically frequent. 

For severe storms, there are more data 
for use in machine learning models in 
locations with greater population 
densities, according to an atmospheric 
research scientist familiar with machine 
learning applications. This could reduce 
the accuracy of such models in rural 
areas. 
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For hurricanes, historical records contain 
more data on the Atlantic basin than on 
the Pacific, according to hurricane 
researchers. As a result, machine learning 
models trained on these data will be less 
accurate for Pacific hurricanes. 

For floods, some areas prone to flooding 
have less observational data available for 
modeling. For example, there are fewer 
ground-based stations that collect data at 
higher elevations, which can cause spatial 
“blind spots” and provide inadequate 
representation and increased model error 
within mountainous regions. 

For wildfires, some machine learning 
models are accurate, but only in the local 
context on which they are trained, Forest 
Service officials told us. These models 
would be of little use in other locations. 
Traditional models based on wildfire 
physics have accuracy limitations but are 
usable across geographic locations with 
few modifications. 

• Data availability. A variety of factors limit 
data availability. For example, some 
systems do not readily capture certain 
data, data are limited for rare natural 
hazard events, and some ground and 
satellite data are only obtainable 
intermittently. These issues limit the data 
available to train machine learning 
models for severe storms, hurricanes, 
floods, and wildfires.  

For severe storms, human-collected 
observational data are needed for AI 
models of tornadoes, according to NOAA 
officials at the National Severe Storms 
Laboratory. For example, because radar 
have difficulty detecting tornadoes, only 
about 45 percent of tornadoes are 
reported, which degrades the quality of 

the forecasts generated by AI, according 
to one expert. According to NOAA 
officials, better data would improve 
machine learning’s ability to detect 
patterns in the physical processes leading 
to storm hazards. 

For hurricanes, due in part to intermittent 
satellite data, observations of the needed 
atmospheric variables for hurricane 
forecasting are not consistently available 
at all locations on the earth or at all 
locations in and around the hurricane. 
This limits data available for forecasting. 

For floods, flood events are generally 
infrequent, which limits the number of 
recorded events that can be used for 
machine learning model training, 
according to USGS officials. Additionally, a 
flood expert we spoke with told us that 
sensors used for data collection can get 
washed away during floods, limiting the 
availability of some important data.  

For wildfires, information about ground 
conditions—such as vegetation—is used 
to detect and predict wildfire behavior. 
However, according to academic 
researchers, the national database for 
fuels data—models created using field 
data, satellite imagery, and knowledge of 
related biological and physical 
properties—is only updated every 3 to 5 
years, and therefore may be out of date.  

• Missing historical data. Machine learning 
model training data need to be 
substantial and adequate for models to 
learn patterns and perform well. Having 
access to complete and accurate 
historical data that represent conditions 
appropriately is essential to model 
performance. 
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For severe storms, archives of historical 
data required to train machine learning 
models to perform well are not always 
available, NOAA officials at the National 
Severe Storms Laboratory told us. 

For hurricanes, Category 5 hurricanes are 
a rare event and last for a short time, so 
the training data for that event type is 
limited, according to NOAA officials. The 
officials speculated that they only have 2- 
or 3-days’ worth of historical data for 
category 5 hurricanes. 

For floods, time series data are necessary 
for modeling. However, some machine 
learning algorithms consider events in a 
time series to be independent of each 
other. The Long Short Term Memory 
neural network model is popular for 
floods because it was designed to learn 
from long-term sequential data and can 
be used for time series forecasting. 
However, any gaps in the time series of 
the data (e.g., data missing for a certain 
day) will affect the model’s forecast. 

For wildfires, the National Interagency 
Fire Center (NIFC) compiles annual 
wildfire statistics for federal and state 
agencies. However, current reporting 
processes for official wildfire data did not 
begin until 1983. As a result, NIFC does 
not publicly share official data prior to 
1983. 

• Private data. Researchers said that some 
data that could be used for training or 
modeling may be unavailable or 
inaccessible due to privacy restrictions. 

For floods, image data from municipally 
owned or operated camera systems that 

 
34President’s Council of Advisors on Science and 
Technology, Report to the President: Modernizing 

could be used for flood mapping may be 
inaccessible due to privacy concerns. 

For wildfires, researchers told us that they 
are unable to obtain data about fuel 
characteristics on private land. According 
to these researchers, the USGS collects 
these data but cannot share them with 
the research community because of 
privacy restrictions, limiting the data 
researchers can use for models. 

3.1.2 Data compatibility 

In some cases, the necessary data are 
available for modeling, but they are not 
compatible with different priorities, 
programming languages, or organizational 
standards. 

• Observation network priorities. Most 
national and individual observation 
networks in the U.S. are designed for use 
by agencies or organizations with a 
specific mission, and data from some of 
these sources can be unavailable to 
others. For example, a recent report from 
the President's Council of Advisors on 
Science and Technology on modernizing 
wildland firefighting recommended that 
the Department of Defense review and 
consider releasing classified space-based 
data containing incidental wildfire 
observations to the research community 
for use in wildfire modeling.34 In addition, 
an expert we spoke with from a private 
company told us that footage from 
security and city-based cameras would fill 
major data gaps in their flood modeling 
efforts but that those data are not 

Wildland Firefighting to Protect Our Firefighters 
(February. 2023). 
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obtainable for use outside their original 
intended purposes. 

• Programming language. Most machine 
learning algorithms are trained and used 
with Python code while some weather 
and climate models are written in 
FORTRAN.35 Converting these 
programming languages is possible but 
requires additional labor and other 
resources. 

• “AI-ready” data. Some agency officials 
and academic researchers we spoke with 
said that there are no unifying standards 
for how data are collected, labeled, or 
used (or made “AI ready”). For example, 
researchers we spoke with told us they 
are supervising a wildfire project that 
uses data from the Bureau of Land 
Management, NOAA, NASA, and the 
Forest Service, and none of these data are 
on the same scale, in the same format, or 
were compiled using the same standards. 
They told us that this compatibility issue 
is common and that it takes a lot of time 
to resolve. This issue exists for non-
machine learning models as well, but 
some solutions have already been 
developed to help address it. NOAA 
officials at the Center for Artificial 
Intelligence—an AI knowledge sharing 
center that works across NOAA offices—
told us that they are working to develop 
standards for AI-ready data. For example, 
they worked with Earth Science 
Information Partners, NASA, USGS, and 
others to develop a checklist for 
researchers to use when curating data for 
machine learning. The checklist includes 

 
35Python is a programming language that is based on 
traditional languages but is better suited for current 
operating systems. FORTRAN is a high-level 

items for data preparation, data quality, 
documentation, and data access. 
However, this effort is in its early stages 
and the impact the checklist has had on 
making data more usable, and the extent 
to which it is used, is unknown. 

3.2 Trust in machine learning 

Machine learning models are not always 
understandable by those who use them, 
which can reduce those users’ trust in their 
output. For example, it can be difficult to 
determine whether they are producing an 
inaccurate result compared to non-machine 
learning models and, if so, why. This difficulty 
can contribute to researcher and end-user 
hesitance to adopt machine learning models 
in some cases. Moreover, the high complexity 
of some machine learning techniques, such as 
deep learning, can make determining how 
they make predictions nearly impossible. 
Models referred to as “black box” models are 
those for which the inner workings are not 
transparent and understandable to users. 
Trust in black box models is traditionally 
based on cross-validation of the model’s 
performance. 

According to researchers at the National 
Center for Atmospheric Research, knowing 
the inner workings of a model is important for 
validating the model for scientific use, tuning 
model settings to maximize accuracy, and 
trusting that the model is working as 
designed. There is no single standard across 
organizations or sectors for what makes 

programming language developed in the 1950s for 
scientific and engineering applications.  
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machine learning trustworthy.36 We identified 
three dimensions that help build trust in 
machine learning models, also discussed in 
the GAO AI Accountability Framework.37 
Though these terms are sometimes used 
interchangeably, they have distinct qualities: 

• Transparent AI refers to making 
information about the data and decisions 
used to design develop, train, and 
operate the model, as well as information 
about the limitations of the model, 
accessible. According to the GAO AI 
Accountability Framework, transparency 
is important to detect errors or misuse 
and ensure equitable treatment of people 
affected by AI systems.  

• Interpretable AI refers to building the 
model in a way that enables a user to 
simply look at the model and understand 
its development and output. The GAO AI 
Accountability Framework identifies 
interpretability as necessary for human 
supervision of the model to ensure 
accountability. 

• Explainable AI refers to methods and 
techniques that produce accurate, 
explainable models of why and how an AI 
algorithm arrives at a specific decision. 
This process involves creating secondary 
methods or tools after the model has 
already been created in order to explain 
the original model. The GAO AI 

 
36According to officials at the National Science Foundation 
(NSF), there is no standard definition for trustworthy AI. 
Multiple research communities are exploring this complex 
topic. In addition, the National Institute of Standards and 
Technology (NIST) is conducting research, engaging 
stakeholders, and producing reports on the characteristics of 
trustworthy AI, available at https://www.nist.gov/trustworthy-
and-responsible-ai. NIST is partnering with other organizations 
to support initiatives on trustworthy AI. That includes a 

Accountability Framework states that a 
lack of explainability may limit confidence 
and trust in AI models. 

Some machine learning models have 
proprietary restrictions and limited 
information about data sources, which can 
hinder transparency, interpretability, and 
explainability. For example, companies and 
researchers may restrict sharing information 
about the design and structure of their 
algorithms or the source of data used to train 
the models. Officials at the Forest Service and 
the Department of Homeland Security’s 
Federal Emergency Management Agency told 
us that private companies they have worked 
with do not provide them with the details of 
their machine learning models, key 
descriptions of data variables used in the 
model, or data sources. According to NOAA 
officials, private companies are generally 
unwilling to share proprietary information, 
but this information is important for 
evaluating models’ performance.  

Some agencies have ongoing efforts to 
promote the development of machine 
learning systems that are trustworthy. For 
example, a NASA framework about the use of 
machine learning states that the basic 
elements of data and decisions must be 
available to tell a logical story of why a 
machine learning system is operating in a 
specific manner.38 The framework refers to 

partnership NSF on an Institute for Trustworthy AI in Law & 
Society. 
37GAO, Artificial Intelligence: An Accountability Framework for 
Federal Agencies and Other Entities, GAO-21-519SP 
(Washington, D.C.: June 30, 2021).   
38NASA, NASA Framework for the Ethical Use of Artificial 
Intelligence (AI), NASA/TM-20210012886 (Washington, D.C.: 
April 2021). 

https://www.nist.gov/trustworthy-and-responsible-ai
https://www.nist.gov/trustworthy-and-responsible-ai
https://www.gao.gov/products/gao-21-519sp
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explainable AI as a crucial feature of machine 
learning systems but notes that it is difficult 
to develop and incorporate. Other users of 
machine learning models, such as forecasters 
or state foresters, might prefer a different 
level of trust in machine learning models than 
researchers do. For example, according to the 
National Association of State Foresters, many 
state foresters are open to using machine 
learning models for wildfire prediction and 
response support, but only if the model is 
proven in an operational context. They do not 
want to use machine learning models that are 
still in the R&D stage due to safety concerns, 
but they also do not need to necessarily 
understand the inner workings of the models. 
Similarly, forecasters interviewed by the 
National Science Foundation (NSF) AI Institute 
for Research on Trustworthy AI in Weather, 
Climate, and Coastal Oceanography were 
more interested in the model input and 
evaluation than the inner workings of the 
models, researchers at the National Center 
for Atmospheric Research told us. National 
weather Service forecasters we interviewed 
similarly stated that they would be interested 
in using machine learning models if they had 
the opportunity to learn more about and test 
them. 

3.3 Limited coordination and 
collaboration 

Limited formal collaboration and partnership 
channels, along with competing priorities in 
certain sectors, also creates challenges for 
developing and adopting machine learning for 
natural hazard modeling, according to 
researchers and experts. For example: 

• Some end-users lack testing 
opportunities. Atmospheric research 
scientists emphasize the importance of 

communication between the person 
applying machine learning and the 
machine learning model developer to, for 
example, determine what kind of features 
are important and whether machine 
learning is necessary to obtain the 
information required. However, some 
NOAA forecasters told us the opportunity 
had not arisen to discuss or test any 
machine learning models with 
researchers. They told us that if machine 
learning model outputs were ready in 
near real-time and easily accessible to 
them, they would look at the use of 
machine learning models alongside their 
current operational model outputs. Other 
NOAA officials we spoke with confirmed 
that user feedback is challenging to 
acquire.  

• Interdisciplinary disconnect. 
Collaborating across disciplines can be 
challenging. For example, an expert we 
spoke with told us that the different 
review cycles for publication across 
disciplines hinder interdisciplinary 
collaborations because the timing is not 
aligned. Further, the type of journal 
researchers publish in has an impact on 
who sees their work. For example, a 
statistician might develop a new machine 
learning-based method for predicting 
wildfire spread and choose to publish it in 
a statistics-related journal. It is unlikely 
that researchers doing applied wildfire 
work would then read that journal and 
learn about the new method because it is 
outside of their field.  

• Competing objectives within 
organizations. Competing objectives 
within an organization can hinder the use 
of available resources. For example, 
Forest Service officials we spoke with told 
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us that differences between wildfire 
management goals and research goals 
can sometimes create missed 
opportunities for data sharing and 
research development. However, when 
researchers and practitioners collaborate, 
data and processes that align across goals 
can be designed.  

• Funding and technology transfer. 
According to NOAA officials, a lack of 
consistent funding and a historical lack of 
a formalized research-to-operations 
pipeline create barriers to collaboration. 
NOAA officials at the Global Systems 
Laboratory said that development of a 
model can stall because different stages 
of R&D are funded by different 
organizations or parts of institutions. 
These officials told us that advancing 
technology through this process can 
require understanding when funding will 
be available across multiple organizations. 
Further, according to these officials, it 
generally takes 10 years to transition a 
new tool through the research stages to 
operations, and the process is different 
across labs, even within NOAA. However, 
NOAA officials told us that the agency has 
put processes in place for developing 
transition plans that are roadmaps for the 
transition of R&D into operations and 
other uses. Transition plans aid in budget 
planning and help to accelerate research 
to operations. NOAA also has technology 
transfer specialists to facilitate the 
protection of intellectual property across 
all NOAA labs and programs. 

3.4 Workforce and resource needs 
create barriers to uptake of machine 
learning 

Knowledge gaps exist among machine 
learning experts and those with earth science 
domain expertise, which has hindered the 
development and applications of machine 
learning techniques to improve natural 
hazard forecasting. Agency officials, academic 
researchers, and industry representatives we 
spoke with told us that both machine learning 
expertise and domain expertise are needed 
for developing machine learning technologies 
for natural hazard modeling. However, the 
skills of various participants in the field are 
sometimes misaligned with professional 
needs. For example:  

• Developer knowledge of hazard 
modeling. Academic researchers noted 
that companies developing machine 
learning models for natural hazards vary 
in their emphasis on knowledge of the 
hazard versus knowledge of machine 
learning modeling, and some companies 
may be developing machine learning 
models without domain expertise. For 
example, academic researchers told us 
that some companies create models that 
do not capture or predict certain key 
factors important for predicting fire 
behavior, such as wind. Similarly, 
researchers with the Cooperative 
Institute for Research in the Atmosphere 
told us they have seen private sector 
machine learning models in which several 
physical laws were not taken into 
consideration, such as the fact that 
hurricanes have a low-pressure center.
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• Educational requirements for 
government scientists. NOAA officials 
said that educational requirements for 
government scientists are outdated and 
do not prepare a machine learning-ready 
workforce. For example, the U.S. Office of 
Personnel Management (OPM) General 
Schedule Qualification Standards for a 
meteorologist do not require any 
computer science or machine learning-
specific coursework, and only suggest it as 
optional coursework. This gap amplifies 
challenges related to trusting machine 
learning model output. Industry 
representatives told us that universities 
and the government could do more to 
better prepare the workforce by training 
them with machine learning-related skills. 

• Few professional developmental 
opportunities in machine learning. Some 
agency officials said that there are few 
professional developmental opportunities 
for training government scientists to 
integrate environmental data with 
machine learning workflows. For 
example, U.S. Army Corps of Engineers 
officials stated that they would like to use 
machine learning for flood modeling, but 
that extensive quality assurance and 
control evaluations, testing, and 
certification, as well as support and 
resources from management, are needed.  

• Federal hiring and retention. Agency 
officials told us that the general federal 
pay scale limitations and workforce 
location requirements makes it difficult to 
compete with other sectors to hire and 
retain highly qualified staff with machine 
learning experience. For example, 
according to officials, the salary they can 
offer for certain positions is generally 
lower than the salary for the same 

position in the private sector. To address 
this challenge, agency officials focus on 
hiring those with domain expertise and 
then teaching them computer science and 
machine learning skills, as agency officials 
consider this easier than teaching natural 
hazard science to a computer scientist.  

Resource needs also create challenges for 
federal agency use of machine learning. For 
example:  

• High costs for training machine learning 
models. Agency officials said that some 
machine learning technologies, such as 
emulators, require extensive 
computational resources for training that 
generally require the use of GPUs 
(graphical processing unit) rather than 
CPUs (central processing units). GPUs are 
ideal for training certain advanced 
machine learning algorithms but can be 
approximately 10 times more expensive. 
Private sector companies can have better 
access to GPUs than some agencies due 
to resource disparities. Some government 
agencies have created partnerships with 
private companies in order to leverage 
such resources. However, these 
partnerships can be challenging and 
limited for both sides due to agency 
preferences for their own proven 
technologies and variance in the level of 
private companies’ domain expertise. 

• Computational resources for running 
machine learning models. Limited 
computational resources create barriers 
for government agencies interested in 
leveraging machine learning technologies. 
Agency officials said that using machine 
learning models incurs massive up-front 
computing costs that can be prohibitive 
or otherwise strain computing 
infrastructure. For example, NASA 
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officials told is that the agency has a 
variety of computing assets that machine 
learning models can use, but some 
models require more computing power 
than is readily available. Forest Service 

officials told us they had to completely 
abandon a project because they did not 
have the computational resources needed 
to run a machine learning model they 
were developing.

 

Ethical considerations for machine learning in natural hazard modeling 

Private and public organizations have developed guidance on incorporating ethical principles such as fairness, accountability, 
transparency, and safety for machine learning use. For example, in June 2021, GAO published Artificial Intelligence: An 
Accountability Framework for Federal Agencies and Other Entities, identifying key practices for entities involved in the design, 
development, deployment, and monitoring of AI systems. These key practices, in part, intend to help entities mitigate negative 
risks that may arise from bias.  

Bias is not unique to machine learning systems, and achieving zero bias or risk in an AI system is not possible. The use of machine 
learning has the potential to amplify existing biases and concerns related to civil liberties, ethics, and social disparities. Below are 
several examples of how different biases intersect with ethics when using machine learning for natural hazard modeling: 

• Technical bias can develop in the algorithmic process of the AI system via system design choices and can reflect in the model 
output. For example, a machine learning algorithm designed to value or prioritize reducing economic loss from a flood event 
may signal emergency personnel to respond in areas that are more affluent or may prioritize mitigating damage to 
infrastructure. While the algorithm might perform well for its designed intent, it could lead to loss of human life if the flood 
event had a greater impact on less affluent areas. Responsible use of machine learning includes the prioritization of safety risks 
that have the potential of serious injury or death. 

• Interpretive bias comes from the implicit cognitive biases of individuals or groups who develop or use AI systems. For example, 
NOAA officials told us it is difficult to intuitively understand the machine learning model’s process, which can compromise 
perceptions of risk. Some forecasters use information from both traditional and machine learning models but may ignore a 
more accurate machine learning model output due to a lack of familiarity. Creating explainable and interpretable machine 
learning can provide insights into the functionality of the system and increase trust in its outputs, reducing the risk of harms 
related to interpretive bias. 

• Organizational bias stems from the procedures and practices of institutions that develop and use machine learning systems. It 
affects how organizations or research teams are structured and the control or design of decision-making processes. Some 
federal agency officials we spoke with told us that there is no standardized or codified process for assessing machine learning 
models during R&D or for transitioning them to operations. Organizations that use machine learning without robust procedures 
that fully assess and manage potential risks of the AI system can cause harm by deploying systems that are inaccurate or 
unreliable. 

GAO, Artificial Intelligence: An Accountability Framework for Federal Agencies and Other Entities, GAO-21-519SP (Washington, D.C.: June 2021).   

National Institute of Standards and Technology (NIST), Towards a Standard for Identifying and Managing Bias in Artificial Intelligence, Special 
Publication 1270 (March 2022). 

NIST, Artificial Intelligence Risk Management Framework (AI RMF 1.0), NIST AI 100-1 (January 2023). 

Source: GAO analysis of cited literature.  |  GAO-24-106213 

https://www.gao.gov/products/gao-21-519sp
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4 Policy Options to Help Enhance Benefits or Address Challenges of 
Using Machine Learning Technologies for Natural Hazard Modeling

We developed five policy options that 
policymakers—legislative bodies, government 
agencies, academia, industry, and other 
groups—could consider taking to help address 
challenges related to the development, 
implementation, and use of machine learning 
for modeling severe storms, hurricanes, 
floods, and wildfires. This is not an exhaustive 
list of policy options. We intend for these 
options to provide policymakers with a 
broader base of information for decision-
making. 

4.1 Facilitate improved data 
collection, sharing, and use 

Challenges addressed: Data gaps, bias, and 
incompatibility 

Government, academic, and private sector 
policymakers could attempt to mitigate data 
limitations by expanding data collection 
efforts, improving existing data sets, and 
facilitating the sharing of available data. 

According to GAO’s AI Accountability 
Framework, data used to train, test, and 
validate AI systems should be of sufficient 
quality and appropriate for the intended 
purpose to ensure the system produces 
consistent and accurate results.39 

Potential implementation approaches 

• Government policymakers could expand 
the use of existing observational data and 

 
39GAO-21-519SP. 

infrastructure to address data gaps and 
collect more, higher-resolution data. 

• Government policymakers could explore 
opportunities and tradeoffs associated 
with the expansion of observational 
infrastructure, such as radar stations or 
flood gauges, where data gaps are most 
significant or where additional data would 
be most useful, such as in rural or 
mountainous areas. 

• Government policymakers could expand 
researchers’ access to archived satellite 
data from defense and other government 
sources, as well  as from some private 
sources that are currently unavailable to 
researchers, where appropriate.  

• Government, academic, and private 
sector policymakers could ensure there 
are guidelines to make data sets AI ready 
and maintain them for both public- and 
private-sector researchers. This effort 
could build, in whole or in part, on the 
existing federal partnership to develop an 
AI-ready checklist for data sets (see 
section 3.1.2). 

Opportunities 

• Efforts to address data gaps within data 
sets can improve machine learning model 
performance. 

• Accessible data from a larger number of 
sources would improve the ability of 
researchers and groups to develop and 
test machine learning technologies. 

https://www.gao.gov/products/gao-21-519sp
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• Adopting AI-ready data standards could 
reduce resources needed to curate data, 
which could allow researchers to spend 
more time modeling and less time 
preparing data. 

Considerations 

• Expanding observational infrastructure 
can be expensive and could divert limited 
resources away from other efforts. 

• Agencies need to weigh the benefits of 
facilitating greater data sharing for 
natural hazard modeling purposes with 
ensuring protections for certain kinds of 
data. For example, making archived, 
defense-sensitive satellite data public 
could improve modeling outcomes but 
could also increase certain national 
security risks. Furthermore, use of some 
existing observational data, such as from 
traffic cameras, may be viewed as 
unethical or unlawful surveillance. 

• Risks related to data security and data 
privacy could increase as more kinds of 
data are shared more easily and in 
greater volume. 

• Data standards may impact research and 
innovation negatively if they are too strict 
because they could constrain machine 
learning researchers and developers to a 
few, potentially suboptimal, approaches 
for addressing their particular research 
questions. 

4.2 Expand machine learning 
education and training 

Challenges addressed: Workforce and 
resource needs 

Policymakers could adjust government 
requirements for certain science occupations 
and expand training opportunities to foster 
machine learning expertise within academia 
and the federal government. 

According to GAO’s AI Accountability 
Framework, recruiting, developing, and 
retaining personnel with multidisciplinary 
skills and experiences in design, development, 
deployment, assessment, and monitoring of 
AI systems should be a key practice for AI 
system governance. Furthermore, the 
framework highlights the importance of staff 
having the necessary training, resources, and 
domain expertise to fulfill their role. 

Potential implementation approaches 

• Government policymakers could update 
OPM professional education 
requirements for some government 
science positions to include machine 
learning-related coursework. 

• Academic policymakers could adjust 
certain physical science education 
curricula to allow greater flexibility to 
pursue data science, advanced statistics, 
and machine learning-related 
coursework. 

• Government policymakers could expand 
the capacity or number of centralized or 
federated learning and support centers 
that provide hands-on training to 
researchers and end-users who interact 
with machine learning technologies, 
increasing workforce capacities and 
developing relevant skill sets for current 
and potential government employees. 
Some agencies are currently invested in 
providing training and workforce 
development, such as through NOAA’s 
Cooperative Science Centers. 
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Opportunities 

• Updating OPM professional education 
requirements for relevant government 
science positions to include machine 
learning-related coursework would 
encourage academic institutions to adjust 
educational curricula accordingly and 
better prepare students to use machine 
learning in professional positions within 
government. 

• More robust machine learning-related 
education and training can better prepare 
both researchers and end-users in fields 
such as meteorology and climatology to 
develop and interact with these 
technologies. 

Considerations 

• Education and training reforms may need 
to be repeatedly adjusted, as 
technological change in this space can be 
rapid and unpredictable. 

• Establishing and expanding professional 
development and training opportunities 
throughout government may require 
substantial investment and might conflict 
with existing agency priorities or 
commitments. 

4.3 Address hiring and retention 
barriers and certain resource 
shortfalls 

Challenges addressed: Workforce and 
resource needs; limited coordination and 
collaboration 

Government policymakers could address 
staffing and resource issues by providing 
workforce incentives and investing in public-
private partnerships. 

According to GAO’s AI Accountability 
Framework, recruiting, developing, and 
retaining personnel with experience in the 
design, development, deployment, 
assessment, and monitoring of AI systems 
should be a key practice for AI system 
governance. Furthermore, the framework 
highlights how AI systems require appropriate 
technologies to ensure intended goals and 
objectives are achieved. 

Potential implementation approaches 

• Government policymakers could address 
general schedule (GS) pay scale 
limitations. This could include adopting a 
special salary rate, for certain scientist 
positions that include machine learning 
expertise, such as data scientists, or 
implementing additional workforce 
flexibilities to attract and retain technical 
talent, as appropriate for different 
agencies. 

• Government and private sector 
policymakers could expand the use of 
public-private partnerships through 
established legal mechanisms such as 
Cooperative Research and Development 
Agreements (CRADA) and authorities 
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similar to NASA’s Space Act 
Agreements.40

Opportunities 

• Providing workforce incentives to 
government employees for machine 
learning development could allow 
agencies to recruit new talent, reduce 
turnover, and enhance workforce 
capacities within the federal government. 

• Expanding public-private partnerships 
might help agencies overcome 
computational resource shortfalls without 
the need for larger investments in 
computing infrastructure and hardware. 
For example, NOAA’s Open Data 
Dissemination Program used CRADAs with 
major U.S. companies to migrate over 150 
government data sets to collaborators’ 
systems, dramatically increasing access to 
and use of such data, and storing the data 
next to cloud service providers’ 
computational resources.41 

• Expanding public-private partnerships 
helps industry draw upon government 
expertise. 

Considerations 

• Increasing salary limits for some GS 
employees would require increases to 
agency budgets or cuts to other budget 

 
40NASA has specific “other transactions” authority under the 
National Aeronautics and Space Act, 51 U.S.C. § 20113(e), to 
enter into agreements with diverse groups of people and 
organizations, both in the private and public sector, in order to 
meet wide-ranging NASA mission and program requirements 
and objectives. See also National Aeronautics and Space 
Administration Transition Authorization Act of 2017, Pub. L. No. 
115-10, § 841, 131 Stat. 72 (2017), 51 U.S.C. § 20113 note. 
41NOAA officials stated that providing open cloud access to 
data alongside computational resources improves efficiency 

items. According to agency officials, such 
increases allow agencies to hire at a 
higher salary but may lead to them being 
able to hire fewer people overall. 

• Expanding the use of public-private 
partnerships, rather than investing 
directly in government capacities, could 
magnify resource disparities between 
government and private industry and 
increase government reliance on the 
private sector for computing-related 
services. 

• Public-private partnerships that entail 
hosting government data on private 
sector storage systems may pose security 
risks for some sensitive information. 

4.4 Take steps to mitigate bias and 
foster trust in data and machine 
learning models 

Challenges addressed: Data gaps, bias, and 
incompatibility; ethical considerations for use 
of machine learning in natural hazard 
modeling; trust in machine learning 

Government policymakers could address 
issues related to bias and transparency in 

and scalability. According to NOAA, this data dissemination 
program became operational in 2020 with signed contracts 
with three cloud service providers. NOAA’s Open Data 
Dissemination Program provides open access to hundreds of 
datasets from across NOAA, including atmospheric, oceanic, 
fisheries, weather, climate, surface observations, emergency 
response imagery, forecasting products, and near real-time 
data. 
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machine learning algorithm development 
through targeted project governance. 

According to GAO’s AI Accountability 
Framework, robust AI-specific risk 
management practices can ensure 
governance at the organizational level, such 
as identification of potential biases and 
societal concerns resulting from AI systems. 
Furthermore, one of the key governance 
practices identified by the framework is 
promoting transparency by enabling external 
stakeholders to access information related to 
AI systems. The framework also notes that, to 
demonstrate quality and reliability, agencies 
should document how training data is 
collected, prepared, and updated. 

Potential implementation approaches 

• Government, academic, and private 
sector policymakers could establish 
efforts, including studies and evaluation, 
to better understand and mitigate various 
forms of bias in recent and historic data 
sets.  

• Government, academic, and private 
sector policymakers could support 
inclusion of a diverse array of 
stakeholders in data evaluation, model 
development, and testing. 

• Government, academic, and private 
sector policymakers could develop 
guidelines or best practices for 
documenting and publicly reporting 
training data choices as well as data 
provenance42, which can enable third-
party assessment of machine learning 
models. 

 
42In this context, we use the term “data provenance” to refer 
to documentation of data, such as unique identifiers for data 

Opportunities 

• Efforts to address bias within machine 
learning systems can reduce the 
likelihood of models negatively impacting 
certain communities, such as rural or 
poor communities. For example, 
observational data sets based on human 
reports of hail or tornadoes are inherently 
biased towards areas with higher 
populations and might create statistical 
bias in machine learning models to over-
predict corresponding weather events in 
urban areas and under-predict them for 
rural communities. 

• Acquiring diverse stakeholder 
perspectives throughout machine 
learning models’ life cycles can help 
reduce certain types of bias in data and 
models. 

• Fostering machine learning model 
transparency could improve end-user and 
decision-maker trust in these 
technologies, increasing acceptance for 
government and public use. 

Considerations 

• Embedding efforts to address bias 
throughout the model lifecycle may 
increase model costs and slow model 
development. 

4.5 Maintain status quo efforts 

Government policymakers could maintain 
existing policy efforts and organizational 

sets, prior use for machine learning, and contact information 
for appropriate subject matter experts for the data. 
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structures, along with existing strategic plans 
and agency commitments.  

The current U.S. national strategy on AI is 
largely established through laws and 
executive orders, including, but not limited to: 

• Advancing American AI Act. It was 
enacted most recently, and its intent is to 
encourage agency AI-related programs 
and initiatives; enhance the ability of the 
federal government to translate research 
advances into AI applications to 
modernize systems and assist agency 
leaders in fulfilling their missions; 
promote adoption of modernized 
business practices and advanced 
technologies across the federal 
government; and test and harness applied 
AI to enhance mission effectiveness.43 

• National Artificial Intelligence Initiative 
Act of 2020. This law includes the 
initiative that directs the President and 
agency heads to sustain support for AI 
research and development, support AI 
education and workforce training 
programs, support interdisciplinary 
research and education programs, plan 
and coordinate federal interagency AI 
activities, conduct outreach to diverse 
stakeholders, support a network of AI 
research institute, and support 
opportunities for international 

 
43The Advancing American AI Act was enacted as part of the 
James M. Inhofe National Defense Authorization Act for Fiscal 
Year 2023, Pub. L. No. 117-263, § 7222, 136 Stat. 3668, Division 
G, tit. LXXII, subtit. B (2022), to be codified at 40 U.S.C. § 11301 
note. 
44The National Artificial Intelligence Initiative Act of 2020 was 
enacted as Division E of the William M. (Mac) Thornberry 
National Defense Authorization Act for Fiscal Year 2021 (NDAA 

cooperation with strategic allies on AI-
related issues.44 

• AI in Government Act of 2020. This law 
will codify the establishment of the U.S. 
General Services Administration’s (GSA) 
AI Center of Excellence, directs the Office 
of Management and Budget to provide 
guidance for use of AI, and directs the 
OPM to update the occupational series 
for AI for federal employees. 45 

• Executive Order No. 14110: Safe, Secure, 
and Trustworthy Development and Use 
of Artificial Intelligence. This Executive 
Order establishes new policies and 
principles for AI in several categories 
including: safety and security; advancing 
equity and civil rights; protecting privacy 
and civil liberties; innovation; and 
advancing federal government use of 
AI. In addition, it calls on several agencies 
to develop standards, tools, and tests to 
help ensure that AI systems are safe, 
secure, and trustworthy.46 

• Executive Order No. 13960: Promoting 
the Use of Trustworthy Artificial 
Intelligence in the Federal Government. 
This Executive Order, among other things, 
establishes a common policy for 
implementing principles related to 
lawfulness, performance, accuracy, 
reliability, safety, resilience, 

FY21), Pub. L. No. 116-283, 134 Stat. 3388 (2020) and has been 
codified at 15 U.S.C. §§ 9401-9415. 
45The AI in Government Act of 2020 was enacted as Division U, 
tit. I of the Consolidated Appropriations Act, 2021, Pub. L. No. 
116-260, 134 Stat. 1182, 2286 (2020), to be codified at 40 
U.S.C. § 11301 note. 
46Exec. Order No. 14110, Safe Secure, and Trustworthy 
Development and Use of Artificial Intelligence (Oct. 30, 2023), 
88 Fed. Reg. 75,191 (Nov. 1, 2023). 
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understandability, responsibility, 
transparency, accountability, and 
monitoring. In addition, it directs agencies 
to catalog their AI use cases, and calls on 
the GSA and OPM to expand AI expertise 
at agencies across government. 47 

• Executive Order No. 13859: Maintaining 
American Leadership in Artificial 
Intelligence. This Executive Order directs 
federal agencies to, among other actions, 
promote sustained investment in AI 
research and development in 
collaboration with non-federal entities, 
enhance access to federal data and 
computing resources, reduce barriers to 
the use of AI technologies, ensure that 
technical standards minimize 
vulnerabilities, train the next generation 
of American AI researchers, and develop 
action plans to protect American 
advantages in critical AI technology 
development. 48 

Opportunities 

• Some agency efforts are already 
underway to address the specific 
challenges of using machine learning in 
natural hazard modeling. If these 
continue and agencies with natural 
hazard modeling responsibilities 
implement them, it could help address 
many of the challenges we describe and 
minimize potential negative outcomes of 
further policy interventions (as described 
in the considerations for other policy 
options above). 

Considerations 

• Although some status quo efforts direct 
agencies to take relevant actions that 
might address some challenges 
enumerated in this report, the extent to 
which agencies are meeting these 
commitments is largely unclear.  

• Status quo efforts as defined through 
laws and Executive Orders relevant to the 
U.S. national strategy on AI are general 
and may not fully address the specific 
challenges identified in this report. 

 

 
47Exec. Order No. 13960, Promoting the Use of Trustworthy 
Artificial Intelligence in the Federal Government (Dec. 3, 2020), 
85 Fed. Reg. 78,939 (Dec. 8, 2020). 

48Exec. Order No. 13859, Maintaining American Leadership in 
Artificial Intelligence (Feb. 11, 2019), 84 Fed. Reg. 3,967 (Feb. 
14, 2019). 
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5 Agency and Expert Comments 

We provided a draft of this report to the Department of Commerce, the Department of Defense, 
the Department of Energy, the Department of Homeland Security, the Department of the 
Interior, the National Aeronautics and Space Administration, the National Science Foundation, 
and the U.S. Department of Agriculture with a request for technical comments. We received 
technical comments from the Department of Commerce, the Department of Defense, and the 
Department of Homeland Security, which we incorporated as appropriate. 

 

We are sending copies of this report to the appropriate congressional committees, the relevant 
federal agencies, and other interested parties. This report will be available at no charge on the 
GAO website at https://www.gao.gov. 

If you or your staff members have any questions about this report, please contact Brian 
Bothwell at (202) 512-6888 or BothwellB@gao.gov. Contact points for our Offices of 
Congressional Relations and Public Affairs may be found on the last page of this report. GAO 
staff who made key contributions to this report are listed in Appendix III. 

 
Brian Bothwell, MS 
Director, 
Science, Technology Assessment, and Analytics 

https://www.gao.gov/
mailto:bothwellb@gao.gov
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Appendix I: Objectives, Scope, and Methodology

Objectives, Scope, and Methodology  

We describe our scope and methodology for 
addressing the four objectives outlined 
below:  

1. How has the application of artificial 
intelligence (AI) affected modeling 
capabilities for severe storms, 
hurricanes, floods, and wildfires?  

2. How could modeling capabilities for 
severe storms, hurricanes, floods, and 
wildfires be affected by future 
applications of AI?  

3. What challenges exist with regard to 
the development and application of 
AI in modeling capabilities for severe 
storms, hurricanes, floods, and 
wildfires? 

4. What policy options might help 
address the potential challenges 
related to the development and 
application of AI in modeling 
capabilities for severe storms, 
hurricanes, floods, and wildfires? 

To address all four research objectives, we 
reviewed available and developing machine 
learning uses that government or the private 
sector could use to model severe storms, 
hurricanes, floods, and wildfires. To do so, we 
reviewed key reports and scientific literature 
describing current and developing machine 
learning uses; interviewed a variety of 
stakeholders, including agency officials, 
industry members, academic researchers, and 
professional associations; and conducted an 
expert meeting in conjunction with the 

National Academies of Sciences, Engineering, 
and Medicine. 

Limitations to scope 

Our scope is limited to models that 
incorporate or use AI techniques (specifically, 
machine learning) to enhance model input, 
output, or performance, or to predict the 
aforementioned hazards. We focused on 
machine learning because, in recent years, 
environmental researchers and forecasters 
have focused on machine learning, as 
opposed to other types of AI, in recent years. 
We primarily focused on modeling for civilian 
use. We did not examine risk models, 
seasonal forecasting, long-term climate 
modeling, or hazard mitigation efforts. We 
focused our review on machine learning used 
to model the natural hazards in scope, 
including severe storms, hurricanes, floods, 
and wildfires. We excluded machine learning 
used for natural hazard modeling in other 
contexts, such global climate modeling, as 
well as catastrophe models used for insurance 
company risk management. Machine learning 
uses discussed are examples and not an 
exhaustive list of all machine learning uses for 
natural hazard modeling. We did not assess 
all available or developing machine learning 
uses. We selected narrative examples to 
demonstrate the breadth of machine learning 
uses for modeling the natural hazards in 
scope. 

Literature Search 

In the course of our work we conducted one 
literature review. To establish background 
and identify machine learning models 
appropriate to our scope and their associated 
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challenges, we reviewed key articles from the 
scientific literature. To support the four 
objectives we focused on the use of AI and 
machine learning in environmental modeling. 
We used search terms such as “artificial 
intelligence,” “machine learning,”  “weather,” 
“meteorology,” and “forecasting,” and 
narrowed our search to articles published 
within the last 5 years. For this search, results 
could originate from scholarly or peer-
reviewed material, government reports, 
conference papers, trade or industry articles, 
publications by associations, nonprofit 
organizations, or think tank, books, and legal 
materials, such as laws and Executive Orders. 
We selected the most relevant articles for 
further review based on our objectives. 

Interviews 

We interviewed key experts and stakeholders 
in the field of machine learning for natural 
hazard modeling, including: 

• Department of Commerce, National 
Oceanic and Atmospheric 
Administration, and National Weather 
Service; Department of Energy; 
Department of the Interior, U.S. 
Geological Survey; Department of 
Defense, Army Corps of Engineers; 
Department of Agriculture, United 
States Forest Service; Department of 
Homeland Security, Federal 
Emergency Management Agency; 
National Aeronautics and Space 
Administration; and the National 
Science Foundation; 

 
49This meeting of experts was planned and convened with the 
assistance of the National Academies of Sciences, Engineering, 
and Medicine to better ensure that a breadth of expertise was 
brought to bear in its preparation, however all final decisions 

• 10 academic researchers and 
research groups;  

• two professional organizations; 

• and one private firm. 

Because this is a non-generalizable sample of 
the stakeholders involved in using machine 
learning for natural hazard modeling, the 
results of our interviews are illustrative and 
represent important perspectives, but are not 
generalizable. 

Expert meeting 

We collaborated with the National Academies 
of Sciences, Engineering, and Medicine to 
convene a 3-day meeting of 17 experts on 
current and emerging machine learning tools 
for use in natural hazard modeling. We 
worked with staff from the National 
Academies of Sciences, Engineering, and 
Medicine to identify experts from a range of 
stakeholder groups including federal 
agencies, academia, and industry, with 
expertise covering all significant areas of our 
review, including individuals with research or 
operational expertise in using machine 
learning tools in the modeling of natural 
hazards.49 We evaluated the experts for any 
conflicts of interest. A conflict of interest was 
any current financial or other interest (such as 
an organizational position) that might conflict 
with the service of an individual because it 
could (1) impair objectivity or (2) create an 
unfair competitive advantage for any person 
or organization. The 17 experts were 

regarding meeting substance and expert participation was the 
responsibility of GAO. Any conclusions and recommendations 
in GAO reports are solely those of the GAO.    
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determined to be free of reported conflicts of 
interest, and the group as a whole was 
determined to not have any inappropriate 
biases. (See app. II for a list of these experts 
and their affiliations.) The comments of these 
experts generally represented the views of 
the experts themselves and not the agency, 
university, or company with which they were 
affiliated, and are not generalizable to the 
views of others in the field.  

We divided the 3-day meeting into seven 
moderated discussion sessions: (1) 
definitions, scope, and background for using 
machine learning in natural hazard modeling; 
(2) benefits, opportunities and drawbacks of 
using machine learning in natural hazard 
modeling; (3) future applications of using 
machine learning in natural hazard modeling; 
(4) technical challenges of using machine 
learning in natural hazard modeling; (5) non-
technical challenges if using machine learning 
in natural hazard modeling; (6) an overview of 
the benefits and challenges discussed above 
and (7) policy options for using machine 
learning in natural hazard modeling (via 
breakout rooms and group discussion). Each 
session featured an open discussion among all 
meeting participants, most of which were 
based on key questions we provided. The 
meeting was transcribed to ensure that we 
accurately captured the experts’ statements. 
After the meeting, we reviewed the 
transcripts to characterize their responses 
and to inform our understanding of all three 
researchable objectives. Following the 
meeting, we continued to seek the experts’ 
advice to clarify and expand on what we had 
heard. Consistent with our quality assurance 

 
50Policymakers is a broad term including, for example, 
Congress, federal agencies, state and local governments, 
academic and research institutions, and industry.    

framework, we provided the experts with a 
draft of our report and solicited their 
feedback, which we incorporated as 
appropriate. 

Policy options 

We intend policy options to provide 
policymakers with a broader base of 
information for decision-making.50 The 
options are neither recommendations to 
federal agencies nor matters for 
congressional consideration. They are also not 
listed in any specific rank or order. We are not 
suggesting that they be done individually or 
combined in any particular fashion. 
Additionally, we did not conduct work to 
assess how effective the options may be, and 
we express no view regarding the extent to 
which legal changes would be needed to 
implement them. 

We limited the policy options included in this 
report to those that met the policy objective 
and fell within the report scope. We present 
five policy options in response to the 
challenges identified during our work and 
discuss potential opportunities and 
considerations of each. While we present 
options to address the major challenges we 
identified, the options are not intended to be 
inclusive of all potential policy options. 

To develop the policy options, we prepared a 
list of potential policy ideas (139 in total, 
including the status quo) based on our 
literature search, stakeholder interviews, and 
expert meeting. We removed ideas that were 
not likely to address the challenge or did not 
fit into the overall scope of our work. We 
grouped the remaining ideas based on 
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themes (e.g., data collection). We combined 
those that (1) were duplicative, (2) could be 
subsumed into a higher-level policy option, or 
(3) were examples of how to implement a 
policy option rather than the option itself. 

We conducted our work from August 2022 
through December 2023 in accordance with 
all sections of GAO’s Quality Assurance 
Framework that are relevant to technology 

assessments. The framework requires that we 
plan and perform the engagement to obtain 
sufficient and appropriate evidence to meet 
our stated objectives and to discuss any 
limitations to our work. We believe that the 
information and data obtained, and the 
analysis conducted, provide a reasonable 
basis for any findings and conclusions in this 
product.
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Appendix II: Expert Participation 

We collaborated with the National Academies of Science, Engineering, and Medicine to 
convene a 3-day virtual meeting (May 2-4, 2023) of experts to inform our work on the use of 
machine learning for the prediction and forecast of severe storms, hurricanes, floods, and 
wildfires. The experts who participated in this meeting are listed below. Many of these experts 
provided additional assistance after the virtual meeting, such as by responding to follow-up 
questions via email and reviewing our draft report for accuracy and provided written 
comments.

Ann Bostrom, PhD 
Weyerhaeuser Endowed Professor in 

Environmental Policy 
Evans School of Public Policy & Governance 
University of Washington, Seattle 

David Danks, PhD 
Professor of Data Science & Philosophy 
University of California, San Diego 

Amy DeCastro  
Project Scientist 
Research Applications Laboratory 
National Center for Atmospheric Research 

Jenni Evans, PhD 
Director, Institute for Computational and Data 

Sciences 
Professor, Meteorology and Atmospheric 

Science 
Penn State University 

Sarvesh Garimella, PhD 
Chief Scientist 
MyRadar / ACME AtronOmatic, LLC 
 

Michael Gollner, PhD 
Associate Professor and Deb Faculty Fellow 
Department of Mechanical Engineering 
University of California, Berkeley 

Kimberly Hoogewind, PhD 
Research Scientist 
Cooperative Institute for Severe and High-

Impact Weather Research and Operations 
University of Oklahoma and NOAA National 

Severe Storms Laboratory 

Jonathan Koh, PhD 
Post-doctoral Researcher 
Oeschger Centre for Climate Change Research 
University of Bern 

Amy McGovern, PhD 
Lloyd G. and Joyce Austin Presidential 

Professor 
School of Computer Science and School of 

Meteorology 
University of Oklahoma 

Norberto Nadal-Caraballo, PhD 
Senior Research Engineer 
Coastal Hazards Group 
U.S. Army Engineer R&D Center 

Grey Nearing, PhD 
Senior Research Scientist 
Google Research 
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Christopher “Kit” O’Connor, PhD 
Research Ecologist 
Wildfire Risk Management Science Team 
Rocky Mountain Research Station  
U.S. Forest Service 

Jaideep Pathak, PhD 
Research Scientist 
NVIDIA Corporation 

Corey Potvin, PhD 
Research Meteorologist 
National Severe Storms Laboratory 
NOAA 

Vidya Samadi, PhD 
Assistant Professor, Water Resources 

Engineering 
Director, Hydrosystem and Hydroinformatics 

Research Group 
Clemson University 

Andrea Schumacher 
Project Scientist 
Weather Risks and Decisions in Society 
National Center for Atmospheric Research 

Program 

Katie Wilson, PhD 
Associate Policy Researcher 
Homeland Security Operational Analysis Center 
RAND Corporation 
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