
BY THE COMPTRilLLER GENERAL
- W3f

Report To‘The Congress
OF THE UNITED STATES

Computer Programs:
Federal Agencies’ Maintenance Of

Expensive And
Undermanaged

Federal agencies spend millions of dollars an-
nually on computer software (program) mainte-
nance but little is done to manage it.

GAO studied 15 Federal computer sites in
detail, and received completed questionnaires
from hundreds of others. All reported large
maintenance efforts but few had good records
and very few managed software maintenance
as a function.

Improvements can and should be made both
in reducing maintenance on existing software
and in constructing new software to reduce its
eventual maintenance costs.

The National Bureau of Standards should issue
a standard definition and specific technical
guidelines for software maintenance. Heads of
Federal agencies should require their automatic
data processing managers to manage software
maintenance as a discrete function.

114438

AFMD-81-25
FEBRUARY 28,188l

Request for copies of GAO reports should be
sent to:

U.S. General Accounting Office
Document Handling and Information

Services Facility
P.O. Box 6015
Gaithersburg, Md. 20760

Telephone (202) 2756241

The first five copies of individual reports are
free >f charge. Additional copies of bound
audit reports are $3.25 each. Additional
copies of unbound report (i.e., letter reports)
and most other publications are $1.00 each.
There will be a 25% discount on all orders for
100 or more copies mailed to a single address.
Sales orders must be prepaid on a cash, check,
or money order basis. Check should be made
out to the “Superintendent of Documents”. .

COMPTROLLER GENERAL OF THE UNITED STATES

WASHINGTON D.C. 20548

B-201778

To the President of the Senate and the
Speaker of the House of Representatives

Computer software is the most important part of automatic
data processing systems today. It is expensive to develop and
maintain, and errors and omissions in software can seriously dis-
rupt automated systems.

This report discusses the impact that computer program main-
tenance has on Federal computer operations, and recommends ways
to improve such maintenance.

We are sending copies of this report to the Secretary of Com-
merce and to the Administrator of General Services.

of the United States

COMPTROLLER GENERAL'S REPORT FEDERAL AGENCIES' MAINTENANCE OF
TO THE CONGRESS COMPUTER PROGRAMSI EXPENSIVE AND

UNDERMANAGED

DIGEST ------

Computer software maintenance consumes a large
share of the Federal Government's automatic data
processing (ADP) resources. After computer pro-
grams are put into operation, maintenance may be
needed to make them do more or different tasks,
to remove defects, or to reduce operating costs.
GAO found that software maintenance has not re-
ceived management attention appropriate to its
cost and complexity.

GAO reviewed computer software maintenance in
detail at 15 Federal computer sites and found
their total annual maintenance costs to be
$33 million--$19 million in programmer salaries,
$8 million in other salaries, and $6 million in
computer time. Two-thirds of the programmers at
the 15 sites spent their time on maintenance.
The Director of the General Services Administra-
tion's Software Development Office has estimated
that the Government spends at least $1.3 billion
annually on software maintenance. (See p. 6.)

In spite of the high cost, agencies have a very
limited overview of their software maintenance
operation and have made little concentrated ef-
fort to effectively manage and minimize the re-
aource8 required to maintain their computer
software.

Maintenance is not managed as a function. That
is, ADP managers have done little either to
identify common causes of maintenance problems
or to take action to reduce maintenance costs.
The absence of maintenance management is due in
part to (a) the absence of a uniform definition
of maintenance, and (b) the absence of Government-
wide guidance on how to control software main-
tenance and reduce its costs.

Managers generally have neither cost accounting
data nor management data on software maintenance
activities and thus know little about how much
maintenance really costs overall, or which types
of maintenance cost the most. Agencies have es-
tablished no goals and standards to meamure the

efficiency of their maintenance operation, nor
criteria for acceptable maintenance costs for
given situations. They have made only limited
use of improved tools and techniques which could
reduce maintenance costs.

Software maintenance seems to be a common problem
for all ADP users. The private sector reports
that large percentages of its ADP resources are
consumed by software maintenance.

Increased management attention to several prob-
lem areas could reduce costs. Inadequate em-
phasis in these areas appears to increase the
maintenance workload either by requiring that
extra maintenance be performed, or by detracting
from the efficiency of maintenance that must be
done.

Modifications account for about half of the total
maintenance workload. While some modifications
must be done to adapt software to changing user
needs and prolong its useful life, others occur
only because user needs were not properly iden-
tified in the first production version of the
software. (See p. 17.)

Software is often maintained by people who did
not develop it. If the documentation they need
to understand the software is inadequate or miss-
ing, they must work harder to maintain the
software. Poor documentation can increase the
time to understand and maintain software appli-
cations, or lead to the redesign and rebuilding
of an entire system of programs because under-
standing and modifying an existing program may
be more trouble than building a new one. (See
p. 23.)

Most data processing managers interviewed were
of the opinion that contractor-developed soft-
ware required more maintenance. Numerous ques-
tionnaire respondents indicated that they agreed
with that opinion.

Questionnaire respondents selected better use of
tools and techniques as the second most effective
way to reduce maintenance. GAO has found that
software tools and techniques--despite their

ii

ability to improve the maintenance operation--
are not used to their full potential at many
agency data processing installations. l-/

Some organizations in the private sector have re-
ported maintenance improvements achieved through
better design and quality control in program de-
velopment, increased use of tools and techniques,
better documentation, and personnel-oriented
measures including rotation and cross-training.
(See p. 26.)

GAO developed a Provisional Checklist for Soft-
ware Maintenance Management, shown in appendix I
to this report. The cheaklist will be useful to
organizations doing software maintenance.

CONCLUSIONS .

Software maintenance in the Government is now
largely undefined, unquantified, and underman-
aged. Agencies need to develop and implement
policies and procedures which will increase
maintenance efficiency and ultimately reduce the
amount and cost of software maintenance required.
To help agencies in these efforts, standard def-
initions of the components of software mainte-
nance and guidance on how to reduce its cost are
needed.

RECOMMENDATIONS

GAO recommends that the Secretary of Commerce,
through the National Bureau of Standards, de-
velop and publish:

--Standard definitions of the component parts
of software maintenance to aid agencies' in
recording and managing it.

--Specific guidance on software maintenance, de-
tailing both how to improve maintenance of
existing programs and how to construct new
programs to reduce their eventual maintenance.
GAO offers its provisional checklist pending
action by the National Bureau of Standards.

L/"Wider Use of Better Computer Software Technology Can
Improve Management Control and Reduce Costs" (FGMSD-80-38,
Apr. 29, 1980).

iii

GAO further recommends that heads of Federal
agencies:

--Begin to manage software maintenance as a dis-
crete function.

--Take measures to identify the amount of re-
sources currently expended on software main-
tenance.

--Develop maintenance goals and standards as
criteria to determine the efficiency and ef-
fectiveness of their software maintenance
operation.

--Implement management policies and procedures
to increase the efficiency of the maintenance
operation and reduce future maintenance.
(See app. I.)

AGENCY COMMENTS

We asked for comments from the Department of
Commerce, the General Services Administration,
and the parent agencies of the 15 sites at which
we analyzed software maintenance in detail--
listed in appendix IV. The Department of Com-
merce failed to furnish comments in time for
inclusion in the final report. The General
Services Administration, the Postal Service,
and the National Aeronautics and Space Adminis-
tration furnished comments in time for inclu-
sion.

The General Services Administration (GSA) agreed
with GAO's conclusions and recommendations,
agreed with the definition of software mainte-
nance, and said that they plan to assist the
National Bureau of Standards in any way possible
to provide guidance to Federal agencies con-
cerning cloftware maintenance. GSA clarified its
estimate of Federal software maintenance costs
by explaining that the costs do not include the
software used in embedded weapons system compu-
ters.

The Postal Service agreed with GAO's overall rec-
ommendations and said that it already has meas-
ures underway in keeping with GAO's recommenda-
tions to the heads of Federal agencies. The
National Aeronautics and Space Administration
(EASA) expressed its concern that the definition

does not apply to its software, which is mostly
used in a research and development environment.
In the light of GSA's comments and NASA's con-
cerns, GAO clarified certain details of its
presentation for this final report. The changes
made were not substantive. (See app. V and p. 6.)

The other agencies from whom GAO requested com-
ments failed to respond within the 30-day period
required by Public Law 96-226.

V

Contents

Page

i DIGEST

CHAPTER

1 INTRODUCTION

2 SOFTWARE MAINTENANCE: A HIGH-COST AREA

3

4

The software life cycle
Software maintenance includes

both modification and repair
Federal software maintenance

is significant
Roles of various agencies
Objectivea, scope, and methodology

Dollar cost of software maintenance
is high at the sites we visited

GSA's Government-wide estimate is
$1.3 billion per year

High percentage of data processing
resourcee is devoted to software
maintenance

Private sector also devotes large
resources to software maintenance

NEED FOR INCREASED MANAGEMENT ATTENTION TO
SOFTWARE MAINTENANCE

Software maintenance is not managed
as a function

Definition and guidance are lacking
Management data and standards are lacking
Private sector identifies some .

common causes of high software
maintenance coats

Software maintenance costs could be
reduced

Private sector tries several measures
to improve software maintenance

Our provisional checklist summarizes
some ueeful measures

CONCLUSIONS, RECOMMENDATIONS, AND AGENCY
COMMENTS

5

6

6

7

10

10
11
13

16

16

16

21

23

Conclusions 23
Recommendations 24

Page

25
25
25

Agency comments and our evaluation
General Services Administration
U.S. Postal Service
National Aeronautics and Space

Administration

APPENDIX

I Provisional checklist for software
maintenance management

II Summary results from our questionnaire

III Software-maintenance-related publications

IV Sites at which we analyzed software
maintenance in detail

V Agency comments

ADP automatic data processing

ANSI American National Standards Institute

COBOL common business oriented language

CPU central processing unit

DOD Department of Defense

FIPS Federal Information Processing Standards

GAO General Accounting Office .

GSA General Services Administration

JCL job control language

NASA National Aeronautics and Space Administration

NBS National Bureau of Standards

OMB Office of Management and Budget

ABBREVIATIONS

26

27

40

49

53

54

CHAPTER 1 *

INTRODUCTION

Many Federal Government computer installations have 500 or
more programs for specific applications, plus other programs ac-
quired from the computer manufacturer for general support of com-
puter operations. Estimates of Government spending on software
range as high as $6 billion a year.

The current cumulative Federal investment in software prob-
ably exceeds $25 billion. While no exact figures are available,
the General Services Administration's (GSA'S) Software Development
Office has estimated annual Federal software maintenance costs to
be at least $1.3 billion. The software life cycle includes re-
quirements analysis, design, development, and operation. During
its operation, software requires maintenance, which includes both
modification and repair. We are concerned with software mainte-
nance because of its high cost.

THE SOFTWARE LIFE CYCLE

The complete life cycle of computer software can be divided
into (1) requirements analysis, (2) system design or specifica-
tion, (3) development, and (4) operation. To date, the data proc-
essing industry has emphasized the first three phases and given
less attention to the operation phase, during which maintenance
is done. There are several reasons for this. First, development
is costly and highly visible, and the customer often demands that
the developer implement the new software quickly. Second, most
computer programmers consider developing new software to be more
challenging and rewarding than maintaining operating software.
However, much of the total life cycle cost of owning and operating
software is a result of maintaining the software once it is in op-
eration.

The Department of Defense (DOD) has recognized that software
management is a major problem and has undertaken extensive efforts
to address it, including issuance of irecta 7920.1. This
directive provides departmentwide gui on life--e manage-
ment of automated information systems. The DOD efforts are dis-
cussed in another GAO report. L/

SOFTWARE MAINTENANCE INCLUDES
BOTH MODIFICATION AND REPAIR

For our review, we defined the application software mainte-
nance function to include:

L/"The Worldwide Military Command and Control System--Major Changes
Needed in Its Automated Data Processing Management and Direc-
tion" (LCD-80-22, Dec. 14, 1979).

1

--Removing defects:

(1) The software was programmed to do something other
than what the user wanted.

(2) The program logic was faulty and the programs did
something other than what the programmer intended.

--Tuning the software to make it more efficient and economi-
cal to operate (require less machine time and/or less com-
puter memory to operate). &/

--Modifying software to make it do more end-user tasks than
it was originally intended to do.

--Taking miscellaneous actions such as changing the software
so it will work with a new operating system.

We used this definition because (1) we believe most knowledge-
able people would agree that software maintenance includes these
tasks, even though there is no standard definition, and (2) we
wanted to be very specific about what was included in our use of
the term for data gathering purposes.

The long lives of many applications--with changes in user
needs--have made software maintenance far more significant than
hardware maintenance.

FEDERRL SOFTWARE MAINTENANCE
IS SIGNIFICANT

Software maintenance is complex and expensive. The operations
identified in our definition basically deal with (1) remedial or
corrective maintenance and (2) enhancement or adaptation of the
original software. To isolate and correct software defects re-
quires a thorough knowledge of the intended use and design of the
software and an understanding of the developing programmer's logic.
Enhancement or adaptation requires all of the above, but is also
affected by whether or not the software was originally designed to
ease future changes.

To estimate how long applications programs are used (and there-
fore maintained), we administered a questionnaire on which we asked
the average life of programs in production. (See app. II.) Re-
spondents at 263 installations said that programs written in the

&/"Machine time" means those computer resources which are charged
in units of time--for example, the time to actually execute
instructions, which is called "central processor time" and is
very costly.

2

COBOL programming language last an average of 5.4 years, and at
212 installations, respondents said that programs written in the
FORTRAN language last an average of 4.8 years. At 399 installa-
tions respondents reported that the ages of their oldest applica-
tion programs (any language) averaged about 9.4 years.

ROLES OF VARIOUS AGENCIES

The basic law governing Federal automatic data processing
(ADP) management is the Brooks Act, Public Law 89-306. Under this
act, the General Services Administration is responsible for coordi-
nating the procurement and maintenance of Federal ADP resources.
GSA receives technical advice from the Secretary of Commerce, pri-
marily through the National Bureau of Standards (NBS), and both
of these agencies get fiscal and policy guidance from the Office
of Management and Budget (OMB). NBS is responsible for providing
scientific and technological advisory services to Federal agencies
and for developing Federal Information Processing Standards.

In addition, each Federal agency has certain responsibilities
for managing its own ADP resources. Circular A-71, published in
March 1965 by the Bureau of the Budget (later renamed the Office
of Management and Budget), states that the heads of all executive
departments and establishments are responsible for the adminis-
tration and management of their automatic data processing activi-
ties.

In our role of aiding the Congress, we are concerned with the
management of Federal ADP and with computer software as an expen-
sive part of Federal ADP. Our past reports to the Congress have
recommended improvements in ADP management both Government-wide
and at specific agencies.

OBJECTIVES, SCOPE, AND METHODOLOGY

Because of the Government's large inventory of computer soft-
ware and the resources necessary to maintain it, qoftware mainte-
nance is an area which deserves close management attention. The
cost of such maintenance is substantial but opportunities exist
for significant cost reductions and release of resuurces to other
tasks. Based on this premise, we undertook this study to deter-
mine:

--To what extent are resources being devoted to application
software maintenance within Federal ADP installations?

--How efficiently is the maintenance function being managed
within the Government?

--What are the causes of excessive costs and problems?

--Could we suggest ways to reduce the amount of resources
needed to maintain the Government's computer software?

We conducted a nationwide review which included administering
a questionnaire to Federal installations, analyzing in detail the
maintenance at 15 Federal installations we visited, verifying
questionnaire responses at the sites visited, and studying relevant
literature.

We summarized data from 409 questionnaire responses and the
15 sites we visited. Since limited resources made it infeasible
to identify the total population of Federal installations doing
software maintenance and to do statistical sampling with projec-
tion to the entire Government, we used a convenience sample based
upon a mailing list furnished by GSA for our questionnaires. Our
intent was to determine whether conditions noted at certain sites
were widespread, and not to project totals for the entire Govern-
ment.

Due to lack of formal management data on the maintenance proc-
ess at the data processing installations we visited, we had to
develop much of the information at source levels. We did this by
interviewing data processing personnel at the working, working
supervisor, and management levels. Percentage of resources devoted
to maintenance, where not furnished by the agency, was calculated
as a weighted average from input from each organization having
maintenance responsibility. Maintenance costs, where not furnished
by the agency, were calculated by applying the percentage of re-
sources devoted to maintenance to the total actual, or average,
costs furnished by the agency for a particular cost category.

We also examined current literature to (1) compare the Federal
level of maintenance effort to others reported, (2) provide back-
ground for suggestions for improvement, and (3) assemble a modest
bibliography on the subject which would be useful to others.

4

CHAPTER 2

SOFTWARE MAINTENANCE: A

HIGH-COST AREA

Although no one knows exactly what the Federal Government
spends for software maintenance, we believe it costs a great deal
and diverts a large fraction of Federal ADP resources from more
productive work. We developed our own estimates at 15 sites: the
total annual maintenance costs were over $33 million. The Direc-
tor of GSA's Software Development Office told us he has estimated
the Government's annual software maintenance costs to be at least
$1.3 billion. These high dollar costs are further supported by
the resources consumption reported on questionnaires from 409
sites --over half their programmers' time is devoted to maintenance.
This situation is not unique to the Federal Government. Private
sector sources also report in the literature that half or more of
their programmers' time is devoted to maintenance.

DOLLAR COST OF SOFTWARE MAINTENANCE
IS HIGH AT THE SITES WE VISITED

After developing percentages of resources consumed, we applied
them to actual or average salaries and hourly computer charges to
estimate annual costs of personnel and hardware categories.

Category Amount

Personnel:

Programmer/Analyst $19,385,873
Operations 1,356,887
Support (administrative) 1,549,067
Management 1,111,378
Combined (note a) 3,577,556

Total personnel $26,980,761

Hardware $ 6,320,913

a/Sites reporting maintenance personnel cost in total only.

The size of these annual expenditures, which represent only
15 out of the many Federal data processing installations, together
with the high percentages of resource consumption reported on our
409 questionnaires from Federal installations, emphasizes that
software maintenance is a significant cost area in Federal ADP
installations and must be managed effectively. Local management
needs more detailed information on which to base actions to reduce
maintenance costs.

S

GSA'S GOVERNMENT-WIDE ESTIMATE
IS $1.3 BILLION PER YEAR

The Director of the Software Development Office told us that,
as a rough estimate, software maintenance costs the Federal Gov-
ernment at least $1.3 billion per year. He explained that there
are no exact figures available, but conservative estimating tech-
niques were used to arrive at that minimum figure.

He also explained that the maintenance in that figure is made
up of two major parts--one, work done to adapt software to changing
user needs and extend its useful life; the other, work done to fix
software errors and other problems.

At a later meeting, he said that his $1.3 billion figure does
not include maintenance of software used in computers that are em-
bedded in weapons systems. The Department of Defense is making
large-scale efforts at software improvement, including developing
a new programming language. These efforts were mentioned in our
software technology report L/ and discussed at length in another
GAO report. 2/

HIGH PERCENTAGE OF DATA PROCESSING RESOURCES
IS DEVOTED TO SOFTWARE MAINTENANCE

At the 15 sites we visited, about two-thirds of the programmer
and analyst labor is devoted to maintenance--about $19.5 million
out of their total maintenance direct labor cost of about $27 mil-
lion per year. We had to develop this information ourselves, and
did so in the following way.

To estimate how significant software maintenance is in Federal
installations, we first needed to identify the percentages of data
processing resources devoted to maintenance. The following per-
centages of personnel and hardware resources were taken from our
questionnaire responses and determined by us at the data process-
ing installations we visited.

l-/"Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs" (FGMSD-80-38, Apr. 29,
1980).

Z/"The Department of Defense's Standardization Program for Mili-
tary Computers --A More Unified Effort is Needed" (LCD-80-69,
June 18, 1980).

Cateqory

Percentage of time spent on maintenance
Average of 352 Average of 15
gueetionnaires sites reviewed

Personnel:

Programmer/Analyst
Operations
Support (adminfs-

trative)
Management

52.9 66.1
8.9 11.7
5.8 33.9

10.0 26.9

Hardware 13.6 13.6

We believe the reason the percentages for the installations
we visited are generally higher than those from the questionnaires
is that the agencies answering our questionnaire may have omitted
some activities from their definition of software maintenance.
The most likely omission is user-requested modifications to exist-
ing software, which some agencies consider development work. At
the sites we visited, we were able to assure ourselves that the
data used to calculate the percentage of resources were based on
all the activities in our definition of software maintenance.
Despite their somewhat lower reported percentages, we feel that
the questionnaires agree substantially with the sites visited.

As software is a labor intensive activity, it was predictable
that the largest block of resources would be in the personnel area,
particularly in the programmer/analyst category. At the 15 data
processing installations visited, about 66 percent of the
programmer/analyst time was required for maintenance. The average
percentage reported by the 353 installations who answered this
question on our questionnaire was about 53 percent. Additional
percentages were stated for various other categories of personnel.

The percentage of computer time devoted to testing maintenance
changes to programs was about 13 percent according to our ques-
tionnaire respondents, and also averaged about 13'percent at the
installations we reviewed. This amount of computer time not only
represents a high dollar cost (see p. 6) but also diverts computer
time that could be used for other purposes.

The resources listed do not include such items as facility
overhead, since generally not enough cost data were available to
accurately allocate these resources to software maintenance. From
the figures obtained, however, it is evident that a large segment
of the Government's data processing resources is used to maintain
its computer software.

PRIVATE SECTOR ALSO DEVOTES LARGE
RRSOURCES TO SOFTWARE MAINTENANCE

Computer software literature has traditionally focused on
software development but now shows a growing concern about the

7

increasing software maintenance burden in the private sector.
Recently, recognition of software maintenance as a major contrib-
utor to increasing operating cost, and the exploration of ways
to reduce it have become the subjects of frequent articles in ADP
publications. Published estimates of programmer time spent on the
maintenance function range from 50 to 80 percent. Perhaps even
more significant, some estimates say that up to 60 percent of all
ADP dollars will be spent on software maintenance in the future
if the present growth rate continues. Some reported levels of re-
sources used for software maintenance are shown below.

A survey which reported application software maintenance in
69 organizations L/ found that annual labor hours were allocated
thus:

Activity Percentage

Maintenance and enhancement 48.0

New development 46.1

Other 5.9

The same survey subdivided software maintenance thus:

Category Activity
Relative frequency

(percentacfe)

Corrective Emergency fixes,
routine debugging 17.4

Adaptive Accommodation of changes
to data and files, and
to hardware and system
software 18.2

Perfective User enhancement, improved.
documentation, recoding
for computational
efficiency 60.3

Other 4.1

Reports by other sources on maintenance effort levels include
the following:

--Modifying existing application systems to incorporate such
changes typically requires about one-half of an organiza-
tion's programming effort. Many companies have adopted the

l/See app. III, ref. 25.

8

practice of setting a budget for maintenance activities and
then doing just the highest priority jobs that can be accom-
plished within this budget. L/

--One recent DOD study showed that the cost of development for
Air Force avionics software averaged about $75 per instruc-
tion while the cost of maintenance corrections of deployed
software has ranged up to $4,000 per instruction. 2/

A/See app. III, ref. 36.

z/See app. III, ref. 21.

9

CHAPTER 3

NEED FOR INCREASED MANAGEMENT

ATTENTION TO SOFTWARE MAINTENANCE

Our study shows that software maintenance is not managed as
a function at many Federal installations and that excessive costs
can result. Many Federal ADP managers have little data on their
maintenance costs or which types of maintenance are most common
and have no standards or goals for software maintenance. The fail-
ure to manage software maintenance stems at least in part from the
lack of a standard Government-wide definition of the components
of maintenance and the lack of central guidance on how to manage
software maintenance and reduce its costs.)I

If software maintenance were managed as a function, its cost
could be reduced in several ways: (1) controlling excessive user-
requested modifications, (2) more accurately defining user require-
ments during system development, (3) requiring better documenta-
tion, (4) exerting better controls on contractor software
developments, and (5) making better use of software tools and tech-
niques. To provide interim assistance, we developed a Provisional
Checklist for Software Maintenance Management (app. I), which sum-
marizes ways to control and reduce software maintenance costs.

SOFTWARE MAINTENANCE IS NOT
MANAGED AS A FUNCTION

We found that Government managers were not managing software
maintenance as a function. That is, maintenance processes were
not identified, grouped, documented, and reported so that manage-
ment could have a comprehensive picture of the installation's
total software maintenance efforts. Without such a picture, it
is impossible to measure performance. If performance cannot be
measured, poor utilization of resources can go undetected for long
periods, resulting in failure to meet objecti-ves. Also, management
has insufficient information to help it decide how to correct per-
ceived deficiencies. This absence of definitions, cost records, and
goals or standards makes it virtually impossible to manage software
maintenance as a function.

In our guidelines for accounting for ADP costs, A/ we cited
the necessity for segregating activities into "work functions" as
a prerequisite for effective management of ADP costs. Accumu-
lating activities by work function permits an evaluation of the

l-/"Guidelines For Accounting For Automatic Data Processing Costs"
(Federal Government Accounting Pamphlet No. 4, 1978).

10

efficiency of performing specific operations and a comparison of
the cost of functions that can be accomplished in more than one
way. We believe that software maintenance should be identified
and managed as a discrete function because of its high cost.

DEFINITION AND GUIDANCE ARE LACKING

The absence of maintenance management is due at least partly
to the absence of definition and guidelines.

Maintenance is not
uniformly defined

The definition and concept of software maintenance vary from
agency to agency. In some cases, we found inconsistent definitions
of software maintenance within the same agency. To insure uniform
data for this review, we requested that all data provided reflect
the operations included in our software maintenance definition,
regardless of the agency's own definition. While a number of data
processing managers agreed that our definition was generally ac-
cepted in the data processing industry, only one of the 15 instal-
lations we visited had formally defined maintenance in this manner.
We found the following variations in the definition of what did--or
did not --constitute maintenance at various agency sites:

--Modifications to existing software are considered develop-
ment instead of maintenance.

--Work done on software applications developed centrally, but
run at the installation, is not considered maintenance.

--Only defect removal is considered maintenance.

--Maintenance is not formally defined at all.

There are adverse effects at both installation and Government-
wide levels from not having software maintenance properly defined,
managed, and understood. At the installation level, policies and
procedures for the utilization of maintenance resources may be
based on incomplete, inconsistent, or erroneous data. When indi-
viduals doing maintenance work report their work based on only a
partial definition or on no definition of maintenance, each indi-
vidual may report just those activities which agree with his own
concept of what maintenance includes. When this occurs a data
processing manager does not have the correct operating picture for
his installation and cannot make informed management decisions.

On a Government-wide level, variances in the definition of
majntenance make it difficult for central Government agencies to
develop statistics and analyze the maintenance function in the
Government, and to issue across-the-board guidance, since the ter-
minology they would use would not mean the same thing to all agen-
ties.

We consulted publications of the National Bureau of Standards
and the American National Standards Institute (ANSI), seeking de-
finitions of software maintenance. While NBS publications 1/ men-
tion an "operation and maintenance" phase of the software life
cycle and an ANSI publication 2/ has a definition of "maintenance"--
which seems mostly oriented to-repair of hardware--we found no ex-
plicit definition of software maintenance published by either source.

We met informally with officials of the NBS Institute for
Computer Science and Technology in May 1980 and June 1980, to
discuss software maintenance and what we think is needed. The
representatives we spoke to did not have current publications
with an explicit definition and did not show us any projects
which explicitly address software maintenance as a discrete func-
tion. However, they did show us a draft of a conversion document,
expected to be published in July 1980, which included a brief de-
finition of software maintenance to distinguish it from conver-
sion. 3-1

We feel that brief definition must be amplified to define
maintenance in its own right, especially for cost accounting pur-
poses. The Institute representatives indicated they felt that a
standard definition for Government-wide use should consist of a
list of software maintenance components from which installations
could select those relevant to them.

Central agency guidance is lackinq

While some Government publications have implications for
software maintenance --such as the Federal Information Processing
Standards Publications (FIPS PUBS) on documentation--we have found
no documents from NBS or GSA specifically devoted to software
maintenance. We believe that such a costly area deserves separate,
explicit treatment as a subject in its own right.

At our meeting with NBS officials they said, and we agree,
that software maintenance is implied in some of their publications
and that some of their projects --such as their publication on veri-
fication, validation, and testing i/-- would have a beneficial ef-
fect on software maintenance by eventually yielding better software
development.

L/See app. III, refs. 7 and 8.

z/ANSI dictionary (adopted as FIPS PUB 11-l).

z/Since then, it has been published as "Conversion of Federal ADP
Systems: A Tutorial" (NBS Special Publication 500-62).

s/"Verification, Validation and Testing for the Individual Pro-
grammer" (NBS Special Publication 500-56).

12

We believe that the absence of guidance specifically devoted
to software maintenance contributes to agencies' failures to keep
track of it, set goals for it, and manage it as a function.

MANAGEMENT DATA AND STANDARDS
ARE LACKING

The absence of maintenance management is shown by the common
lack of data on costs and types of maintenance being done and the
common absence of standards or goals for software maintenance per-
formance.

Little management data on costs of
maintenance or types of maintenance
being done

At the 15 data processing installations reviewed, we found
no system to accumulate and report management data that would
identify the extent of resources devoted to the software mainte-
nance function.

Managers cannot cost and size their overall maintenance effort
or evaluate its efficiency without this data. Attempts to reduce
maintenance may fail because of lack of information.

None of the 15 data processing installations we visited had
cost accounting systems in place to capture and report software
maintenance costs. Some installations accounted for personnel
time spent directly on general maintenance functions, but did
not account for hardware or indirect costs associated with main-
tenance. The other installations visited made no attempt to cap-
ture any maintenance costs. (One-third of the respondents to our
questionnaire indicated they had a cost system that considered
software maintenance costs.)

Costs associated with the software maintenance function should
be monitored and recorded. Segregating the costs. of the different
work functions involved in data processing is a prerequisite for
effective management of ADP costs. Some specific reasons for ac-
cumulating such data are:

--Knowledge of costs is necessary to estimate the feasibility
of requests for maintenance work.

--Cost accounting would enable management to identify all work
segments which contribute to maintenance costs.

--Accounting for maintenance costs would permit evaluation
of the efficiency of specific operations, and comparison
of the costs of functions that can be accomplished in more
than one way.

13

--Cost information is necessary in reporting and billing
costs to users.

--Maintenance cost information could provide a basis on which
to evaluate individual performance of personnel involved in
software maintenance.

--Costs of maintaining individual user applications can alert
managers to high cost and demand areas in their software
inventory warranting attention.

We found that data processing managers have little knowledge
of which types of maintenance cost the most in their operation.
In some cases, general distinctions could be made between modifi-
cation maintenance and repair maintenance, but no, formal tracking
systems exist to provide the degree of detail necessary for mean-
ingful management analysis of the maintenance workload. The
significance of this becomes apparent when it is considered in
terms of management goals to increase efficiency or to reduce
the maintenance resources needed.

In "Guidelines For Accounting For Automatic Data Processing
Costs" A/ we recommended that distinct records be kept on what is
spent on software maintenance.

To use his resources more efficiently, a manager must first
know where they are going. Second, to reduce the number of main-
tenance actions being performed, the causes of those actions must
be identified and dealt with. Each type of maintenance action
identified may have some preventable causes. Without knowing the
types and quantities of software maintenance in his total main-
tenance workload, a manager cannot identify high cost areas and
thus cannot act to reduce,them. Also, individual programmer per-
formance is seldom if ever measured in such areas as time spent
to perform maintenance tasks.

To better define the software maintenance workload we con-
structed a profile of the maintenance activity at each data proc-
essing installation visited. We also asked that each question-
naire respondent estimate the percentage of maintenance workload
spent on each activity.

&/App. III, ref. 4.

14

Cateqory

Defect removal

Average percentage spent
on each maintenance activity

Installations Question-
visited naires

20.3 18.9

Tuning 7.4 11.1

Modification 61.3 50.7

Other 9.3 19.2

The mixture of maintenance activities varies from inatalla-
tion to installation. For this reason, an installation manager
must analyze his own maintenance workload mixture to determine
the types of maintenance which consume most of his resources.

Some general trends can be seen from the above data. Modifi-
cations --meaning changes to what the software does for the user--
appear to constitute most of the maintenance workload, while the
other activities are less important overall, even though they may
appear in different proportions at individual sites.

No aqency maintenance gOala
and standards in use

None of the 15 agency data processing installations where site
work was conducted had established goals or standards specifying
acceptable levels for software maintenance activity. Such stand-
ards would give agency managers a basis on which to determine
whether their present levels of maintenance are efficient and ef-
fective. Standards would reflect the percentage of the installa-
tion's resources which could reasonably be required to maintain
the installation's software applications, and would be based on
a thorough analysis of current workload and carefully documented
historical maintenance data covering representative past periods.
In establishing acceptable levels for maintenance expenditures at
a particular installation, those factors unique to that installa-
tion must be identified and considered. Examples of such factors
are

--programming languages used,

--age of aoftware applications,

--program complexity,

--frequency of user requirement changes, and

--quality of documentation.

15

Without benefit of such standards, an installation manager has
little or no basis for evaluating the efficiency and effectiveness
of his present level of maintenance.

The lack of definitions and accounting data contribute to the
lack of goals. Without information management cannot set meaning-
ful goals.

Agency goals should include reducing the level of resources
necessary to maintain a given software inventory. The reduction
in resources would be made possible by planned management actions
to increase efficiency and minimize the amount of maintenance re-
quired.

PRIVATE SECTOR IDENTIFIES SOME COMMON
CAUSES OF HIGH SOFTWARE MAINTENANCE COSTS

In the survey quoted in chapter 2, L/ the 69 organizations
showed the following as the most important factors in software
maintenance costs.

Rank Cause

1
2
3

4
5
6

Turnover of maintenance personnel and maintenance programming
productivity, which are often advanced as reasons why maintenance
is expensive, ranked lower: 9th and 20th, respectively.

User demands for enhancements
Quality of system documentation
Competing demands on maintenance.

personnel time
Quality of original programs
Meeting schedule commitments
Lack of user understanding of

system
.

Other literature agreed with the above survey that user de-
mands are most important and that documentation and quality of
original programs are important, but attached more importance to
programmer motivation.

SOFTWARE MAINTENANCE
COSTS COULD BE REDUCED

Increased management attention to several problem areas iden-
tified at the data processing installations reviewed could reduce
costs. Inadequate emphasis in these areas appears to increase the
maintenance workload either by requiring extra maintenance or by
detracting from the efficiency of the maintenance that must be
done.

l/See app. III, ref. 25.

16

Excessive user-requested modifications

Some formal review and approval procedures are usually in
place for maintenance efforts which require large amounts of re-
sources. Smaller tasks, however, tend to be handled informally
with little management review and approval required. Where no
approval is required, or where management approval is "rubber
stamped," users may submit unlimited requests for maintenance. As
an example, at'one location we found management approval for main-
tenance requests was based on whether time was available to do the
work, and not on the need for the change. We noted that a single
application at this installation had 158 modifications documented
in its maintenance history.

Inadequate definition of
user requirements in system
development phase

We found that modifications account for about half of the
total maintenance workload. While some modifications to software
applications must be done to adapt them to changing user needs
and prolong the useful life of the software, others occur only
because user needs were not properly identified and addressed in
the first production version of the software. Of our 409 ques-
tionnaire respondents, 171 indicated that better definition of
user requirements in the system development phase would be the
single most beneficial type of effort to reduce software main-
tenance.

Inadequate or missing documentation

The ADP term "documentation" refers to the information re-
corded during design, development, operation, and maintenance of
computer software to explain pertinent aspects such as the pur-
poses, methods, logic relationships, capabilities, and limita-
tions of the software.

Software is often maintained by people who did not develop
it. If the documentation they need to understand the software
is inadequate or missing, they must work harder to maintain it.
Results of poor documentation have ranged from increased time to
understand and maintain software applications, to complete re-
design and rebuilding of an entire system of computer programs
because understanding and modifying the existing one was more
trouble than building a new one.

At the data processing installations visited, several managers
conceded that poor documentation adds to software maintenance costs
at their installation. Besides a lack of program development docu-
mentation, we found a lack of secondary documentation (such as
maintenance histories) on individual software applications.

17

Inadequate control of contractor
software developments

At installations where both contractor-developed and inhouse-
developed software is run, most data processing managers were of
the opinion that contractor-developed software required more main-
tenance. Questionnaire respondents also indicated that contractor-
developed software usually requires more maintenance. There can
be several reasons for this. The two basic reasons, however, are
often that the agency fails to insure that the contractor has a
good quality assurance program in effect during development, and
that agency personnel who must later maintain the software not only
learn nothing about it while the contractor is developing it but
also inherit little or no documentation.

Our software contracting report l/ discussed several cases
where software contracts delivered unzsable software.

Limited use of software tools and
techniques in the development and
maintenance of software

Until recently, software development was considered an art
by management and left to the control of technicians. Software
which cost too much to develop, operate, and maintain was one re-
sult of this practice. Improved software tools and techniques,
which can aid in the development and maintenance of computer soft-
ware, have been developed in an effort to better manage software.

Questionnaire respondents selected better use of tools and
techniques as the second most effective way to reduce maintenance.
Despite their potential for improvement in the maintenance opera-
tion, we have found software tools and techniques are not used
to their full potential at many agency data processing installa-
tions. 2J

A software tool is a computer program that can automate some
of the labor involved in the management, design, coding, testing,
inspection, or maintenance of other programs. A wide range of
these tools is now available commercially. Some common tools are:

--Preprocessors. Preprocessors perform some preliminary
work on a draft computer program before it is completely
tested on the computer. Types of preprocessors include
"filters" (also known as code auditors) which allow manage-
ment to determine quickly whether programmers are obeying

L/"Contracting For Computer Software Development--Serious Problems
Require Management Attention To Avoid Wasting Additional Mil-
lions" (FGMSD-80-4, Nov. 9, 1979).

z/FGMSD-80-38, op. cit. (See p. 6.)

18

specifications and standards, and shorthand preprocessors
which allow the programmers to write the programs in a
very abbreviated form which is then expanded by the pre-
processor before it is tested on the computer. Shorthand
preprocessors reduce writing, keypunching, and proofread-
ing labor.

--Program analyzers. These tools modify, or monitor the op-
eration of, an applications program to allow some informa-
tion about its operating characteristics to be collected
automatically. This information can then be used to help
modify the program to make it cost less to run on the com-
puter, or to verify that the program operates correctly.

--Programmer support libraries. These are automated filing
systems which can support the programming development pro-j-
ects of entire installations. A programmer support library
maintains files of draft programs, data, and documentation,
and can be used to provide management with progress reports.

--On-line programming support programs. These tools allow
programmers to quickly correct and modify application pro-
grams and quickly test program results.

--Test data generators. These analyze a program and produce
files of data needed to test the logic of the program.

Software techniques are methods or procedures for designing,
developing, documenting, and maintaining computer programs or for
managing these activities. There are generally two types of soft-
ware techniques: those that are useful to, and done by, persons
who work on programs, and those that are useful to managers to con-
trol their work. Examples of software techniques useful to workers
include:

--Structured proqramming (also called structured coding). A
technique of developing computer programs so that they will
be more easily understood by others who must later maintain
and modify them. Such easier understanding aids documenta-
tion, testing, and correction.

--Top-down program development. Designing, coding, and test-
ing systems by building program modules starting with those
at the general level (the "top") and proceeding down to the
most specialized, detailed level (the "bottom").

--Performance improvement. Analysis and subsequent modifi-
cation of computer programs to make them cost less to run
on a computer-while-still giving the same user answers.
Performance improvement may be aided by various software
tools, including program analyzers (see above).

19

--Concurrent documentation. Developing documentation at the
same time as the program is being developed to provide bet-
ter project control, aid completeness of the documentation,
and save money.

Examples of techniques useful to management include:

--Requiring independent inspection of software by someone
other than the developer. This improves software quality
by imposing discipline on the developer. It is now feasi-
ble to require such inspection because current tools can
automate much of the work involved.

--Using the chief programmer team method of organizing pro-
gramming projects. The team nucleus includes a very skilled
chief programmer, a backup programmer, and a programming
librarian.

--Making a deliberate effort to find, analyze, and, if suit-
able, use existing software instead of developing new
software for the same purpose. This applies both to soft-
ware tools and to applications software.

Maintenance-related benefits from the proper use of software
tools and techniques are:

--Data processing managers can substantially improve control
over the maintenance operation.

--Overall maintenance costs may be reduced. We recently re-
ported savings at one installation of an estimated $5 mil-
lion in maintenance costs in 4 years using a combination
of software tools and techniques.

--Structured programming can both reduce errors and make pro-
grams easier to modify.

--Appropriate tools can automatically provide information for
use in the modification of programs to make them less costly
to run on the computer.

A particular area in which tools and techniques could aid
maintenance is in the testing of maintenance changes before they
are put into production. We found that little such testing is
done.

PRIVATE SECTOR TRIES SEVERAL MEASURES
TO IMPROVE SOFTWARE MAINTENANCE

Successful approaches to reducing software maintenance costs
and problems reported in the publications we reviewed included:

20

--Better design and quality control in program development,
including designing software to be maintainable and using
quality control groups that are independent of software
developers.

--Use of structured programming and higher level languages.
(Structured programming can reduce the complexity of soft-
ware, making modification easier. Higher level languages
can improve portability and maintainability by removing
concern with machine properties and features which are
not relevant to the application.)

--Better documentation throughout the life of the software.

--Use of software tools and techniques to make thorough
inspection and testing more feasible during development,
to make more thorough testing of maintenance changes
convenient, and to reduce labor generally in both produc-
tion and maintenance.

--Personnel-oriented approaches, including (1) involving the
productive maintainers in acceptance testing and inspection
of new software, (2) rotating programmers between develop-
ment and maintenance, and (3) requiring more than one pro-
grammer to maintain a given system to reduce the number of
programs that can be understood by only one person.

OUR PROVISIONAL CHECKLIST
SUMMARIZES SOME USEFUL MEASURES

For use until specific guidance on controlling and reducing
software maintenance can be issued by NBS, we prepared a Provi-
sional Checklist for Software Maintenance Management (app. I to
this report) which lists matters we feel agency ADP management
should consider to control and reduce their software maintenance
workload. To achieve this objective requires three basic actions--
(1) identifying significant software maintenance activities, (2)
associating those activities with causes or reasons why they must
be done, and (3) acting to reduce or eliminate those causes where
possible.

Our checklist is in four parts--(l) recording the maintenance
workload, (2) analyzing the maintenance workload, (3) increasing
effisciency in the present maintenance operation, and (4) reducing
future maintenance. Recording and analyzing the maintenance done
now are necessary both to improve or reduce present maintenance
and identify actions which can be taken during development of new
software to reduce its eventual maintenance costs. Because soft-
ware development has strong influence on software maintenance, we
discuss what may be done during development to reduce eventual
maintenance. The actions during development may be taken with
either in--house or contractor-developed software.

21

While our checklist is only an interim document, we feel
that it will be useful to persons involved with computer software
maintenance. The levels of effort and emphasis devoted to specific
items mentioned will vary with the type and size of specific
applications.

22

CHAPTER 4

CONCLUSIONS, RECOMMENDATIONS, AND AGENCY COMMENTS

CONCLUSIONS

Software maintenance is a high-cost area which has not been
receiving adequate management attention. Improvement is needed
in the development and implementation of policies and procedures
which will provide management with key data on maintenance, in-
crease maintenance efficiency and effectiveness, and ultimately
reduce the amount of software maintenance required.

The maintenance effort in the Government is now largely unde-
fined, unidentified, unquantified, and undermanaged. Performance
evaluation of the maintenance function by Government data proces-
sing managers is almost nonexistent. Data collection mechanisms
are not in place to gather and report complete management data on
the various aspects of application software maintenance. Conse-
quently, data processing managers do not have sufficient informa-
tion to determine the exact types of maintenance being performed,
or the costs of maintenance. Without such information, managers
cannot identify preventable causes of maintenance, establish cri-
teria for acceptable levels of maintenance work, or discern re-
medial actions which will reduce maintenance costs.

Although our work was done at the data processing installa-
tion level, we recognize that broad and comprehensive policies
which will ultimately reduce the amount of resources needed for
software maintenance must come from higher levels of agency man-
agement. The data needed to formulate those policies, however,
must be obtained at the installation level where maintenance is
being done. In order to make informed decisions to reduce soft-
ware maintenance resources, management must know

--what resources are being expended on software maintenance
and the cost of those resources, .

--what is the efficiency of the maintenance operation,

--what type of maintenance actions make up the total main-
tenance workload, and

--what are the earliest preventable causes which required
the maintenance actions to be performed.

Once this management data is available, procedures and poli-
cies can be implemented which will increase the efficiency of
mandatory software maintenance and also eliminate the necessity
for much of the maintenance now being done. The net effect of
these management actions would be to control and eventually reduce
the amount of data processing resources currently being expended
on software maintenance by the Federal Government.

23

RECOMMENDATIONS

We recommend that the Secretary of Commerce, through the
National Bureau of Standards, develop and publish:

--A standard definition of applications software maintenance
for Government-wide use. The publication should list and
define maintenance components suitable for use in recording
costs, from which individual installations can use the parts
that are relevant to them.

--Guidance specifically and explicitly directed at techniques
for reducing Federal software maintenance costs. Pending
such publication, we feel that our provisional checklist
(app. I) will be useful to installation managers who want
to reduce their maintenance costs.

We further recommend that heads of Federal agencies:

--Begin to manage software maintenance as a discrete func-
tion; that is, to consider maintenance as a high-cost area
needing comprehensive management policies that deal speci-
fically with its issues. To accomplish this, data gather-
ing mechanisms must be put in place to provide management
with information on the maintenance workload.

--Identify and assign costs to resources expended for soft-
ware maintenance. A suggested methodology to record costs
is outlined in appendix I. Accounting and reporting of
costs by area of management responsibility are fundamental
steps in making individuals conscious of and responsible
for the costs incurred within their area of control.

--Develop maintenance standards and goals as a means of eval-
uating maintenance efficiency and for use as a management
tool. After carefully analyzing the current'maintenance
workload (see app. I), management should set goals reflect-
ing the resource usage considered reascnable to maintain
the current inventory of software. Levels of resources
above these standards would be subject to management at-
tention and subsequent action. Maintenance goals should
reflect a lower level of resources expected to be attained
by increased efficiency and by the use of techniques to re-
duce the need for future maintenance.

--Implement policies and procedures to increase the effi-
ciency of theesoftware maintenance operation and reduce
the amount of software maintenance needed in the future.
Suggested methods are listed in our Provisional Checklist
for Software Maintenance Management (app. I).

24

AGENCY COMMENTS AND OUR EVALUATION

We asked for comments from the Department of Commerce, the
General Services Administration, and the parent agencies of the
15 sites at which we analyzed software maintenance in detail--
listed in appendix IV, The General Services Administration, the
Postal Service, and the National Aeronautics and Space Administra-
tion furnished comments in time for inclusion. Their replies are
included as appendix V of this report and discussed below. The
other agencies from whom we requested comments failed to respond
within the 300day period required by Public Law 96-226.

General Services Administration

The Administrator of General Services agreed with the report's
findings and stated that his Office of Software Development will
assist the National Bureau of Standards and other Federal agencies
in this area.

Concerning our finding that software maintenance is a high-
cost area which has not been receiving adequate management atten-
tion, the Administrator said that he agreed and that GSA believes
software maintenance should be considered as a unique element in
the context of the overall software management problem.

Concerning our definition of software maintenance, the
Administrator said he believes that the data processing community
understands the term as we defined it. He said the fact that
software maintenance includes elements akin to software develop-
ment and conversion illustrates that software activities must be
managed as an entity.

The Administrator went on to say that it is in response to
the previous lack of attention to the software area that GSA re-
cently established the Office of Software Development to provide
a specialized center of software expertise for agency assistance,
that software maintenance is one element which that Office's
planned activities will address, and that GSA plans to assist NBS
in any way possible to provide guidance to Federal agencies con-
cerning software maintenance. We believe that the Office of Soft-
ware Development will be able to provide valuable services both
in the publication of guidance and in assistance to individual
agencies.

The Administrator concluded his written comments by suggest-
ing three points which he believed we should emphasize. We agree
and have done so where appropriate in appendix I to this report.

U.S. Postal Service

The Postmaster General said the Postal Service agreed with
the report's overall recommendations and already has measures

25

underway in keeping with our recommendations to heads of agencies.
Specifically:

1. The Postal Service has centralized its control for main-
tenance requests for national systems, and is installing
detailed procedures for maintenance projects of all sizes,
for managing software maintenance as a discrete function.

2. The new maintenance management procedures will address
identification of resources spent on software maintenance.

3. The Postal Service is now measuring and analyzing its
maintenance workload and will have developed standards
and goals by early 1981.

4. The new maintenance management is expected to increase
the efficiency of the maintenance operation and reduce
future need for maintenance.

National Aeronautics
and Space Administration

The National Aeronautics and Space Administration (NASA) com-
mented that it is in favor of voluntary guidelines with a life
cycle perspective and expressed concern about (1) our definition
of software maintenance, (2) the differences between research and
development software and administrative software, and (3) isolat-
ing the software maintenance function from the overall life cycle
management function.

We believe the fact that NASA disagrees while GSA agrees (p.
25) illustrates exactly our point that there is no standard defi-
nition and that work should be done to define the components of
software maintenance. We are aware that some research and devel-
opment software goes through many modifications and feel that this
area should be specifically addressed in published guidance on
software maintenance. We are also aware of "routine" tasks such
as statistical calculations within the researoh and development
area and believe that our maintenance management suggestions could
be applied to them. Furthermore, NASA no doubt has business appli-
cations-- such as payroll--to which, even in NASA's own perception,
our maintenance management suggestions could be applied.

Concerning discrete management--the "isolating" spoken of in
NASA's third concern above --we believe that an activity which many
people agree is half or more of the total life cycle cost of soft-
ware deserves explicit management as a subject in its own right.
We do not, however, propose that it be isolated from the life cycle
context; indeed, maintenance considerations are woven into the
entire life cycle--for example, actions taken, or not taken, during
the development phase will affect future maintenance during the
production phase.

26

A?PENDIX I

PROVISIONAL CHECKLIST FOR

SOFTWARE MAINTENANCE MANAGEMENT

APPENDIX I

RECORDING THE MAINTENANCE WORKLOAD

ANALYZING THE MAINTENANCE WORKLOAD

INCREASING EFFICIENCY IN THE PRESENT MAINTENANCE
OPERATION

REDUCING FUTURE MAINTENANCE

27

.\PPENDIX I APPENDIX I

PROVISIONAL CHECKLIST FOR

SOFTWARE MAINTENANCE MANAGEMENT

This checklist, which we prepared during our review, lists
matters which we feel agency ADP management should consider to
reduce their software maintenance workload. To achieve this ob-
jective requires three basic actions-- (1) identifying those activ-
ities which are significant in the current local maintenance work-
load, (2) associating those activities with causes or reasons why
they must be done, and (3) acting to reduce or eliminate those
causes.

This checklist is in four parts-- (1) recording the mainte-
nance work load, (2) analyzing the maintenance workload, (3) in-
creasing efficiency in the present maintenance operation, and (4)
reducing future maintenance. Recording and analyzing the mainte-
nance done now are necessary both to improve or reduce present
maintenance and to identify areas where action can be taken during
development of new software to reduce its future maintenance costs.
Because software development has strong influence on software
maintenance, we discuss what may be done during development to re-
duce eventual maintenance. The actions during development may be
taken with either in-house or contractor-developed software.

While this checklist is only an interim document, we feel
that it will be useful to persons involved with computer software
maintenance. The levels of effort and emphasis devoted to speci-
fic items mentioned will vary with the type and size of specific
applications.

RECORDING THE MAINTENANCE WORKLOAD

Recording the maintenance workload at the installation iden-
tifies the types of maintenance being done such as where the main-
tenance dollars are being spent. For recording purposes, software
maintenance should be subdivided into categories which are coded
for later data reduction and analysis. Persons doing software
maintenance should be required to report their work according to
standard codes for software maintenance categories.

When NBS issues a standard definition of software maintenance
and its component categories, that standard should be used. Of
course, some parts of such a general Government-wide definition
would not apply at individual installations.

As an interim set of categories for recording maintenance
costs, pending publication of a detailed standard definition by
NBS, we suggest the following six categories as a minimum level
Of detail for recording.

(1) Modify or enhance software to make it do new things for
the end user that were not requested in the original sYs-
tern design.

28

APPENDIX I APPENDIX I

(2) Modify or enhance software to make it do things for the
end users that were called for in the original design but
which were not present in the first production version of
the software.

(3) Remove defects in which the software does something other
than what the user wanted ("does the wrong things").

(4) Remove defects in which the software is programmed incor-
rectly ("does the desired calculation, but gives an incor-
rect answer").

(5) Optimize the software to reduce the machine costs of run-
ning it, leaving its user results unchanged.

(6) Make miscellaneous modifications, such as those needed to
interface with new release of operating systems.

Staff time and computer costs for each of the six categories
should be logged for each application program on which maintenance
is done. A simple recording scheme suitable for later automated
data reduction should be used. One method to record costs could
be as follows.

(1) Adopt the standard definition of software maintenance
recommended above.

(2) Using this definition, classify and code all activities
and subactivities involved in the maintenance process
being performed by data processing personnel.

(3) Assign codes to

l each user application,
0 each employee, and
l each type of maintenance action.

(4) Where possible, use existing timekeeping and machine
accounting procedures to report time spent on all soft-
ware maintenance actions. The above codes should be
used to identify the nature of each maintenance action.
Where no time reporting system exists, a simple data
gathering mechanism should be implemented.

(5) Establish cost centers to accumulate the costs for all
significant software maintenance activities and subac-
tivities. Within each cost center, costs may be aggre-
gated by area of management responsibility and work
function. Accumulated costs may be assigned to the
benefiting applications, Indirect and overhead costs
should be distributed to each work function. (See GAO
guidelines for accounting for automatic data processing
costs, app. III, ref. 4.)

29

APPENDIX I APPENDIX I

Such data can be summarized to allow installation management
to identify which categories of maintenance cost the most at their
particular installation. Such identification of high-cost cate-
gories will enable managers to focus their efforts on areas which
are likely to afford significant reduction.

Data on the types of maintenance now being done are needed to
trace maintenance costs to their causes, which in turn may allow
those causes to be reduced or eliminated. Data are needed as a
basis for either type of management action--efficiency (do the
maintenance cheaper) or prevention (avoid doing the maintenance
at all).

ANALYZING THE MAINTENANCE WORKLOAD

Analyzing an installation's maintenance workload has three
main purposes-- (1) determining which types of maintenance cost
the most at that particular installation, (2) linking each main-
tenance category to causes or reasons, some of which may be pre-
ventable, and (3) providing a basis on which to select actions to
reduce software maintenance costs.

To make such an analysis possible, maintenance actions must
be coded and identified in sufficient detail to allow maintenance
actions to be connected to their probable causes. For example, a
maintenance action reported simply as "Defect Removal" would give
very little indication of what caused the need for the action. If
carried to the next level of detail, however, with the defect iden-
tified as, say, being due to faulty program logic, a basis for de-
termining the cause has been established. Management may deter-
mine the level of detail for grouping maintenance actions which it
feels is necessary to allow a meaningful analysis, identify causes,
and select actions.

Management actions at a particular installation will depend
upon the results of analysis and fall into two basic categories--
(1) efficiency/effectiveness, which means actions that cause us
to do the software maintenance we are now doing in a cheaper or
better manner, or (2) prevention, which means actions that will
eventually reduce or eliminate the need for so much software main-
tenance. Of the two, increased efficiency provides the greater
opportunity for reducing resource consumption in the short run.
First, some efficiency measures may be more procedure oriented
than policy oriented, and thus can be implemented at lower levels
of management without lengthy policy review. Second, some effi-
ciency measures are not as dependent on changes in related proc-
esses, such as system development, as is prevention.

To assist data processing managers in tracking causes of
maintenance and selecting actions to take, we have provided two
lists. One list concerns existing software, the other concerns
future software and shows maintenance work types, causes, and
possible preventive measures.

30

APPENDIX I APPENDIX I

SUGGESTED STEPS TO INCREASE
EFFICIENCY IN THE SOFTWARE
MAINTENANCE OPERATION

The objective here is to increase the efficiency of maintain-
ing existing software. Lessons learned during the maintenance of
existing software can also provide feedback to development of new
software so that excessive future maintenance costs can be avoided.
Listed below are suggested steps that should be considered by data
processing managers for their potential to increase efficiency in
the software maintenance operation. These efficiency measures
cover (1) general management procedures, (2) the maintenance opera-
tion, and (3) the development process.

I. General Manaqement Procedures

-Establish criteria to measure efficiency in the maintenance
standards and goals to manage by. After carefully analyzing
the current maintenance workload, set standards which re-
flect the percentage of resources that management considers
reasonable to maintain the current inventory of software.
Levels of resources above these standards would be subject
to management attention and subsequent action. Maintenance
goals should reflect a lower level of resources expected
to be attained by increased efficiency and by the use of
techniques to reduce the necessity for future maintenance.

II. The Maintenance Operation

--Establish review procedures to properly evaluate the impact
of maintenance actions on other parts of the software ap-
plication prior to implementation. Improperly designed
maintenance actions may adversely affect other processes
and ultimately cause more defects which require additional
maintenance to correct.

--Monitor individual programmer performance and, if deficien-
cies are found, provide training in the following areas:

(1) Time spent to perform maintenance tasks.

(2) Frequency of errors in program code causing additional
maintenance.

(3) Abilit 1 to write clear, maintainable, well documented
code easily understood by other programmers.

--Avoid random excessive use of "quick fixes" and patches
to production systems. Efficiency may be improved by
grouping well planned, carefully developed, fully tested,
well documented changes to software applications and im-
plementing them at scheduled intervals.

31

APPENDIX I APPENDIX I

--Where possible, apply the principles of structured program-
ming in maintaining existing programs. We are aware that
many programs now running in production--and being
maintained --were written before the advent of structured
programming and that time does not permit a complete rede-
sign to improve structure. However, structured programming
can be followed locally within individual paragraphs or
section5 (COBOL) or subroutines (COBOL or FORTRAN) that
are added during maintenance even though the programs they
are added to are not structured throughout.

--Use structured programming in both development and mainte-
nance work for more error-free programs, easier (less
costly) maintenance, more efficient debugging, and easier-
to-use documentation.

--Use labor saving aids whenever feasible including

(1) interactive terminals,

(2) on-line text editors,

(3) word processing or text processing systems to produce
and update documentation, and

(4) software tools including code auditors, flow chart
packages, test data generators, and program analysis
tools.

--Ensure that all documentation is updated when maintenance
is performed on a software application, so that future
maintenance programmers will have a complete set of code,
JCL, and test data to work with.

--Attempt to provide a work environment wherein program main-
tenance is not viewed by programmers as a dead end job with
a stigma attached.

III. The Development Process

Ease of maintenance should be a prime consideration when com-
puter programs are originally designed and developed. Programs can
be written so that identification and correction of errors and ex-
pansion of the program to meet new requirements are easier, thereby
reducing the time and effort required for all future maintenance.
Some steps which management should require for more efficiency in
later maintenance efforts are as follows.

--Select a programming language that is:

(1) Suitable for and widely used in the general area of the
application. (For example, COBOL should not be used for

32

MPE?jDIX I APPENDIX I

statistical applications because (a) it is not often
used for that purpose, meaning that previous experience
and published code are seldom available, and (b) it was
not designed for such applications.)

(2) Widely available, widely known, widely taught, and
likely to remain so for several years. The language
should be available on different brands of computers.
It should be widely known and widely taught so that
future maintenance programmers who already know the
language can be hired easily.

(3) Available from several vendors in well-tested produc-
tion compilers. If there is a Federal standard for the
language, the compiler used to develop the software
should be one that has been validated by the GSA com-
piler test center.

--Use modular design and structured coding for the actual
writing of the software. This must be expressed in a for-
mal coding practices standards document and should be accom-
panied by inspection for compliance. The labor of such in-
spection can be greatly reduced by the use of automated
aids which are widely available--some built into comrner-
cially available compilers, others embodied in separate
software tools. If such inspection will be done, develop-
ment personnel must be put on notice at the outset of the
project that it will be done. Also, such inspection should
be done during the development as well as at the end. Re-
quire documentation to be embedded in the source code, for
example, code structure, meaningful data names, meaningful
and truthful comments, and indentation conventions. Estab-
lish a group of minimum requirements for embedded documen-
tation (for example, a standard preamble of comments) and
require that this minimum be in the programs before they
are submitted for their first compilation. Such require-
ments are greatly helped by productivity aids such as inter-
active text editors. Also, a number of software tools are
available which will automatically reformat the source code
of programs thereby reducing the labor of standardizing
formats.

--Require external documentation as appropriate (FIPS PUB 38
is a reference). l/ External documentation should include
file and record layouts and prose about trade-offs between
alternatives, assumptions made, and any deviations from
language standards. Charts showing flow of data and control
are also useful: the use of structured programming and higher
level languages has decreased the value of the traditional
flowchart.

-

A/App. III, ref. 8.

33

FiPFENDIX I APPENDIX I

--Avoid the use of vendor-unique, CPU-peculiar &/ or device-
peculiar properties in constructing the software.

--Follow programming language standards where appropriate.
If there is a national standard for the programming lan-
guage being used, the software should be inspected for com-
pliance with that standard. We are aware that use of
vendor-unique extensions is sometimes justified, for ex-
ample, by significant reduction in machine costs to run the
programs or by reduction in data storage space needed. How-
ever, such extensions should be used only where a clear
justification exists and such use and justification should
be well documented.

With the COBOL language, compilers sold to the Government
have been required for several years to include a "FIPS
flagger "--an option which issues messages when nonstandard
language extensions are used. 2/ When COBOL is the language
used, programs should be inspected with the flagger option
and unjustified extensions should be replaced with standard
language.

--Use other design features for ease of maintenance, includ-
ing:

(1) Limited number of interfaces between modules. 3-/

(2) Communication between modules limited to the defined
interfaces.

(3) Well-documented, easy-to-understand design.

(4) Limited equipment interfaces.

(5) A controlled data base.

(6) Limited access to the data base by each module.

(7) Programming style with clarity of function (readabil-
ity and ease of verification).

(8) Usually one function per module, which leads to small
modules.

(9) Separate modules for input, output, and computation
of functions.

L/CPU: central processing unit.

s/FGMSD-80-4, op. cit. (See p. 18.)

z/See app. III, ref. 26.

34

APPENDIX I APPENDIX I

STEPS TO REDUCE FUTURE MAINTENANCE

The objective here ia to take actions during the development
of new software to reduce its future maintenance coats. These
actions will, and we believe should, be guided to a great extent
by what the installation learns through analyzing the maintenance
of its current software. Since software development has strong
influence on software maintenance, we discuss what may be done
during development to reduce eventual maintenance. The actions
during development may be taken with either in-house or contractbr
developments. We recognize that a certain amount of maintenance
will always be necessary. For this reason, we have limited our
"probable causes" section of the checklist to what we consider
"preventable" causes.

Type of maintenance action

Removing defects due to faulty program logic.

Probable causes

--Overly complex programs.
II

--Inadequate teating.

--New defects introduced through improper maintenance actions.

--Lack of proper change control on large development projects.

Prevention techniques

--Use certain software tools and techniques such as:

(1)

(2)

(3)

Test data generators. These analyze a program and
produce files of data needed to test the logic of
the program.

Structured programming (also called structured cod-
ing). A technique of developing computer programs
so that they will be more easily understood by others
who must later maintain and modify them. Such easier
understanding aids documentation, testing, and cor-
rection.

Top-down program development. This is the approach
of designing, coding, and testing systems by build-
ing program modules starting with those at the gen-
eral level (the "top") and proceeding down to the
most specialized, detailed level (the "bottom").

---Adequately test computer programs using the following pro-
cedures:

35

APPENDIX I APPENDIX I

(1) Test individual computer programs with test data
that exercise the great majority--preferably 100
percent --of the procedural code of the programs.
Tools exist which aid in demonstrating that logic
was executed. Some are built into compilers as
compilation options; others are separate software
tools. The test data sets (and their outputs) used
should be kept for later retesting in the produc-
tion phase after user-requested changes have been
made to the software.

(2) The software must be tested in as realistic a user
scenario as possible, with functional review by the
user as well as technical review by developers or
separate quality control. When the software consists
of a group of programs and files which must operate
together to serve the user, the group must be tested
as a group--individual tests of the parts are not
usually enough. Interactive or other time-dependent
aspects should be included in the testing.

I,
(3) Auxiliary equipment, such as interactive terminals

that will work with the software, should be included
in the user test scenarios.

--Test maintenance changes, especially new releases, with
appropriate test data sets kept from the testing phase.

--Adhere to installation programming practices standards dur-
ing maintenance as well as during development. The idea here
is that we do not want the software to "deteriorate" as time
goes on --for example, to become less well structured, or to
deviate from its documentation.

--Use formal change control procedures during development of
software. Make sure all changes have been made in each
stage of design prior to moving into the next stage. .

--Review each proposed maintenance action for possible adverse
impact on other portions of the software applications.

Type of maintenance action

Removing defects where program does something other than what
the user wanted.

Probable causes

--Little or no user involvement in the development process.

--Faulty design and/or functional specifications.

--Misinterpretation of specifications by the programmer.

36

Ai?PENDIX I APPENDIX I

Prevention techniques

--Require user participation in the software development
process both for the initial identification of user require-
ments and for user reviews of system output during the de-
velopment process.

--Require independent inspection of software by someone other
than the d@V@lOp8r. This improves software quality by im-
posing discipline on the developer. It is now feasible to
require such inspection because current tools can automate
much of the work involved. Inspections should trace design
specifications back to functional requirements to ensure
those requirements are satisfied.

--InspeCt software for functional completeness by asking such
questions as:

(1) Does it do the user tasks (for example, calculations)
that it was originally intended to do?

(2) Does it do those tasks correctly?

(3) Are its user outputs (printouts, etc.) and user doc-
umentation understandable to user representatives
who have had no previous exposure to the development?

--State specifications in formal or quantitative terms rather
than narrative English, so they are less likely to be mis-
interpreted.

--Utilize "top-down" design. (State requirements first in
terms of general functions and then reduce them to module
and program levels.)

Type of maintenance aCtiOn

Fine tuning the software (optimization).

Probable causes

--Lack of performance criteria in the design stage.

--Inefficient coding practices.

--Failure to adopt and enforce programming standards.

Prevention techniques

--Augment functional specifications and requirements by re-
quiring software to have quantitative performance attributes.
In other words, specify not only what the software should
do, but how efficiently it should do it.

37

.WPENDIX I APPENDIX I

We believe that machine efficiency can and should be
addressed during the development phase for programs and sys-
tems which are expected to run for a long time and process
a great deal of data. Of cour8e:

(1) Correctness is more important than cheap operation.

(2) Many programs, such as data reduction programs, are
not run enough times to justify exhaustive effi-
ciency work. However, for programs expected to be
expensive and longlived, efficiency should be ad-
dressed during construction because that is the best
time to do it.

--During program development, use such software tools as pro-
gram analyzers. This tool monitors the operation of an ap-
plications program and provides information used to make
the program cost less to run on the computer.

--As a management tool, use preprocessors known as code audi-
tors to determine whether programmers are complying with
standards.

--Inspect software for compliance with programming practices
standards, if the organization has such standards. Unjus-
tified deviations should be corrected.

--Orient programmers toward efficient programming practices
so they will write programs that are reasonably efficient
and do not need later tuning. We believe that structured
programming and machine efficiency do not conflict and in-
deed can complement one another. Orientation can be pursued
through in-house seminars and pocket guides.

Type of maintenance action

Modifying software to make it do more end-user functions.

Probable causes

--Inadequate user requirement specifications in the design
stage.

--Lack of user participation in the development process, both
in the initial definition of requirements and in requirements
design review.

--Inadequate change control during the development stage.

--Failure to test code for conformation to specifications.

--Inadequate management review procedures to determine the
feasibility and necessity for user-requested changes.

38

XPP!zNDIX I APPENDIX I

--No fiscal liability to users for requested software changes.

Prevention techniques

--Require user participation in the software development proc-
ess both for the initial identification of user requirements
and for user reviews of system output during the development
process.

--Make independent inspection of software mandatory by some-
one other than the developer. This improves software qual-
ity by imposing discipline on the developer. It is now
feasible to require such inspection because current tools
can automate much of the work involved. Inspections should
trace design specifications back to functional requirements
to ensure that those requirements are satisfied.

--Inspect software for functional completeness by asking such
questions as:

l Does it do the user tasks (calculations, etc.) that it
was originally intended to do?

o Does it do those tasks correctly?

l Are its user outputs (printouts, etc.) and user docu-
mentation understandable to user representatives who
have had no previous exposure to the development?-

--State specifications in formal or quantitative terms rather
than narrative English, so they are less likely to be mis-
interpreted.

--Use "top-down" design. State requirements first in terms
of general functions and then reduce them to module and
program levels.

--Consider recoyery of costs for modification efforts from
the using organization to create more cost awareness among
users. This would tend to eliminate some requests for "nice
to have" enhancements.

39

APPENDIX II APPENDIX II

SUMMARY RESULTS FROM OUR QUESTIONNAIRE

1. Does your installation have responsibility for any applications
software maintenance as defined above? (If no, please explain
below and skip to question 6.)

(1) Ye's

Response
count Percent

357 87.3

(2) No 51 12.5

(3) No answer 1 . 2

Total 409 100.0

2. Which of the following best describes the extent of your in-
stallation's software maintenance responsibilities? (Please
check only one.)

Response
count Percent

(1)

(2)

(3)

(4)

(5)

Limited - Consists solely of
identifying defects, new user
requirements, troubleshooting,
and installing changes for
applications developed by a
central agency function outside
this installation.

Limited maintenance on centrally
developed applications, plus
maintenance on some locally
developed systems.

Full maintenance responsibility
for all applications run at this
installation.

Other

No answer

Total

24

137

5.9

33.5

143 35.0

54 13.2

a/ 51 12.5 --

409 b/ 100.1

a/Questions 2 thru 5 should have 51 "no answers"--the respond-
ents who said no in question 1.

b/Should not add up to 100.

40

.413PE?Ir3IX II APPENDIX II

3. Is the applications software maintenance at your installation
performed-by installation employees, by contractor employees,
or by a mixture of both? (Please check only one.)

(1)

(2)

(3)

(4)

(5)

Response
count

Installation employees do all
applications software maintenance 252

Contractor employees do all the
applications software maintenance 4

Applications software is main-
tained by a mixture of instal-
lation employees and contractor
employees 86

Other (Please describe.) 14

No answer

Total 409 C

Percent

61.6

1.0

21.0

3.4

13.0

100.0

4. Please show the percentage of total software maintenance (as
measured by staff-hours) performed at your installation that
falls in each of the following categories. Show a percent
for each cateqory (even if it-is zero percent). Percents
shown should add to 100 percent.

Any actions taken after implementation of the software to:

(1) Remove defects in the software,
including:

a. Defects in which the soft-
ware was programmed to do
something other than what
the user wanted.

b. Defects in which the program
logic was faulty with the
result that the program did

Average
Response percent

count reported

355 7.8

something other than what the
programmer intended. 355

(2) Tune the software to make it more
efficient (less machine time and/
or less core). 355

11.1

11.1

41

APPENDIX II APPENDIX II

(3)

(4)

Response
count Percent

Modify or enhance the software to
make it perform more end-user
functions, including:

a. Functions originally called
for in the system design,
but not implemented. 355 9.2

b. New functions requested by
the user not called for in
the original system design. 355 41.5

Make other modifications result-
ing from miscellaneous causes
such as the need to interface
with other systems, system
software changes, etc. 355 19.2

Total a/ 99.9

a/Not exactly 100 due to rounding.

5. Please estimate the percentages of the following resources'
times that are devoted to the software maintenance functions
listed in question 4. Please show a percentage for each item
even if it is zero.

(1) Personnel

Programmer/Analyst 353 52.9
Operations personnel 352 8.9
Administrative personnel 352 5.9
Management personnel 352 10.0

(2) Hardware

CPU time

Response
count

348

Average
percent
reported
(note a)

13.6

s/Should not add up to 100.

42

APPENDIX II APPENDIX II

Part II-- Installation Programming Information

6. Are the applications programs in use at your installation
primarily business applications, primarily scientific applica-
tions, or a mixture of both business and scientific applica-
tions? (Please check only one.) .

Response
count Percent

(1) Primarily business
applications

(2) Primarily scientific
applications

(3) A mixture of business and
scientific applications

(4) Other (Please describe.)

219 53.5

65 15.9

102 24.9

22 5.4

(5) No answer 1 2 A

Total 409 g/ 99.9

a/Should not add up to 100.

7. Do most of the application programs in use at your installa-
tion run in production for a year or more before being dis-
carded or replaced: do most run for less than a year: is the
number running for a year or more about equal to the number
that run for less than a year? (Please check only one.)

(1) Most run for a year or more

(2) Most run for less than a year 23 5.6

(3) About as many last a year or
more as last less than a year

(4) No answer

Total

Response
count Percent

344 84.1

35 8.6

43

APPENDIX II APPENDIX II

8. Next we are interested in the programming languages used in
your installation. Please state for each of the languages
listed below the number of application programs in that lan-
guage currently in use in your installation and the average
production life in years at your installation of the applica-
tion programs in that language.

Lanquaqe

COBOL
FORTRAN
PL/I
BASIC
ALGOL
ASSEMBLY

(note a)
CMS-l/CMS-2
PASCAL
RPG
LISP
SIMSCRIPT
GPSS
DYNAMO
SNOBOL
SCORE
EASY TRIEVE
DYL-260
DATA BASE

Instillations
with programs

in the language

263
212

t:
4

197
5
6

41

10
11

2
9

29
7

LANGUAGES 84
OTHER (specify) 64

Average no. of Installations
programs whose with over
source code is 100 programs
in the language in language

746
260
128

170
83

7
13

2

215
81

i':
(b)

9
17

8
7

45
84

110

71
1

2:

f
2

5.8
2.2

f:i
(b)
3.1
3.0
3.0

2':
2.4
1.7

67 16 6.0
173 16 3.4

Average reported
average length of
production life of

programs in the
lanquaqe in year8

5.4

4:::
3.2
3.5

a/Assembly languages include BAL, EASYCODER, AUTOCODER, GMAP,
COMPASS, etc.

b/Not applicable.

9. Please write in the age (i.e., how long it has been in pro-
duction) of the oldest application program in use at your
installation. Write in your estimate.

Average (mean) 9.4 years

Respondents answering
question 399

44

APPENDIX II APPENU1X Ii

10. In what language is the oldest application program in use at
your installation written? (Please check only one.)

(1) COBOL (2) Assembly language (Assembly
languages include BAL, EASYCODER,
AUTOCODER, GMAP, COMPASS, etc.)

(3) FORTRAN (4) Other (Please specify.)

Response count

COBOL
Assembly language
FORTRAN
Other
No answer

Total

a/Not exactly 100 due to rounding.

167
85

102
45
10

409 c

Percent

40.8
20.8
24.9
11.0

2.4

a/ 99.9

11. Which, if any, of the following tools and techniques are in
use at your installation? (Please check all that apply.)

Tool
Responses
having Technique

(1) Automated
documentation

(1) Code arrangement
105

(2) Source text
manipulation

(2)
168

Descriptive
documentation

(3) Program
optimization

(3)
131

Performance
documentation

(4) Aids built into
compilers

(4)
199

Embedded documen-
tation

(5) Special program-
ming languages
compilers

(5) Programming prac-
tices standards

(6) Preprocessors

89

80 (6) Reuse of already
written code

(7) Program
performance
evaluation

(7)

88

Quality assurance
organization/
management

(8) Design language 24 (8) Design

Respondents answering
question: 409

(9)

Responses
having

Programming
organization/
management

112

219

96

205

200

262

78

149

134

45

APPENDIX II APPPENDIX II

12. Does your installation have an ongoing (regular basis) effort
to do optimization on application programs to reduce the ma-
chine costs of running them? (Please check only one.)

Response
count Percent

(1) Yes 137 33.5

(2) No 252 61.6

(3) Not sure 15 3.7

(4) No answer 5 1.2

Total 409 100.0

13. Are cost accounting procedures in effect at your installation
to capture personnel, hardware, and overhead cost associated
with application software maintenance as defined in this ques-
tionnalke? (Please check only one.)

(1) Yes

(2) No

(3) Not sure

(4) No answer

Total

a/Not exactly 100 due to rounding.

Response
count

125

260

18

6

Percent

30.6

63.6

4.4

1.5

a/ 100.1

14. If yes, are reports showing these costs'regularly produced?
(Please check only one.)

Response
count Percent

(1) Yes 104 25.4

(2) No 52 12.7

(3) Not applicable--
no procedure 141 34.5

(4) No answer 112 27.4

Total 409 100.0

46

APPENDIX II APPENDIX II

Part III-- Opinions and Viewe

15. Based upon your experience, do you believe that application
software developed by contractors requires more or less
maintenance than application software developed in-house?
(Please check only one.)

(1)

(2)

(3)

(4)

(5)

Contractor-developed software
requires more maintenance

Contractor-developed software
requires about the same amount
of maintenance

Contractor-developed software
requires less maintenance

No opinion

No answer

Total

Response
count

159

Percent

38.9

89 21.8

22 5.4

136 33.3

3 7 A

409

a/Not exactly 100 due to rounding.

16. In your opinion, which, if any, of the following actions
would result in the greatest reduction in the size of the
Government's applications software maintenance effort?
(Please check only one.)

Response
count Percent

(1) Better definition of user
requirements in the system
development stage

(2) Better definition of user
requirements for modifications
to existing software

(3) Use of software tools and
techniques in system development
(structured design, structured
coding, etc.)

(4) Providing better tools and
techniques for maintenance pro-
grammers (such as interactive
terminals, text editors, and
program analysis tools, etc.)

47

.

171 41.8

13 3.2

22

46 11.2

5.4

APPEZJDIX II APPENDIX II

Reeponas

(5)

(6)

(7)

(8)

(9)

More thorough testing of applica-
tions programs before the system
is released to production

Eliminating unnecessary changes
requested

Nothing-- such a reduction is not
possible by users

Other (Please specify.)

No answer

Total

count

43

12

8

51

43

409

Percent

10.5

2.9

2.0

12.5

10.5

100.0

48

x?PENDIX I II APPENDIX III

LIST OF SOFTWARE MAINTENANCE RELATED

PUBLICATIONS

GENERAL ACCOUNTING OFFICE

1. "Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs," FGMSD-80-38, Apr. 29,
1980.

2. "Contracting For Computer Software Development--Serious Prob-
lems Require Management Attention to Avoid Wasting Additional
Millions," FGMSD-80-4, Nov. 9, 1979.

3. "The Federal Information Processing Standards Program: Many
Potential Benefits, Little Progress, and Many Problems,"
FGMSD-78-23, Apr. 19, 1978.

4. "Guidelines For Accounting For Automatic Data Processing
Costs ‘ " Federal Government Accounting Pamphlet Number 4, 1978.

5. "Millions in Savings Possible in Converting Programs from One
Computer to Another," FGMSD-77-34, Sept. 15, 1977.

6. "Improved Planning and Management of Information Systems Devel-
opment Needed," LCD-74-118, Aug. 18, 1975.

NATIONAL BUREAU OF STANDARDS

7.

8.

9.

10.

"Guidelines for Documentation of Computer Programs and Auto-
mated Data Systems for the Initiation Phase," FIPS PUB 64,
Aug. 1, 1979.

"Guidelines for Documentation of Computer Programs and Auto-
mated Data Systems," FIPS PUB 38, Feb. 15, 1976.

"Appraisal of Federal Government COBOL Standards and Software
Management: Survey Results," by Donald R. 'Deutsch,
NBSIR 76-1100, Aug. 1976.

"Computer Software Management: A Primer for Project Manage-
ment and Quality Control," by Dennis W. Fife, NBS Special
Publication 500-11, July 1977.

GENERAL SERVICES ADMINISTRATION

11. "Management Guidance for Developing and Installing an ADP Per-
formance Management Program," Nov. 1978.

49

APPENDIX III

OTHER SOURCES

APPENDIX III

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

"A Procedure to Review and Improve the Operational Efficiency
of Production Systems," by Robert Grossman, CDP, Proceedings,
Joint ACM/NBS Symposium, June 1980.

"Certification Testing; A Procedure to Improve the Quality
of Software Testing," by Alfred R. Sorkowitz, Computer,
Vol. 12, No. 8, Aug. 1979, pp. 20-24.

"Programmer's Quick References for COBOL Structured Program-
ming," HUD-54402-ADP, Nov. 1979.

"A Review of Software Maintenance Technology," RADC-TR-80-13,
by John D. Donahoo and Dorothy Swearinger, Rome Air Develop-
ment Center, Feb. 1980.

"The New Software Economics," by Werner L. Frank, Prentice-
Hall, 1979.

"The World of Software Maintenance," by Girish Parikh, Computer
World, 1979.

"Summary of Findings: A Critical Assessment of EDP Objectives,"
McCaffery, Seligman, and Von Simson, Inc.; Sept. 1978.

"Standard Definitions: A Missing and Needed Software Tool,"
by Steven Merritt, Proceedings, 17th annual ACM/NBS Sympo-
sium, Gaithersburg, Md., June 15, 1978.

"Programmer's Guide: 5.0 Programming Standards," U.S. Customs
Service, AMPS Program Division, June 1, 1978.

"The Software Life Cycle - A Management and Technological
Challenge in the Department of Defense," by Barry C. De Roze
and Thomas H. Nyman, IEEE Transactions on Software Engineering,
Vol. SE-4, No. 4, July 1978, pp. 309-318.

"Corporate-Level Software Management," by John D. Cooper,
IEEE Transactions on Software Engineering, Vol. SE-4, July
1978, pp. 319-326.

"Controlling the Software Life Cycle --The Project Management
Task," by William C. Cave and Alan B. Salisbury, IEEE Trans-
actions on Software Engineering, Vol. SE-4, No. 4, July 1978
pp. 326-334.

"Msnaging the Maintenance Programming Function," (14-05-01)
Computer Programming Management, Averbach, 1978.

"Characteristics of Application Software Maintenance," by
B.P. Lientz, E.B. Swanson, and G.E. Tompkins: UCLA, 1977.

50

ATPENDIX III APPENDIX III

26.

27.

28,

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

"Software Acquisition Management Guidebook: Software
Maintenance," by J.R. Stanfield and A.M. Skrukrud, ESD Hanscom
AFB, Mass., Oct. 1977.

"Software Acquisition Management Guidebook: Software Develop-
ment and Maintenance Facilities," MITRE, ESD Hanscom AFB, Mass.,
Apr. 1977.

“A Look at Software Maintenance," by Chester C. Liu, Datama-
tion, Nov. 1976, pp. 51-55.

"The Mythical Man-Month,' by F.P. Brooks, Jr., Addison-Wesley
Publishing Company, 1975.

"Application Program Change Control," Regulation No. 18-21-1,
Department of the Army, July 1, 1975.

"Improved Application Development Pays Off at Marathon Oil,"
Infosystems, Apr. 1975, p. 10.

"An Overview of Programming Practices," by J.M. Yohe, Uni-
versity of Wisconsin --Madison Mathematics Research Center,
May 1974.

"The Effect of Software Structure on Software Reliability,
Modifiability, and Reusability: A Case Study and Analysis,"
by John B. Goodenough, et al.; Frankford Arsenal, July 1974.

"Improved Programming Technologies: Management Overview,"
IBM, 1973.

"Software Life Cycle Cost Considerations," by Barry, Nichols,
and Schiff; IBM/FSD, Gaithersburg, Md., 1973.

"That Maintenance Iceberg," EDP Analyzer, Oct. 1972, Vol. 10,
No. lo.

The Art of Software Testinq, by Glenford J.-Myers, (N.Y.:
Wiley, 1979).

Implications of Usinq Modular Programming, Hoskyns (London:
H. M. Stationery Office, 1973).

"Auditing Computers With A Test Deck," General Accounting
Office, 1975.

"Software Testing in Computer-Driven Systems,” by J. Gary
Nelson, Software Quality Manaqement, ed. J.D. Cooper (N.Y.:
Petrocelli, 1979), ch. 16.

"Real Time: The Lost World of Software Debugging and Testing,"
by Robert L. GlaL88, Comm. ACM, May 1980, Vol. 23, No. 5.

51

.qi'PENDIX III APPENDIX III

42.

43.

44.

45.

46.

47.

48.

49.

“Quality Assurance Tools," by Robert W. Shirey, Computer-
world, May 19, 1980.

"The Structure of Modular Programs," by Joshua Turner,
Comm. ACM, May 1980, Vol. 23, No. 5.

"EDP Performance Management Handbook, Vol. II Tools and
Techniques," Applied Computer Research.

"Optimizing Program Quality and Programmer Productivity,"
by Capers Jones, IBM, SHARE 50, Mar; 7, 1978.

"Tackle Software With Modular Programming," by John Rhodes,
Computer Decisions, Oct. 1973.

"The Search for Software Reliability," EDP Analyzer, May
1974, Vol. 12, NO. 5.

"Embedded Computers: Software Cost Considerations," by
John H. Manley, AFIPS, NCC 1974.

"Software Life Cycle Management," by John H. Manley,
Gaithersburg, Md., Aug. 1978.

52

APPENDIX IV

SITES~ AT WHICH WE ANALYZED

APPENDIX IV

1.

2.

3.

4.

5.

6.

7.

a.

9.

10.

11.

12.

13.

14.

15.

SOFTWARE MAINTENANCE IN DETAIL

U.S. Railroad Retirement Board, Chicago, Illinois

Argonne National Laboratory, 9700 South Cass Ave., Argonne,
Illinois

Veterans Administration Data Processing Center, Austin, Texas

Air Force Manpower and Personnel Center, Randolph AFB, Texas

Bureau of Reclamation, Water and Power Resources Service,
Denver, Colorado

Veterans Administration Data Processing Center, Hines, Illi-
nois

San Antonio Air Logistics Center, Kelly AFB, San Antonio, Texas

Air Force Accounting and Finance Center, Directorate of Data
Automation, Denver, Colorado

U.S. Army Troop Support and Aviation, Material Readiness Com-
mand, 4300 Goodfellow, St. Louis, Missouri

Oklahoma City Air Logistics Center, Tinker AFB, Oklahoma City,
Oklahoma

Bureau of the Mint, Mint Data Center, San Francisco, California

55211 Airborne Warning and Control Wing, Tinker AFE, Oklahoma
City, Oklahoma

National Aeronautics and Space Administration, AMES Research
Center, Moffett Field, California

United States Postal Service, Postal Data Center, St. Louis,
Missouri

United States Postal Service, Postal Data Center, San Bruno,
California

53

APPENDIX V APPENDIX V

($0/y ~~cz
Administration Washington, DC 20405

Honorable Elmer B. Staats
Comptroller General of the United States
U.S. General Accounting Office
Washington, DC 20548

Dear Mr. Staats:

We have reviewed the General Accounting Office draft report
entitled "Software Maintenance: Expensive and Undermanaged,"
dated October 21, 1980, and we agree that software main-
tenance is a high-cost area which to date has not received
adequate management attention.

The rising cost of all software activities requires more
effective and efficient management. We believe that soft-
ware maintenance should be considered as a unique element
in the context of the overall software management problem.
Poor and costly software maintenance is a direct result of
poor software management and requires no new, unique
solution, but rather the application of good software
management techniques.

The brief discussion in the draft report concerning the
definition of "software maintenance" illustrates this point.
We believe that the data processing community undetstands
the term as you have defined it. The fact that the term
"tuning the software to make it more efficient and economical
to operate" includes two elements very much akin to software
development and conversion illustrates that software
activities must be managed as an entity. .

It is in response to the previous lack of attention to the
software area that General Services Administration (GSA)
recently established the Office of Software Development to
provide a specialized center of software expertise for
agency assistance. The office's planned program activities
are designed to assist agencies in reducing software costs
and improving software productivity. Software maintenance
is one important element which these activities will address.

Although the report's recommendations are directed to the
National Bureau of Standards (NBS), GSA plans to assist
NBS in any way possible to provide guidance to Federal
agencies concerning software maintenance.

54

APPENDIX V APPENDIX V

We suggest that the following points be emphasized in the
final report:

1. The need for software product modifications can
be minimized by proper management of the software develop-
ment process through (a) the informed participation of
management in the software development and software
maintenance decision making process with regard to the
definition of software requirements to meet agency needs,
(b) ensuring that user needs are met by the basic system
through close coordination with the user and participation
of the user in the development process, and (c) ensuring
that the user understands the need for a cutoff of changes
in requirements during the development process, in order
to provide a workable product.

2. Software maintenance can be facilitated by the
use of (a) good practice in design and programming of the
software products, currently known as "structured analysis,
design, and programming," and (b) insistence on the pro-
duction of detailed and accurate documentation as an integral
part of the software development. We recommend that NBS
explore standardization in these areas.

3. When software development is contracted for,
appropriate contracting techniques, such as fixed-price
contracting and payment based upon acceptance of deliver-
able products, can minimize software maintenance efforts.
GSA will soon publish an FPR/FPMR bulletin entitled
"Software Development Contracting Guidelines," responsive
to GAO Report FGMSD-80-4, dated November 9, 1979. The
intent of the guidelines is to assist agencies in contract-
ing for software products that can be maintained more
efficiently and economically.

The opportunity to comment on this draft report is appreciated.

Sincerely,

f@@
I

55

APPENDIX V APPENDIX V

THE POSTMASTER GENERAL
Warhington, DC 20260

Ncwmber 14, 1980

Dear Mr. Anderson:

This refers to your proposed report entitled "Software
Maintenance: Expensive and Undermanaged."

The Postal Service agrees with the report's overall recom-
mendations and already has measures underway in keeping
with your recommendations to the heads of agencies:

1.

2.

3.

Manage software maintenance as a discrete function.

We assign software maintenance for specific ADP systems
to specific Data Processing Centers and have established
centralized control at USPS Headquarters over mainte-
nance requests for all national systems. We are also
installing detailed maintenance management procedures
that prescribe a life-cycle methodology for maintenance
projects of all sizes.

Identify the resources spent on software maintenance.

This will be addressed as an element of our new
maintenance management procedures.

Develop maintenance standards and goals.

We are now measuring and analyzing our maintenance
workloads and by early 1981 we will have developed
standards and goals.

56

APPENDIX V APPENDIX V

4. Increase the efficiency of the maintenance operation and
reduce future maintenance.

Our new maintenance management system will accomplish
these goals.

Thank you for the opportunity to comment on your fine report.

Sincerely,

Mr. William J, Anderson
Director, General
Government Division

United States General
Accounting Office

Washington, D.C. 20548

57

APPENDIX V APPENDIX V

National Aeronautics and
Space Administration

g;t$gton, D.C.

Reply to Atln 01 L

Mr. W. H. Sheley, *Jr.
Acting Director
Procurement and Systems

Acquisition Division
U.S. General Accounting Office
Washington, DC 20545

Dear Mr. Sheley:

Thank you for the opportunity to review GAO’s draft report
entitled, “Software Yaintenance: Kxpensiva and Undermanaged ,”
(Code 9135001, which was forwardad with your letter dated October
15, 1990.

The draft has been reviewed by NAS4 staff at Headquarters and at
the NASA Centers involved in the assignment. ‘She comments on the
GAO recommendations are prov!ded in the enclosure.

If we can be of further assistance, please let me Know.

.

,

Enclosure

58

APPENDIX V APPENDIX V

NOV 14 1980

Comments on GAO Proposed Draft Report Entitled, "Software
Maintenance: Expensive and Under-managed," Code 913600

NASA is in favor of voluntary guidelines for the management of
software when the overall life cycle perspective is taken. We
would encourage the development of such voluntary guidelines.
But we have reservations with the approach taken by this draft
GAO report.

Three principal concepts within the report concern us: 1) the
definition of software maintenance is too broad and will lead
to confusion of management responsibilities and costs; 2)
research and development software is managed differently from
production oriented administrative software and the report
doesn't recognize that difference: 3) the advantage to isolating
the software maintenance function from the overall life cycle
management function is not apparent.

NASA believes the GAO definition of software maintenance is
too broad and is apparently not alone in this belief. By
including the phrase "doing more and different tasks" within
the definition of software maintenance has created a potential
problem. The definition causes an artificial shifting of
management responsibilities, prerogatives and associated costs.
In a Research and Development (R&D) environment modifying the
software and making it do more and different things is the
essence of the development cycle. As such the responsibility
and the decision to modify the software should be the experi-
menter's decision not someone charged with maintaining produc-
tion software. Secondly, these changes should appropriately
be charged as development costs, not as maintenance. The
proposed GAO definition confuses these issues.

.
There is a real difference in managing scientific software as
compared to production oriented nondynamic code. Our concern
is that GAO will develop generalized guidelines based on its
sample of business oriented sites and this will create general
purpose regulations. Regulations that by their very nature
can not take into account the requirements of scientific
software management. Research and Development agencies like
NASA do not fit the mold generated by the GAO sample. The
indiscriminate application of broad guidelines would prove
to be counter productive and would impose unnecessary overhead
and impact effective management.

59

APPENDIX V APPENDIX V

The report assumes more management is needed based on the
fact software costs are high. By itself this is not adequate
justification. The government is not the exception, it is
a high cost item within industry also.

One reason the cost is reported as so high in the GAO report
is directly attributable to the broad definition of software
maintenance. It includes items normally considered software
development costs. The GAO report indicates 60 percent of
the maintenance activity is software modification, that adds
new and different tasks. This inflates the government main-
tenance coat. The effort to manage software maintenance
discretely will also add to the maintenance overhead.

Discrete management forces the creation of artificial goals
and limits to measure success. It also implies the creating
of data gathering and processing systems to measure these
artificial goals. This all contributes to more nonproductive
overhead.

NASA uses the majority of its computers as research tools.
Instead of setting artificial limitations as is suggested,
management should judge its success by measuring user satis-
faction and adhering to overall life cycle goals and objectives.

We feel that goals and objectives in life cycle management
could be enhanced through voluntary guidelines. Therefore,
we encourage their development within the framework we have
discussed above.

7!ZZ?&Zfor
Management Operations

(913600)

60

AN EQUAL OPPORTUNITY EMPLOYLR

UNITED STAl75
GENERAL ACCOUNTING OFFKE

WASHINGTON, D.C. 205(8

TNIRD CLASS

