089682

RELEASED

 74-0239

The Honorable C1aiborne Pell United States Senate

Dear Senator Pe11:

This is in responsc to your letter of November 29, 1973, requesting us to update the schedules furnished you on Apri1 19, 1973, showing the time required and the costs incurred, by type of Navy ship, for making round trips from selected homeports to vaxiousmbeneanmisstonnareas. You asked us t" compare this data with that for trips originating fron Newpo t, Rhode Island. You also requested that we show current an! projected fucl costs for the next fiscal year and that we equate the $\mathfrak{m l l o n s}$ of fuel consumed to gallons of home heatiag fuel and automobile gasoline.

As a :ource of Navy distillate fuel consumption data, we used Navy :,tatistics taken from the hearings before the Senate Subcommitt.e on Military Construction on the subject of Base Closures of Realignment Program in Massachusetts, dated June 22, 1! 73. The cost of Navy distillate fucl was obtained from the Dr Cense Supply Agency. Using this data, we computed fuel consurption and costs for round trips by various types of ships t, the Gibraltar area and the Bergen, Norway, area in the cur ent fiscal year and in fiscal year 1975. (See enc. I.) /s was the case with previous schedules furnished your offic , we have not verified the Navy's data.

Officials of the Defense Fuel Supply Center and American Petroleum]nstitute told us they were unable to convert the gallons of Navy distillate fuel used to an equivalont number of gallons of home heating fuel and automobile gasoline. However, the Navy distillate can be refined into home heating oil and gasolinc. (Sce encs. II and III.)

They stated that Navy distillate fuel, which is heavier than number 2 home heating fuel, would be marginally satisfactory for home heating without further refining and would

$$
9816=089682
$$

BEST UGU MENT AYAMABLE

be satisfactory fir use in oil furnaces commonly found in indasialal plants, apartment complexes, and larse office buildings. Details of our findings are shown in cnclosure II.

We do not plan to distribute this report further unless you agree or publicly announce its contents.

Sincerely yours,

47\%kibun
Comptroller General
of the United States
En Losures - 3

AMMTIOMI. ROMDTHIP COCTS TO

Type of ship			Txcess over 30? hours frob Nowrost					
			Norfolt		(hasleston		Maydurt	
			- (26)		$\begin{aligned} & \text { Gallons } \\ & \text { consumed Costs } \end{aligned}$		$\begin{array}{r} \text { Gallons } \\ \text { sonsumed } \end{array}$	Costs
	Gallcas burne: per hour (note b)	Cost per steam/hour December 1973 (note c)	$\begin{array}{r} \text { Gallons } \\ \text { consumed } \\ \hline \end{array}$	Costs				
Heary cruiser(CA)								
Guided massale								
Guidedmissile								
Guided mussile destroyer								
Destroyer								8,400
(DE(1052)) Aircraft carricr	491	64.86	12,800	1,700	28,500	3,800	37,300	4,900
Aircraft carricr (Cus-11) (note a)	3,37\%	309.31	87,800	8,000	195,900	17,900	256,600	23,500
$\begin{aligned} & \text { Attach aircraft } \\ & \text { carrier (CVA-42) } \end{aligned}$	4,97?	656.96	129,400	17,100	288,700	38.100	378,300	49,900
Attack aircraft cartier (CV-60)	6,166	813.86	160,300	21,200	357,600	47,200	468,600	01,906
${ }^{2}$ Ship uses Navy special fuil oil, other ships use Navy distillate fuel.								
b Source: Hearnings before the Subcomittee on Military Construction of the Committee on Armed service, United States Senate, June 22, 1973.								
These are Defense Supply Age icy weighied average costs as of lecembed l6, 1973.								

CEST DOUMEAT AMAMBLE

We hav , however, conputed the amount of gasoline and heating fuc that could be realized in refining the additional dist llate fuel required by using ports other than Newfort by iwo types of slips making one round trip each. A heavy crusser, for exarm le, will use about 123,700 gallons more Navy dutillate fuel in a round trip from Charle: ton, South Carolina, to Gibraltar than it would in making this trip from Nowport. If this fucl was recycled through an average catalytic cracking process, approximately 56,000 gallons (45°) of gasolirc and 25,000 ga11ons (20\%) of heating fuel would be produced.

A 1972 :ederal Ilighway Administration news release stated that in 1971 the avorage automobile traveled 13.7 miles.per ga!lon of gasoline. Assuming that the average car is driven 12,000 miles a year, the 56,000 gallons of gasoline wou'd support about 64 cars. Concerning home heating, the Ame ican Gas Association reports that it requires about 119.2 billion British Thermal Units (bTUs) to hoat the average : meri, in house for 1 yoar. Because a gallon of home he.ting fuel contains about 138,700 B'US, the 25,000 gallons of hating fuel would heat about 29 homes.

A large iircraft carr:er (CV-60) will use about 505,600 more gallons ff Navy distillate fuel in making a round trip from Maypo t, Florida, to Bergen than in making this trip from Newport. Had this fuel been recycled, it would have produced abol: 227,500 gallons of gasoline and 101, 100 gatlons o: heatig fuel. Assuming the same factors as those used in the l 'evions example, this gasoljne and heating oil would operate 259 cars and heat 126 homes for 1 ycar. (Sce cnc. III.)

DIRECT USE OF NAVY DISTILIAIE
Official we contacted agreed that naval distillate fucl would no be very satisfactory as a home heating fuel. Home heating fuel is a mumber 2 distillate, while the Navy distillate fuel is equivalent to about a numer 3 or 4 distillate, too heavy for best home heating use. Hone heating furnace burner orifices would have to be adapted amd larger fuel punips ins. talled to efficiently use Navy distillate fuel.
$\frac{\text { Excess over } 430 \text { h urs from Newport }}{\text { Norfolh } \frac{\text { Cha }}{\text { Mayport }}}$

Type of sh1p	Gallons burned per hour (note b)	```Cost per steam/hour December 10, 1973 (note c)```	Gallons concumed		Costs	$\begin{aligned} & \text { Gallor } \\ & \text { consume } \end{aligned}$	Costs	Gallons consumed	Costs
CA	2,134	\$281.64	68,300	\$	9,000	123,700	\$16,300	175,000	\$23,100
$C \mathrm{C}$	2,024	267.22	64,800		8,600	117,400	15,500	166,000	21,900
nLs	1,214	160.22	38,800		5,100	70,400	9,300	99,500	13,100
mint	1,050	138.60	33,600		4,400	60,900	8,000	86,100	11,400
Di)-1R1	840	110.88	26,900		3,500	48,700	6,400	68,900	9,100
Iff (:052)	491	64.86	15,700		2,100	28,500	3,800	40,300	5,300
$\begin{aligned} & \text { CVS-11 } \\ & \quad \text { (note a) } \end{aligned}$	3,377	309.31	108,100		9,900	195,900	17,900	276,900	25,400
clatiz	4,977	656.96	1.2,300		21,000	288,700	38,100	408,100	53,900
CL-60	6,166	813.86	197,300		26,000	357,600	47,200	505,600	66,700

a
Ship uses Navy special fuel oil, other ships use Navy distillate fuel.
b
Source: llearings before the Subcomittee on Military Construction of the Committee on Armed Services, United States Senate, June 22, 1973.

Chese are Defense Supply Agency weighted average costs as of December 10, 1973.

best documeitt Ant lable

PROHCTII AbHIIONAL ROM: THIP (r)T:

$$
\begin{aligned}
& \text { LQUATING NAYY DTSTILIATE FULI TO HOME }
\end{aligned}
$$

Offirials of the lefonse Fucl Supply Center and the Ane"ican betrolemn Institute said there is no formula for direety , onverting Navy fuel oil to equivalent gatlons of home heat ng fucl or automobile gasoline. Thus, we wore not able o directly convert the additional quantities of fuel which would be required to operate from the three selected homejoits as compared with Newport. However, we cstimated the number of \&allons which could be catalytically refined from ${ }^{\prime}$ given quantity of Navy distillate fuel. Also, it is possible to uso Navy distillate directly.

He also discuss the various product yields of an average barrel of caude oil.

REFI:INGG OF NAVY DISTILLATI:
Although the above officials agrecd that the Navy distillate fuel could be refincd through catalytic cracking. processes to obtain home heating oil and gasolinc, their estimates of the amount of yicld of each product differ. These variations are due to differing plant equipment configurations used in the cracking process and the application of chomicals.

Defense Fuol Supply Center officials believe that the average yield would approximate 40 to 50 percent gasoline and 15 to 25 percent heating fuel (distillate). An Institute official estimated the yield to be nearer to 50 percent for gasoline and 30 percent for distillates. We have used the percentages of 45 and 20 percent, respectively, to compute the yield of gasoline and heating fuel produced by catalytic cracking procosscs.

We did not obtain the number of ship: steaning to the mission arcas from the selected homepoits or Newport, had it remained in operation, becallse the information is classified. Consequently, we did not detmmine the additional gallons of fuel required by the Navy to operate out of the selocted homeports to the mission arcas as compared with operations out of Newport, nor did we compute the estimated total amount of gasoline and home heating fuel that could lave been made available to the civilian community.

Special Navy fucl oil, which is equivalent to ahout a mamber 5 or 6 distillate, i unsuitable for home heating. Because it is a heavy fuel it must be preheatod before it ca be burned.

We were advised that oil heating plant: of some major industries--such as electric power plants, most large office buildings, and apartment complexes--could use both fuels with a minimum of heater plant adaptation.

AVERAGE YIEID OF CRUNE OIL
Department of Defense and Institute officials cited several reasons for the in, racticality of equating the fuels gallon for g glion: the physical and chemical characteristics of the crude oil, the arlvanced state of the art in refining, and the market demands.

The yicld of petrolcum products from a given quantity of crude oil varies with its specific gravity. For exarmple, crude oil in Oklahoma with a specific gravity of 0.816 will yicld about 43 percent gasoline, whereas some fron Texas with a specific gravity of 0.827 will yield only about 34 percent. Imported crude yicids as high as 45 percent gasolinc to as low as 15 percent. The yield of distillates (the source of Navy distillate fucl and of home heating fucl) also fluctuates.

Sophisticated technology permit refineries to use methods that produce a higher yield of selected or desired petroleun products. Refineries, through catalytic cracking processes, broak the larger oil molecules into smaller molecules and by processing the smaller oil molecules increase the total yield of gasoline and lighter fuel from a given quantity of crude oil. This process increases the production of gasoline and lighter fuel oil and reduces the yield of heavier petroleun products.

A Department of Defense official said refineries can control the yiell of product: within limitations; therefore, refineries often obtain different quantitios of the same type product from the same quantity of crude oil feed stock. These control options are used to help meet the gasoline and home heating fuel seasonal demands, as well as any umsual domands of specific geographical areas.

DEST DOGuivent Adramble

The Amcrican Petroloun. Institute has published production statistic: for the years $1: 56$ through 1972 , showing the crude oil yearly input into all U.S. refineries and products' average percent yicld. The percent yicld for gasoline varies from a high of 46.25 in $19 \% 2$ to a low of 43.37 in 1956 . nis. tillate varied from a high of 23.87 in 1903 to a low of 22.04 in 1971. In 1972 a barrel (42 gallons) of crude oil had an avorage percent yield as follows:
Gasoline 46.25
Kerosene 1.82
Jet fuel--naplitha type 1.76
Jet fuc1--kerosene type 5.39
Distillate fuel oil 22.21
Residual fucl oil 6.75
Lubricants 1.51
Others 14.31

BEST DUCUMEIGI AGHLALE

enclosuri Ill

ALTERNATE US1S O: NAVY DISTILIATE

Heary cruiser (CA) Aircrall carrior from Charleston (CV-60) from to Gibraltar Mayport to Borgen
Additiona Navy distillate ver that required fron Newport 123,700 gal. 505,600 gal.
Catalytic processing of Navy distillate:
Gasoline--estimated yieli $45^{\circ} \quad 55,665$ gal. $\quad 227,520 \mathrm{ga1}$.
Heatini, oil-estimated yicld $20 \% \quad 24,740 \mathrm{gaI}$ 101,120 gal.
Possible number of automolriles to be operated each year (notc a) 64 259
Possible number of homes to be heated each yoar (note b) 29 126
anssuncs that the average automobile travels 12,000 miles per year and gets $13.7 \mathrm{~m} \perp \mathrm{le} \mathrm{s}$ to the gallon.
$\mathrm{b}_{\text {Asswnes }}$ that 1 his is an average American home which takes 119.2 mil।ion BTUs to heat each year.

