
GAO AGILE
ASSESSMENT
GUIDE

Best Practices for
Agile Adoption and
Implementation
Accessible Version

September 2020

GAO-20-590G

United States Government Accountability Office

Page i GAO-20-590G GAO Agile Assessment Guide

Contents
Letter 1

Preface 1

Introduction 4
Developing the Guide 5
The Guide’s Readers 5
The Guide’s Contents 5
Acknowledgments 6

Chapter 1: Background 8

Chapter 2: Agile Adoption Challenges in the Federal Government and Actions Taken in Response 16

Challenges 16
Actions Taken to Address Challenges 22

Chapter 3: Agile Adoption Best Practices 29

Team Dynamics and Activities 33
Best practice: Team composition supports Agile methods 33
Best practice: Work is prioritized to maximize value for the

customer 38
Best practice: Repeatable processes are in place 43
Program Operations 47
Best practice: Staff are appropriately trained in Agile methods 48
Best practice: Technical environment enables Agile development 50
Best practice: Program controls are compatible with Agile 52
Organization Environment 54
Best practice: Organization activities support Agile methods 55
Best practice: Organization culture supports Agile methods 58
Best practice: Organization acquisition policies and procedures

support Agile methods 65
Best Practices Checklist: Adoption of Agile Methods 67

Chapter 4: Overview of Agile Execution and Controls 69

Overview of Requirements Development and Management 70
Overview of Acquisition Strategy Development 75

Page ii GAO-20-590G GAO Agile Assessment Guide

Overview of Program Monitoring and Control 76

Chapter 5: Requirements Development and Management in Agile 80

Elicit and Prioritize Requirements 86
Refine and Discover Requirements 89
Ensure Requirements are Sufficiently Complete, Feasible, and

Verifiable for the Current State of the Program 90
Balance Customer Needs and Constraints 92
Test and Validate the System as it is Being Developed 95
Manage and Refine Requirements 96
Maintain Traceability in Requirements Decomposition 97
Ensure Work is Contributing to the Completion of Requirements 98
Best Practices Checklist: Requirements Development 99

Chapter 6: Agile and the Federal Contracting Process 102

Tailor contract structure and inputs to align with Agile practices 106
Incorporate Agile metrics, tools, and lessons learned from

retrospectives during the contract oversight process 112
Integrate the program office and the developers 119
Best Practices Checklist: Contracting for an Agile Program 124

Chapter 7: Agile and Program Monitoring and Control 126

Work breakdown structure in an Agile environment 127
Cost estimating best practices in an Agile environment 129
Agile measures and documenting the cost estimate 131
Considerations for developing a cost estimate for an Agile

program 135
Scheduling best practices in an Agile environment 140
Agile measures and scheduling best practices 141
Considerations for scheduling an Agile program 144
Earned value management best practices in an Agile environment 148
Agile measures and Earned Value Management 150
Considerations for applying earned value management to an Agile

program 155
Best Practices Checklist: Agile and Program Monitoring and

Control 160

Chapter 8: Agile Metrics 161

Identify key metrics based on the program’s Agile framework 163
Ensure metrics align with organization-wide goals and objectives 166

Page iii GAO-20-590G GAO Agile Assessment Guide

Establish and validate metrics early and align with incentives 167
Establish management commitment 170
Commit to data-driven decision making 171
Communicate performance information frequently and efficiently 174
Best Practices Checklist: Agile Metrics 176

Appendix I: Scope and Methodology 178

Appendix II: Key Terms 181

Appendix III: Related Terms 192

Appendix IV: Auditor’s Key Questions and Effects 193

Key considerations and questions 193
Likely effects if criteria are not fully met 194
Key considerations and questions 195
Likely effects if criteria are not fully met 197
Key considerations and questions 198
Likely effects if criteria are not fully met 199
Key considerations and questions 200
Likely effects if criteria are not fully met 201
Key considerations and questions 202
Likely effects if criteria are not fully met 203
Key considerations and questions 204
Likely effects if criteria are not fully met 205
Key considerations and questions 205
Likely effects if criteria are not fully met 207
Key considerations and questions 208
Likely effects if criteria are not fully met 211
Key considerations and questions 212
Likely effects if criteria are not fully met 213
Key considerations and questions 213
Likely effects if criteria are not fully met 214
Key considerations and questions 215
Likely effects if criteria are not fully met 215
Key considerations and questions 215
Likely effects if criteria are not fully met 216
Key considerations and questions 216
Likely effects if criteria are not fully met 216
Key considerations and questions 217
Likely effects if criteria are not fully met 217
Key considerations and questions 218

Page iv GAO-20-590G GAO Agile Assessment Guide

Likely effects if criteria are not fully met 218
Key considerations and questions 218
Likely effects if criteria are not fully met 218
Key considerations and questions 219
Likely effects if criteria are not fully met 219
Key considerations and questions 219
Likely effects if criteria are not fully met 220
Key considerations and questions 221
Likely effects if criteria are not fully met 222
Key considerations and questions 222
Likely effects if criteria are not fully met 224
Key considerations and questions 225
Likely effects if criteria are not fully met 225
Key considerations and questions 226
Likely effects if criteria are not fully met 226
Key considerations and questions 227
Likely effects if criteria are not fully met 227
Key considerations and questions 227
Likely effects if criteria are not fully met 228
Key considerations and questions 228
Likely effects if criteria are not fully met 230
Key considerations and questions 230
Likely effects if criteria are not fully met 231

Appendix V: Common Agile Frameworks 232

Overview 233
Structure 233
Principles 234
Overview 234
Structure 235
Principles 236
Overview 236
Structure 236
Principles 237
Overview 238
Structure 238
Principles 239
Overview 240
Structure 240
Principles 241
Overview 242
Structure 242

Page v GAO-20-590G GAO Agile Assessment Guide

Principles 242
Overview 243
Structure 243
Principles 244
Overview 245
Structure 246
Principles 247
Overview 248
Structure 248
Principles 248

Appendix VI: Debunking Agile Myths 249

Appendix VII: Background for Case Studies and Agile in Actions 255

Appendix VIII: Specialists Who Helped Develop this Guide 264

Appendix IX: GAO Contacts and Staff Acknowledgments 266

GAO Contacts 266
Other Leadership on this Project 266
Key Contributors 266

References 267

Tables

Table 1: Description of Commonly-Used Agile Frameworks 13
Table 2: Iterative Software Challenges, as Reported by Federal

Agencies 16
Table 3: Laws, Policy, Guidance, Reports, and Entities

Established to Address Agile Challenges 23
Table 4: Recent GAO Reports Highlighting Agile Challenges 26
Table 5: Summary of Agile Adoption Best Practices 32
Table 6: Manual Coding Quality Assurance Methods 45
Table 7: Summary of Agile Requirements Management Best

Practices 86
Table 8: Summary of Agile and Contracting Best Practices 106
Table 9: Differences between Statement of Objectives and

Statement of Work 108
Table 10: Examples of Agile Metrics by Metric Category 113

Page vi GAO-20-590G GAO Agile Assessment Guide

Table 11: 12-Step Cost Estimating Process and Agile Cadence
Examples 131

Table 12: Characteristics of a Reliable Cost Estimate and Agile
Measures 134

Table 13: Comparison of Consistent Sizing and Relative Sizing 136
Table 14: 10-Step Schedule Estimating Best Practices and Agile

Cadence Examples 141
Table 15: GAO Earned Value Management Best Practices 149
Table 16: 13 Earned Value Management Activities and Agile

Examples 150
Table 17: Summary of Agile Metrics Best Practices 163
Table 18: Terms Used In This Guide and Related Terms 192
Table 19: DevOps Principles 234
Table 20: Disciplined Agile Roles and Responsibilities 235
Table 21: Disciplined Agile Principles 236
Table 22: Dynamic Systems Development Method Principles 237
Table 23: eXtreme Programming Activities 239
Table 24: eXtreme Programming Values 239
Table 25: Lean Software Development Principles 242
Table 26: Scaled Agile Framework Roles and Responsibilities 244
Table 27: Scaled Agile Framework Principles 245
Table 28: Scrum Team Structure 246
Table 29: Scrum Principles 247
Table 30: Case Studies Drawn from GAO Reports Used In this

Guide256
Table 31: Agile in Action Drawn from GAO Interviews 263

Figures

Figure 1: Comparison of Agile and Waterfall Methods for
Developing Software 9

Figure 2: Overview of Agile Adoption Best Practices 31
Figure 3: Relationship between the Agile Team and Customers 35
Figure 4: Agile Planning Levels 72
Figure 5: Comparison of Traditional and Agile Development

Program Management Constraints 75
Figure 6: Overview of Requirements Management Best Practices 85
Figure 7: Backlog Decomposition for an Agile Program 94
Figure 8: Overview of Agile and Contracting Best Practices 105
Figure 9: Comparison of Waterfall and Agile Programs’ Review

Cycles 118

Page vii GAO-20-590G GAO Agile Assessment Guide

Figure 10: Roles When Planning, Managing, and Executing an
Agile Contract 120

Figure 11: Work Breakdown Structure in an Agile Program 128
Figure 12: Traditional and Agile Earned Value Management

Tracking Methods 154
Figure 13: Comparison of Traditional and Agile EVM Products 156
Figure 14: Example of Measuring Earned Value for an Agile

Feature 157
Figure 15: Overview of Agile Metrics Best Practices 162
Figure 16: Example of a Cumulative Flow Diagram 166
Figure 17: Timeline of Agile Development 233
Figure 18: Kanban Board 241

Abbreviations
ALIS Automated Logistics Information System
COR contracting officer’s representative
CPIC Capital Planning and Investment Control
DHS Department of Homeland Security
DevOps Development and Operations
DAD Disciplined Agile Delivery
DOD Department of Defense
DSDM Dynamic Systems Development Method
EVM earned value management
ELIS Electronic Immigration System program
FAR Federal Acquisition Regulation
FDD Feature Driven Development
FEMA Federal Emergency Management Agency
FITARA Federal Information Technology Acquisition Reform Act
FOC full operational capability
G2 Generation 2 (NNSA Program Management Information

Systems)
GSA General Services Administration
GMM Grants Management Modernization
Abbreviations Continued
ICE U.S. Immigration and Customs Enforcement
INVEST Independent, Negotiable, Valuable, Estimable, Small,

Testable
LeSS Large Scale Scrum
MVP Minimum viable product
MUOS Mobile User Objective System program
MoSCoW Must have, should have, could have, won’t have

(sometimes would have)

Page viii GAO-20-590G GAO Agile Assessment Guide

NDAA National Defense Authorization Act
NNSA National Nuclear Security Administration
OMB Office of Management and Budget
OTC Office of Transformation Coordination
RFP request for proposal
SAFe Scaled Agile Framework
SEVIS Student and Exchange Visitor Information System program
SOO Statement of Objectives
SOW Statement of Work
Space C2 Air Force Space Command and Control program
TIM Technology Infrastructure Modernization
TSA Transportation Security Administration
USCIS U.S. Citizenship and Immigration Services
USDS U.S. Digital Services
WBS work breakdown structure
XP eXtreme Programming

This is a work of the U.S. government and is not subject to copyright protection in the
United States. The published product may be reproduced and distributed in its entirety
without further permission from GAO. However, because this work may contain
copyrighted images or other material, permission from the copyright holder may be
necessary if you wish to reproduce this material separately.

Page 1 GAO-20-590G GAO Agile Assessment Guide

441 G St. N.W.
Washington, DC 20548

Letter

Preface
The U.S. Government Accountability Office (GAO) is responsible for,
among other things, assisting Congress in its oversight of the executive
branch, including assessing federal agencies’ management of information
technology (IT) systems. In prior audits, GAO has reported that federal
agencies faced challenges in developing, implementing, and maintaining
their IT investments. All too frequently, agency IT programs have incurred
cost overruns and schedule slippages while contributing little to mission-
related outcomes. Accordingly, in February 2015, GAO added the
government’s management of IT acquisitions and operations on its list of
high-risk programs.1

Recognizing the severity of issues related to government-wide
management of IT, in 2014, the Congress passed and the President
signed federal IT acquisition reform legislation, commonly referred to as
the Federal Information Technology Acquisition Reform Act, or FITARA.2
This legislation was enacted to improve agencies’ acquisitions of IT and
enable Congress to monitor agencies’ progress and hold them
accountable for reducing duplication and achieving cost savings. Among
its specific provisions is a requirement for Chief Information Officers
(CIOs) at covered agencies to certify that certain IT investments are
adequately implementing incremental development as defined in the
Office of Management and Budget’s (OMB) capital planning guidance.
OMB’s implementing guidance requires agencies to use incremental

1GAO, High Risk Series: An Update, GAO-15-290 (Washington, D.C.: Feb. 11, 2015).
Some examples of GAO reports showing the struggles of federal agencies in
implementing IT systems include: GAO, Software Development: Effective Practices and
Federal Challenges in Applying Agile Methods, GAO-12-681 (Washington, D.C.: July 27,
2012); Information Technology: OMB and Agencies Need to More Effectively Implement
Major Initiatives to Save Billions of Dollars, GAO-13-796T (Washington, D.C.: July 25,
2013); TSA Modernization: Use of Sound Program Management and Oversight Practices
is Needed to Avoid Repeating Past Problems, GAO-18-46 (Washington, D.C.: October 17,
2017); and FEMA Grants Modernization: Improvements Needed to Strengthen Program
Management and Cybersecurity, GAO-19-164 (Washington, D.C.: (April 9, 2019).

2Carl Levin and Howard P. ‘Buck’ McKeon National Defense Authorization Act for Fiscal
Year 2015, Pub. L. No. 113-291, div. A, tit. VIII, subtit. D, 128 Stat. 3292, 3438-50 (2014).

https://www.gao.gov/products/GAO-15-290
https://www.gao.gov/products/GAO-12-681
https://www.gao.gov/products/GAO-13-796T
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-19-164

Preface

Page 2 GAO-20-590G GAO Agile Assessment Guide

development approaches that would deliver enhanced or new
functionality to users at least every six months.3

One framework for incremental development is Agile software
development, which has been adopted by many federal agencies. It
emphasizes early and continuous software delivery and is defined by
values and principles that can be realized through a set of common
practices seen in specific Agile frameworks, such as DevOps, eXtreme
Programming, Lean, Kanban, Scrum, and others.4

This guide has been developed with the assistance of many
knowledgeable specialists in the field of Agile and other incremental
software development methods to aid federal agencies, departments, and
auditors in assessing an organization’s readiness to adopt Agile
methods.5

The best practices in this guide are not comprehensive; that is, they are
presented as high-level concepts of software development, contracting,
and program management that highlight the aspects of Agile
development throughout a program’s life cycle and address key risks to
an organization, program, or team without prescriptive “how to” steps.
Many other publications address how to apply best practices in using an
incremental approach to software development and readers can refer to
those sources when considering a specific development topic.

GAO, the Congressional Budget Office (CBO) and other organizations
have developed projections that show the nation’s fiscal path is
unsustainable. New resource demands and demographic trends will place

3Office of Management and Budget, Memorandum M15-14, Management and Oversight
of Federal Information Technology, (June 10, 2015), at 18.

4Agile frameworks are also used to develop hardware programs and manage services.
The best practices in this guide are intended to be at a high enough level to be used for
any Incremental development program, regardless what type of product or service is being
delivered. However, the focus of this guide will be how Agile frameworks are used in
software development.

5Agile is the name we use to describe incremental software development methods in this
guide, with concepts from Lean, Kanban, DevOps, or other more specific methods. For
example, Kanban may not be considered an Agile software development methodology,
but it may be considered a management method used to improve the flexibility of the
activities of knowledge workers during software development. An organization that intends
to adopt a specific Agile method should supplement guidance described later in this guide
with additional materials that specifically address the practical application of that specific
method.

Preface

Page 3 GAO-20-590G GAO Agile Assessment Guide

serious budgetary pressures on federal discretionary spending, as well as
other federal policies and programs in the coming years. When resources
are scarce, competition for those resources increases. It is imperative,
therefore, that government programs deliver the promised results, not
only because of their value to the public, but also because every dollar
spent on one program is one less dollar available to fund other efforts.

GAO plans to periodically update this exposure draft based on users’
experience and comments. Comments and suggestions from experienced
users and knowledgeable specialists regarding the application of Agile
principles are welcome. Please click on this link
https://tell.gao.gov/agileguide to provide comments on this guide.

If you have any questions concerning this guide, contact Tim Persons at
(202) 512-6888 or personst@gao.gov or Carol Harris at (202) 512-4456
or harriscc@gao.gov. Major contributors to this guide are listed in
appendix IX and contact points for our Offices of Congressional Relations
and Public Affairs are located at the end of this document.

Timothy M. Persons, Ph.D.
Chief Scientist and Managing
Director
Science, Technology Assessment,
and Analytics Team

Carol Harris
Director
Information Technology
 and Cybersecurity Team

https://tell.gao.gov/agileguide
mailto:personst@gao.gov
mailto:harriscc@gao.gov

Preface

Page 4 GAO-20-590G GAO Agile Assessment Guide

Introduction
The federal government spends at least $90 billion annually on
information technology (IT) investments. In our January 2019 High Risk
List report, GAO reported on 35 high risk areas, including the
management of IT acquisitions and operations.6 While the executive
branch has undertaken numerous initiatives to help agencies better
manage their IT investments, these programs frequently fail or incur cost
overruns and schedule slippages while contributing little to mission-
related outcomes. GAO has found that OMB continues to demonstrate its
leadership commitment by issuing guidance for covered departments and
agencies to implement statutory provisions commonly referred to as
FITARA.7 However, application of FITARA at federal agencies has not
been fully implemented. For example, as we stated in the 2019 High Risk
report, none of the 24 major federal agencies had IT management
policies that fully addressed the roles of their Chief Information Officers
(CIO) consistent with federal laws and guidance.8

This Agile Guide is intended to address generally accepted best practices
for Agile adoption, execution, and control. In this guide, we use the term
best practice to be consistent with the use of the term in GAO’s series of
best practices guides.9

6GAO, High Risk Series: Substantial Efforts Needed to Achieve Greater Progress on High
Risk Areas, GAO-19-157SP (Washington, D.C.: Mar. 6, 2019).

7The provisions apply to the agencies covered by the Chief Financial Officers Act of 1990,
31 U.S.C. § 901(b). These agencies are the Departments of Agriculture, Commerce,
Defense, Education, Energy, Health and Human Services, Homeland Security, Housing
and Urban Development, Justice, Labor, State, the Interior, the Treasury, Transportation,
and Veterans Affairs; the Environmental Protection Agency, General Services
Administration, National Aeronautics and Space Administration, Nation Science
Foundation, Nuclear Regulatory Commission, Office of Personnel Management, Small
Business Administration, Social Security Administration and the U.S. Agency for
International Development. However, FITARA has generally limited application to the
Department of Defense.

8GAO-19-157SP.

9GAO, GAO Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G (Washington, D.C.: Mar. 12, 2020), GAO
Schedule Assessment Guide: Best Practices for Project Schedules, GAO-16-89G
(Washington, D.C.: Dec. 22, 2015) and GAO Technology Readiness Assessment Guide:
Best Practices for Evaluating the Readiness of Technology for Use in Acquisition
Programs and Projects, GAO-20-48G (Washington, D.C.: Jan 7, 2020).

https://www.gao.gov/products/GAO-19-157SP
https://www.gao.gov/products/GAO-19-157SP
https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G
https://www.gao.gov/products/GAO-20-48G

Preface

Page 5 GAO-20-590G GAO Agile Assessment Guide

Developing the Guide
Our approach to developing this guide was to ascertain best practices for
Agile software development from leading practitioners and to develop
standard criteria to determine the extent to which agency software
development programs meet these practices. These best practices center
on Agile adoption, execution, and control. We developed each best
practice in consultation with a committee of IT and program management
specialists and organization executives across government, private
industry, and academia. We describe our scope and methodology in
detail in appendix I.

The Guide’s Readers
We have developed this guide to serve multiple audiences:

· The primary audience for this guide is federal auditors. Specifically,
the guide presents best practices that can be used to assess the
extent to which an agency has adopted and implemented Agile
methods.

· Organizations and programs that have already established policies
and protocols for Agile adoption and execution can use this guide to
evaluate their existing approach to Agile software development.

· Organizations and programs that are in the midst of adopting Agile
software development practices and programs that are planning to
adopt such practices can also use this guide to inform their
transitions.

The Guide’s Contents
This guide focuses on best practices surrounding Agile adoption,
execution, and controls. For example, chapter 3 groups commonly-
recognized best practices for Agile adoption into the areas of team
dynamics and activities, program operations, and organization
environment. Chapter 4 provides an overview of high-level program
management concepts surrounding Agile execution and control best
practices, such as requirements development and management,
acquisition strategies, and program monitoring and control. Agile
execution best practices related to requirements development and

Preface

Page 6 GAO-20-590G GAO Agile Assessment Guide

management and the federal contracting process are discussed in more
detail in chapters 5 and 6, respectively. Program control and monitoring
best practices for cost estimating, scheduling, and earned value
management are discussed in chapter 7, and best practices for metrics
that can be used during the adoption, execution, and monitoring and
control periods of the program are discussed in chapter 8.

Certain concepts in the chapters are further explained in the appendixes.
Definitions of the key terms and processes discussed throughout this
guide are explained in appendix II and related terms that compare terms
with similar meanings from different methodologies are displayed in
appendix III.

This guide also contains a number of case studies drawn from prior GAO
work. The case studies highlight successes and challenges typically
associated with Agile adoption and execution in federal settings. These
case studies are meant to augment the key points and the lessons
learned that each chapter discusses. For example, GAO has found that
problems can arise due to the misapplication of Agile software
development processes and methods.10 Similar to the case studies, Agile
in Action segments were developed by interviewing agency officials,
reviewing documentation, and performing site visits to observe Agile
methods in use. To help verify that the information presented in these
examples was complete, accurate, and up-to-date, we provided each
organization with a draft version of our summary analysis. Appendix VII
provides high-level information for each program used in a case study
and a summary of the Agile in Action process.

Acknowledgments
The GAO Agile Assessment Guide team thanks the many subject matter
experts in the federal government, private industry, and academia who
helped make this guide a reality. After we discussed our initial plans for
developing this guide with GAO’s Cost Working Group and at various

10For example, in GAO, Immigration Benefits System: US Citizenship and Immigration
Services Can Improve Program Management (GAO-16-467) we reported that the United
States Citizenship and Immigration Service Transformation program was not setting
outcomes for Agile software development and in TSA Modernization: Use of Sound
Program Management and Oversight Practices is Needed to Avoid Repeating Past
Problems (GAO-18-46) we reported that the Transportation Security Administration’s
Technology Infrastructure Modernization (TIM) program did not define key Agile roles,
prioritize system requirements, or implement automated capabilities.

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-18-46

Preface

Page 7 GAO-20-590G GAO Agile Assessment Guide

technical conferences, several members expressed interest in working
with us. They formed the initial membership of our Agile working group
that convened in August 2016. This number grew as the work developed,
and the contributions of all have been invaluable. Thanks to everyone
who gave their time and expertise in meetings, provided us with
documentation and comments, and hosted us at their facilities as we
observed their Agile methods in real time. Contributors of the Agile
working group are listed in appendix VIII and GAO staff who contributed
to this guide are listed in appendix IX.

Chapter 1: Background

Page 8 GAO-20-590G GAO Agile Assessment Guide

Chapter 1: Background
The most well-known feature of Agile software development is probably
its emphasis on iterative product development and delivery; that is,
development of software in iterations that are being continuously
evaluated on their functionality, quality, and customer satisfaction.11 This
method is well suited for programs in which the final product is to include
distinct features, some of which may be discovered during the process
rather than planned at the beginning. Information obtained during these
frequent iterations can effectively assist in measuring progress and
allowing developers to respond quickly to feedback from customers, thus
reducing technical and programmatic risk.12 With its emphasis on early
and continuous delivery of working software, Agile can be a valuable tool
for organizations in helping to mitigate schedule and budget risks.

Figure 1 compares requirements, design, development, and testing using
Agile software methods to those of the formerly-used Waterfall
framework; it illustrates how requirements, design, development, and
testing are performed concurrently in small iterations for Agile and
sequentially in Waterfall development.13 In contrast to Waterfall, using an
Agile framework can result in an organization producing software using
frequent reviews and customer feedback to help ensure that the highest
value requirements are being met. Figure 1 compares Agile and Waterfall

11In this guide, an iteration is a predefined, time boxed, recurring period of time in which
working software is created. Similarly, a release is defined as a planned segment of
requirements that are useable. For more information, see appendix II.

12The term ‘customer’ can mean different things depending on the perspective. For
example, often a customer refers to the end users of a system but there are also
instances where the customer and sponsor are the same individual. The definition of the
customer(s) is organizationally and contextually dependent. See appendix II for more
information on how we define this term and use it throughout the guide.

13A 1970 paper entitled “Managing the Development of Large Software Systems” by Dr.
Winston W. Royce is considered by the Software Engineering Institute and others to be
the basis for the Waterfall framework. (See Royce, Winston, “Managing the Development
of Large Software Systems. Reprinted from proceedings, IEEE WESCOM (August 1970),
pages 1-9). Although the paper never uses the term “Waterfall,” the model has sequential
phases that flow continuously from one step to the next. While the paper noted that this
model is risky because it is unknown how the system will actually work until the testing
phase and recommended iterative interaction between steps, it became the foundation for
what is known as the Waterfall approach.

Chapter 1: Background

Page 9 GAO-20-590G GAO Agile Assessment Guide

methods for developing software, assuming that high-level planning for
both Agile and Waterfall development has already occurred.

Figure 1: Comparison of Agile and Waterfall Methods for Developing Software

Chapter 1: Background

Page 10 GAO-20-590G GAO Agile Assessment Guide

Chapter 1: Background

Page 11 GAO-20-590G GAO Agile Assessment Guide

The Value of Using Agile

With an emphasis on the early and continuous delivery of working software, Agile can
be a valuable tool for mitigating risks by engaging customers in collaboration early in the
program and continuously adapting to changing requirements and environment, thus
limiting the chance of continuing to fund a failing program or outdated technology.

While some versions of incremental development were being used as
early as the 1950’s, the Agile approach was articulated in 2001 by a
group of 17 software developers that called themselves the Agile Alliance.
In February 2001, the Alliance released “The Agile Manifesto,” in which
they declared: “We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have come to
value:

· Individuals and interactions over processes and tools.
· Working software over comprehensive documentation.
· Customer collaboration over contract negotiation.
· Response to change over following a plan.”14

The Alliance added that, while they recognized the value in the second
part of each statement (e.g., “processes and tools”), they saw more value
in the first part (e.g., “individuals and interactions”). The Alliance further
delineated their vision with 12 principles. The 12 Agile principles behind
the Manifesto are:

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter time scale.

4. Business people and developers must work together daily throughout
the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

14©2001-2020 Agile Manifesto authors https://agilemanifesto.org.

https://agilemanifesto.org/

Chapter 1: Background

Page 12 GAO-20-590G GAO Agile Assessment Guide

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity, the art of maximizing the amount of work not done, is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.15

There are numerous approaches, or frameworks, available for Agile
programs to use. A framework is a basic structure to guide customers,
rather than a prescriptive process. Each framework is unique and may
have its own terminology for processes and artifacts, though the
frameworks are not mutually exclusive and so can be combined.16 When
implementing Agile in a federal environment, all staff, both government
and contractor, will want to work together to define the Agile terms and
processes that will be used for their particular program. Agile, as a
concept, is not prescriptive; however, when applied to an organization, it
may be. Regardless of the specific frameworks and practices, it is
important that applying Agile aligns with the manifesto and Agile
principles. A detailed description of commonly-used Agile frameworks is
located in appendix V. Table 1 provides a high-level definition for several
commonly-used incremental development frameworks.

15©2001-2020 Agile Manifesto authors https://agilemanifesto.org.

16Some frameworks vary from the Agile Manifesto’s values and principles. For example,
Kanban must have a customer who has requested a service and an end point where the
request is fulfilled and delivered to the customer. In this case, the manifesto’s value of
“customer collaboration over contract negotiation” applies differently than in a time boxed
framework, such as Scrum.

https://agilemanifesto.org/

Chapter 1: Background

Page 13 GAO-20-590G GAO Agile Assessment Guide

Table 1: Description of Commonly-Used Agile Frameworks

Individual team framework Description
eXtreme Programming (XP) XP is a process that originated from taking software best practices to the extreme. XP

processes incorporate five key values: 1) communication, 2) feedback, 3) simplicity, 4)
courage, and 5) respect. XP values constant communication between customers,
developers, user stories, and management as well as having a simple and clean design. Pair
programming and 100 percent unit testing are some examples of key XP practices.

Feature Driven Development (FDD) In FDD, development is driven from the functionality perspective. FDD adheres to the
following steps: develop the overall model, build feature list, plan by feature, design by
feature, and build by feature. FDD uses a number of best practices, including Domain Object
Modeling and Individual Code Ownership.

Kanban The Kanban framework seeks to limit work in progress in order to alleviate bottlenecks
throughout development. Team members “pull” work when they are able to, as opposed to
work being “pushed” down to them, to smooth the flow of work and eliminate unevenness.
Kanban uses the following practices: visualize the work flow, limit work in progress, manage
flow, make policies explicit, implement feedback loops, and improve collaboratively. Kanban’s
most prominent feature is a visual task board divided into columns, at a minimum: to-do, in
process, and done. Tasks are written on notes and placed on the board, and move
horizontally through the columns as the work is completed. As with other team frameworks,
electronic means for facilitating flow are available to supplement manual-based visualization.

Scrum Scrum defines the team by three core roles: product owner, development team, and scrum
master. Development is broken down into time boxed iterations called sprints, where teams
commit to complete specific requirements. During a sprint, teams meet for daily stand up
meetings. At the end of the sprint, teams demonstrate the completed work to the product
owner for acceptance. A retrospective meeting is held after the sprint to discuss any changes
to the process.

Agile at Scale frameworksa
Disciplined Agile (DA) Building on different Agile methodologies, DA is a decision framework that can be scaled and

is intended to address the whole product life cycle. Key aspects of DA include: people-first,
learning-oriented, hybrid methodologies, full delivery life cycle, process goal driven, solution
focused, risk/value life cycle, and enterprise aware. DA has defined roles of team members
within the framework.

Dynamic Systems Development
Method (DSDM)

Previously known as DSDM Atern, this is a framework for rapid development. There are eight
principles: 1) Focus on business need, 2) deliver on time, 3) collaborate, 4) never
compromise on quality, 5) build incrementally from firm foundations, 6) develop iteratively, 7)
communicate continuously and clearly, and 8) demonstrate control. One core technique of
DSDM is prioritizing requirements as Must have, Should have, Could have, and Won’t have
but would like, or MoSCoW.

LeSS Large Scale Scrum (LeSS) is a scaled up version of one-team Scrum and it maintains many
of the practices and ideas of one-team Scrum. In LeSS you will find: 1) a single prioritized
backlog, 2) one definition of done for all teams, 3) one product owner, and 4) many
complete, cross-functional teams with no single specialist teams. In LeSS, all teams are in a
common iteration to deliver a common, shippable product.

Chapter 1: Background

Page 14 GAO-20-590G GAO Agile Assessment Guide

Individual team framework Description
Scaled Agile Framework (SAFe)b SAFe is a framework for implementing Agile at scale. The framework provides guidance for

roles, inputs, and processes that can include four configurations (essential, large solution,
portfolio, and full), tailored to each unique context. There are ten principles: 1) take an
economic view, 2) apply systems thinking, 3) assume variability, 4) build incrementally in
cycles, 5) base milestones on evaluation of working systems, 6) visualize and limit work in
progress, 7) apply cadence, 8) unlock motivation of workers, 9) decentralize decision
making, and 10) organize around value.

Hybrid frameworkc
Scrumban A combination of Scrum and Kanban, teams generally abide by Scrum roles while using

Kanban to view workload and improve flow. Scrumban can be considered the application of
Kanban to a Scrum framework to help an organization tailor its Scrum to better align with their
goals. With Scrumban, the amount of work is not limited to the sprint, but to the work in
progress limit. Meetings in Scrumban are often scheduled as needed, as opposed to a
specific schedule with sprints.

Related frameworksd
Crystal The Crystal method outlines different methodologies based on the number of people involved

and the criticality of the software. The framework that most closely resembles Agile is called
Crystal Clear. The methods rely on trust and communication. Unlike other methodologies that
dictate discipline to specific practices, Crystal allows freedom for individual preferences and
work habits.

DevOps DevOps, with its name stemming from a combination of development and operations,
emphasizes collaboration between development, IT operations, and quality assurance with
the goal of more frequent software releases. The overall DevOps values align with Agile, and
DevOps is considered an expansion of Agile implementation practices to all areas of a
product’s life cycle. One common DevOps principle is, “infrastructure as code”, meaning
operating environments are managed the same as code, with version control, automation,
and continuous testing.

Iterative Development Iterative development breaks down the work into smaller chunks known as iterations, in order
to design, develop, and test in cycles.

Lean Software Development Lean software development applies principles from lean manufacturing to software
development. There are seven key principles: 1) eliminate waste, 2) amplify learning, 3)
deliver fast, 4) decide late, 5) empower the team, 6) build integrity in, and 7) optimize the
whole product.

Source: GAO analysis of information from DHS, DOJ, VersionOne Inc., Scaled Agile Inc., Scrum.org, Booz Allen Hamilton, the DSDM Consortium, and Agile Alliance. | GAO-20-590G
aScaled frameworks are those that are intended to increase Agile processes so that they can be
applied to large, complex organizational structures.
bThe description of SAFe is as of May 2020 and is based on SAFe V5.0.
cHybrid frameworks combine principles and practices from more than one Agile framework.
dRelated frameworks are those that are very similar to Agile frameworks and often use many of the
same principles and practices. Many of these frameworks, such as DevOps, extend Agile principles
such as communication to enable additional collaboration.

When selecting a framework, organizations should adopt a deliberative
process based on the needs of a given program as well as the culture
and structure of the organization. For example, adopting Agile or one of
these frameworks might require a dramatic shift in the culture of the
organization. This might, in turn, change an organization’s structure and
result in changes to the physical space used by development teams. A

Chapter 1: Background

Page 15 GAO-20-590G GAO Agile Assessment Guide

further discussion on Agile adoption best practices for teams, programs,
and organizations is included in chapter 3.17

17For this guide, a program can be defined in various ways for budgeting and policy
making purposes. Whether a program is defined as an activity, project, function, or policy,
it must have an identifiable purpose or set of objectives if an evaluator is to assess how
well its purpose or objectives are met. An evaluation can assess an entire program or
focus on an initiative within a program. In the case of IT systems, a single program could
be part of a project within a larger program. For that reason, this guide will use the term
program; however, that can also refer to a project.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 16 GAO-20-590G GAO Agile Assessment Guide

Chapter 2: Agile Adoption
Challenges in the Federal
Government and Actions
Taken in Response
Information systems are integral to many aspects of federal government
operations. Congress has expressed long-standing interest in monitoring
and improving federal IT investments, which have often been developed
in long, sequential phases. Several agencies have tried using an Agile
approach, which calls for producing software in small, short increments.

Challenges
In a 2012 report, GAO identified 14 challenges federal agencies reported
they encountered while applying Agile methods to an IT software
development program.18 GAO grouped the challenges reported into four
areas: organizational commitment and collaboration, preparation,
execution, and evaluation. In part, the challenges reported were the result
of a cultural or social environment that was not conducive to a successful
transition. For example, teams reported difficulty collaborating closely or
transitioning to self-directed work due to constraints in organization
commitment and collaboration. Moreover, some organizations reported
that they did not have trust in iterative solutions and that teams had
difficulty managing iterative requirements. Table 2 shows the specific
program management activities organized by these four areas and the
challenges organizations reported when transitioning to Agile.

Table 2: Iterative Software Challenges, as Reported by Federal Agencies

Program management activity Challenges
Teams had difficulty collaborating closely
Team had difficulty transitioning to self-directed work

18GAO, Software Development: Effective Practices and Federal Challenges in Applying
Agile Methods, GAO-12-681 (Washington, D.C.: Jul. 27, 2012).

https://www.gao.gov/products/GAO-12-681

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 17 GAO-20-590G GAO Agile Assessment Guide

Program management activity Challenges
Organizational commitment and collaboration–
Actions by management that are necessary to ensure
that a process is established and will endure

Staff had difficulty committing to more timely and frequent input
Organizations had trouble committing staff

Preparation–
Establish teams and processes prior to implementing
Agile for a program

Timely adoption of new tools was difficult
Technical environments were difficult to establish and maintain
Agile guidance was not clear
Procurement practices may not have supported Agile programs

Execution–
Establish the concrete steps necessary to conduct the
defined Agile approach

Customers did not trust iterative solutions
Team had difficulty managing iterative requirements
Compliance reviews were difficult to execute within an iteration time frame

Evaluation–
Assess processes to improve the Agile approach

Federal reporting practices did not align with Agile methods
Traditional artifact reviews did not align with Agile methods
Traditional status tracking did not align with Agile methods

Source: Summary of GAO-12-681. | GAO-20-590G

Challenges to organization commitment and collaboration

Programs using Agile software development methods require the ongoing
collaboration and commitment of a wide array of stakeholders, including
business owners, sponsors, users, developers, and cybersecurity
specialists.19 One way Agile promotes commitment and collaboration is by
having teams work closely together, in one physical location when
possible, to facilitate continuous communication among the team
members.

However, officials from the federal agencies that GAO surveyed reported
that teams had trouble transitioning to this philosophy. Specifically, they
stated that teams were challenged in collaborating because staff were
used to working independently and in individual work spaces. For
example, some team members preferred to work alone rather than in a
team room, viewed open communication (such as posting program status

19Each stakeholder will likely have a competing set of priorities and objectives for a
system. For example, a sponsor responsible for funding a program may want a particular
set of features, while the actual users of the system may want a different set of priorities. It
is important to consider all of the views and opinions of stakeholders both up front in
planning a program and throughout development. Relying on a sponsor or managers to
serve as proxies for actual users presents a risk the same as relying solely on end users
or business analysts will present a risk. The product owner, discussed later in this guide,
is intended to help coordinate with and filter through these competing priorities while not
neglecting the viewpoints of a particular community.

https://www.gao.gov/products/GAO-12-681

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 18 GAO-20-590G GAO Agile Assessment Guide

on a team room wall chart) as intrusive, or disliked showing work-in-
progress to the federal customer.

Agency officials also reported that staff members struggled in
transitioning to self-directed teams. They stated that staff members used
to taking direction from a program manager found it hard to take
responsibility for their work and then elevate unresolved issues to senior
officials. They also reported that cross-functional teams were difficult to
form because federal employees tended to be specialists in specific
functional areas. For example, a team member who represented specific
customers was not always familiar with the needs of all customers.

While Agile stresses frequent input and feedback from all stakeholders,
officials noted that federal employees found it difficult to commit to
keeping work products, such as schedules, updated to reflect the status
of every iteration because they were not used to the rapid pace of
development. They also said that teams initially had difficulty maintaining
an iteration’s pace because they were used to stopping their work to
address an issue rather than making a decision and moving on. Officials
also stated that federal customers were not always available to review
deliverables as they were completed, which was necessary in order to
keep the development team on pace with the iteration.

Some agency officials stated that assigning and maintaining staff was an
issue because their organization did not have sufficient staff to dedicate
to multiple Agile teams. Staff with multiple, concurrent duties could not be
spared from their other duties to dedicate themselves to the large time
commitment required of an Agile team. Additionally, officials said that
frequent work assignment rotations were common in many federal
agencies, creating challenges as new staff needed to learn the roles and
responsibilities of those being replaced.

Challenges to preparing for Agile adoption

When an organization using Waterfall software development migrates to
Agile or other iterative methods, new tools and technical environments
may need to be added to support program planning and reporting.
However, officials reported that implementing Agile tools could initially
create a challenge due to delays in buying, installing, and training staff on
the use of these new tools.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 19 GAO-20-590G GAO Agile Assessment Guide

Furthermore, officials noted that Agile calls for performing development,
testing, and operational activities concurrently, which can create
significant demands on a program’s technical environment. One official
stated that preparing and maintaining synchronized hardware and
software environments for these three activities to support frequent
releases can be expensive and logistically challenging, especially for
multiple concurrent iterations that can require more complex coordination
of staff and resources.

Another complication agency officials identified was the lack of clear
guidance for Agile software development, particularly when agency
software development guidance was for a Waterfall approach. One official
reported that, in order to account for Agile methods, new program policies
and procedures would need to be developed, which they found to be a
daunting task. They also stated that it was difficult to ensure that iterative
programs could follow the standard approach. Another official stated that
staff were nervous about moving from Waterfall guidance and, when
programs followed a mix of iterative and Waterfall life cycle guidance,
added confusion among the teams. The following is a recent example of
the development of Agile methods for the U.S. Air Force’s Space
Command and Control program.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 20 GAO-20-590G GAO Agile Assessment Guide

Case study 1: Updating policy to reflect Agile principles, from
Space Command and Control, GAO-20-146

In October 2019, GAO reported that the Air Force’s Space Command and Control
(Space C2) Program was taking an Agile approach to software development to more
quickly and responsively provide capability to customers. According to Air Force
officials, Agile development was relatively new to Department of Defense (DOD)
programs. In the past, requirements were solidified in advance of development and the
software was delivered as a single completed program at the end of the development
cycle—with no continual involvement or feedback from customers or ability to modify
requirements. The Space C2 program was one of the first DOD software-intensive
programs to move away from the Waterfall approach and into an Agile framework.
However, we reported that the then-current DOD acquisition instruction did not include
guidance for Agile software programs.
GAO reported that DOD officials stated that new software guidance was in
development, and this guidance was expected to offer pathways for developing Agile
programs. DOD had also developed a draft template to assist Agile programs with
developing their acquisition strategies, though the template and associated software
guidance were in the early stages of development. In the meantime, however, Space
C2 program officials confirmed that they were operating without specific software
acquisition guidance. Space C2 officials also clarified that, while Agile software
acquisition guidance had not yet been formally published, the program office had been
actively engaged with the Office of the Under Secretary of Defense for Acquisition and
Sustainment in refining draft policy and guidance. The program office noted that its
program activities over the past year had been informed by and were consistent with
this draft guidance.

Though DOD was taking steps to ensure that the Space C2 program had a
comprehensive approach in place for managing, identifying, and mitigating challenges
associated with an Agile development approach, GAO reported that key program plans
and agency-wide guidance were still in draft form, leaving uncertainty about how
program development and oversight would ultimately proceed. Finalizing a robust
acquisition strategy containing the key elements for ongoing planning and evaluation
would better position the program for success.

GAO, Space Command and Control: Comprehensive Planning and Oversight Could
Help DOD Acquire Critical Capabilities and Address Challenges, GAO-20-146
(Washington, D.C.: October 30, 2019).

Agile programs depend on having the flexibility to add staff and resources
to complete each release and adapt it quickly, based on lessons learned
from one release to the next. One official stated that federal procurement
practices do not always support this flexibility. For example, contracts that
require Waterfall-based artifacts to evaluate contractor performance are
not needed in an Agile approach where the contractor is part of the team
and their performance is based on the delivery of an iteration. This official
added that it can be a challenge for contractor staff to meet iteration time
frames when tasks change, since federal contracting officers require
structured tasks and performance checks. As a result, adding some

https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-20-146

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 21 GAO-20-590G GAO Agile Assessment Guide

flexibility in requirements is a contracting challenge. Chapter 6 discusses
contracting best practices that can assist organizations as they work to
reconcile Agile methods with contract requirements.

Challenges in executing Agile methods

Programs using Agile methods develop software in increments that are
added onto the previous build; however, some agency officials reported
that their staff mistrust such iterative solutions. For example, one official
stated that federal customers expect to see a total solution; consequently,
a demonstration of the functionality provided in one iteration or even one
release was sometimes not considered good enough. The small
increment of functionality demonstrated caused staff to doubt the Agile
team’s ability to deliver the remaining requirements, creating a parallel
fear that the Agile team would not meet commitments. Officials also
stated that this mistrust hindered the federal customer’s ability to develop
a definition of “done,” which is an essential component of the process.

While a key tenet of Agile is prioritizing requirements, one official reported
that customers found it challenging to validate and prioritize requirements
by release, as they were used to defining all requirements at the
beginning of the program and not revisiting them until they had been
completed. Additionally, another official said it was difficult to reprioritize
requirements when new work was identified.

In addition, iterations may incorporate compliance reviews to ensure that
organizational legal and policy requirements are being met. However, one
official stated that they found it challenging to complete compliance
reviews within the short, fixed time frame of a single iteration because
compliance reviewers were used to following a less flexible schedule
under Waterfall development. Specifically, the official said that reviewers
prioritized requests as they arose and that the reviews took months to
perform. This caused delays for the iterations that needed to be assessed
within a few weeks in order to proceed with the program in a timely
manner.

Challenges in evaluating Agile methods

Agile software development methods stress evaluation of working
software over extensive documentation and traditional program
management milestone reporting. Officials said that this difference can
present challenges in evaluating federal programs due to the lack of

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 22 GAO-20-590G GAO Agile Assessment Guide

alignment between Agile and traditional evaluation practices. For
example, federal oversight bodies request status reports for Waterfall
development at development milestones and have not adjusted to Agile
methods of frequent updates of each increment. As a result, an official
reported that Agile teams became frustrated when dashboard statistics
appeared negative.

Traditional oversight requires detailed artifacts at the beginning of a
program, such as cost estimates and strategic plans, while Agile methods
advocate an incremental analysis. One official stated that requiring these
artifacts early can be challenging because it can be more worthwhile to
start with a high-level cost estimate and vision or road map that gets
updated as the solution is more refined through each iteration, rather than
spending time estimating costs and strategies that may change. Chapter
6 discusses how program milestones and reviews can be aligned to an
Agile cadence and other concerns related to contracting for Agile
programs.

Furthermore, officials stated that program status tracking in Agile did not
align with traditional methods. For example, one official stated that
tracking the level of effort using story points instead of the traditional
estimating technique based on hours was a challenge because team
members were not used to that estimation method. One official stated
that the required use of earned value management can be onerous if
there is no guidance on how to adapt earned value management to reflect
data about iteration progress or if the organization’s upper management
does not embrace an Agile mindset and tracks monthly changes in cost,
schedule, and product scope as control problems rather than as revisions
to be expected during the iterative process. Chapter 7 of this guide
discusses the application of performance management systems, such as
earned value management, to Agile programs.

Actions Taken to Address Challenges
Since 2012, the federal government has taken steps to improve its
policies and processes to help federal agencies adapt their current
processes to Agile methods. Table 3 provides a summary of the laws,
policies, and guidance and the entities that have been established to help
address challenges.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 23 GAO-20-590G GAO Agile Assessment Guide

Table 3: Laws, Policy, Guidance, Reports, and Entities Established to Address Agile Challenges

Effort Date Purpose
Office of Management and Budget
(OMB), Office of Federal
Procurement Policy (OFPP)
Contracting Guidance to Support
Modular Development

June 2012 To provide organizations with contracting guidance to support modular
development, as required by item 15 in the 25 Point Implementation
Plan to Reform Federal Information Technology, published on
December 9, 2010. The guidance discusses factors that contracting
officers, in support of IT managers, will need to consider as they plan for
modular development efforts, such as how to ensure that there is
appropriate competition at various stages in the process, how broad or
specific the statements of work should be, when to use fixed-price
contracts, and how to promote opportunities for small business. It states
that projects using modular contracting can be designed using iterative
or “Agile” development so that subsequent projects add capabilities
incrementally and that projects should aim to deliver functional value
frequently and produce functionality in as little as six months.

General Services Administration:
18F created

March 2014 18F is an office within the General Services Administration, whose
purpose is to collaborate with other agencies to fix technical problems,
build products, and deliver digital services and technology products. It
was started by a group of presidential innovation fellows to extend their
efforts to improve and modernize government technology. 18F effects
change using basic Agile tenets to practice user-centered development,
testing to validate hypotheses, shipping often, and deploying products
to users.

U.S. Digital Services (USDS)
created

August 2014 USDS, under the Executive Office of the President, provides consulting
and fosters multi-disciplinary teams to bring best practices and new
approaches, such as Agile software development, to support
government modernization efforts.

U.S. Digital Services: Playbook August 2014 To increase the success rate of USDS projects, this playbook contains
thirteen key “plays” drawn from successful practices from the private
sector and government that, if followed together, are intended to help
government organizations build effective digital services. For example,
one of the “plays” is that the government build the service using Agile
and iterative practices.

TechFAR: Handbook for Procuring
Digital Services Using Agile
Processes

August 2014 Highlights flexibilities in the Federal Acquisition Regulation (FAR) that
can help organizations implement “plays” in the Digital Services
Playbook that would be accomplished with acquisition support. It is
designed to facilitate a common understanding among stakeholders of
the best ways to use acquisition authorities in making these investments
to set expectations and maximize the likelihood for success. It consists
of a handbook, sample language, and a compilation of FAR provisions
that are relevant to Agile software development and is not intended to
supplant existing laws, regulations, or agency policy.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 24 GAO-20-590G GAO Agile Assessment Guide

Effort Date Purpose
18F: Digital Contracting Cookbook 2014 Provides organizations with information and suggestions about how to

acquire digital services based on the authors’ experience. The
cookbook is not a “how to” guide for digital services; it recognizes that
organizations’ requirements are all different. It notes that there are
multiple ways to achieve success. For example, the cookbook includes
a section on Agile development that states that the contractor shall,
among other things, “Use Agile management best practices for
estimating, planning, managing risk, and communicating status to
enable the effective management of the project team along with use
and product-owner expectations as to what will be done and by when.”

Federal Information Technology
Acquisition Reform Act

December 2014 The Federal Information Technology Acquisition Reform Act (FITARA)
was enacted to improve the acquisition and monitoring of federal
information technology assets. FITARA was intended to enable
Congress to monitor organizations’ progress and hold them accountable
for reducing duplication and achieving cost savings through seven
areas: federal data center consolidation, enhanced transparency and
improved risk management, agency CIO authority enhancements,
portfolio review, expansion of training and use of IT acquisition cadres,
government-wide software purchasing program, and maximizing the
benefit of the Federal Strategic Sourcing Initiative. FITARA also codified
a requirement that agency CIOs certify that IT investments are
adequately implementing incremental development, as defined in the
capital planning guidance issued by OMB.

Federal Acquisition Institute: Agile
Acquisitions 101

April 22, 2015 This briefing addresses the differences between Agile development and
contracting for Agile programs, citing that both traditional contracting
and contracting for Agile programs have defined requirements. It notes
that the Federal Acquisition Regulation offers several options for
implementing agility in federal contracts, which is a basic Agile tenet.

OMB OFPP: Pilot for Digital
Acquisition Innovation Lab

March 2016 A pilot program aimed at helping organizations drive innovation in
acquisition and to provide a pathway to test new or improved practices
and help programs successfully adopt emerging acquisition best
practices. The Digital Services Council provides funding to USDS and
18F consulting to support their work with pilot agencies, while USDS,
18F and a team of presidential innovation fellows provides hands-on
coaching of cross-functional teams, a basic Agile tenet, to agencies.

Defense Science Board: Design and
Acquisition of Software for Defense
Systems

February 2018 The report is intended to provide independent advice to the Secretary of
Defense on software development based on commercial best practices
from industry and success within the DOD. The Board made seven
recommendations on how to improve software acquisitions in defense
systems, including the importance of the software factory, continuous
iterative development best practices, and other ways to improve the
software and acquisition workforce.

Defense Innovation Board:
“Software is Never Done” report

May 2019 The report is intended to provide specific and detailed
recommendations to the Department of Defense (DOD) on
implementing modern software practices. The report emphasizes speed
and cycle time as the most important metrics for managing software, the
need for promoting digital talent in the workforce, and streamlined DOD
acquisition processes for multiple types of software-enabled systems.
For example, it states that while DOD is moving from Waterfall to Agile
development, DOD must also change how programs and contractors
are managed, which goes beyond moving to Agile development.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 25 GAO-20-590G GAO Agile Assessment Guide

Effort Date Purpose
Department of Defense (DOD)
Software Acquisitions Pathway
Interim Policy and Procedures

January 2020 The interim policy and procedures are intended to simplify the DOD
acquisition model to enable continuous integration and delivery of
software capability on timelines relevant to the warfighter/end user. For
software-intensive DOD systems, it requires the program to ensure the
use of iterative and incremental software development frameworks,
such as Agile; modern technologies to achieve automated testing;
continuous integrations and continuous delivery of user capabilities;
frequent user feedback and engagement; security and authorization
processes; and continuous runtime monitoring of operational software,
among other things.

Source: GAO analysis of OMB, GSA, and DOD documentation. | GAO-20-590G

With these efforts helped to address challenges, federal agencies often
continue to struggle with software development. Management in these
organizations is accustomed to oversight through a series of document-
centric technical reviews, such as design reviews that focus on the
evolution of artifacts that describe the requirements and design of a
system, rather than its evolving implementation, as is more common with
Agile methods.

Since reporting on Agile program management challenges in 2012, GAO
has continued to examine and report on Agile adoption, execution, and
monitoring and control efforts in the federal government. We have found
that organizations continue to face challenges with the adoption and
execution of Agile programs. Table 4 highlights recent GAO reports
related to Agile adoption and execution practices.

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 26 GAO-20-590G GAO Agile Assessment Guide

Table 4: Recent GAO Reports Highlighting Agile Challenges

GAO report Summary of findings related to Agile
Immigration Benefits System: U.S. Citizenship and
Immigration Services Can Improve Program Management
(GAO-16-467)

The Transformation Program has produced some software increments, but
was not consistently following its own guidance and leading practices. The
program adopted Agile in 2012, committing to the Scrum framework.
However, it had deviated from the underlying practices and principles of
this framework, such as not setting outcomes for Agile software
development. This report made 12 recommendations aimed at improving
information technology program management. For example, one
recommendation was that the program should establish outcomes for
Agile software development.

TSA Modernization: Use of Sound Program Management
and Oversight Practices is Needed to Avoid Repeating
Past Problems (GAO-18-46)

The Transportation Security Administration’s (TSA) new strategy for the
Technology Infrastructure Modernization (TIM) program included using
Agile software development, but the program had not fully implemented
many practices necessary to ensure successful adoption of Agile
practices. Specifically, the Department of Homeland Security (DHS) and
TSA leadership fully committed to adopting Agile and TSA provided Agile
training. Nonetheless, the program had not defined key roles and
responsibilities, prioritized system requirements, or implemented
automated capabilities that are essential to ensuring effective adoption of
Agile. This report made 14 recommendations to DHS. For example, one
recommendation stated that the TSA Administrator should ensure that the
TIM program management office defines and documents the roles and
responsibilities among product owners, the solution team, and any other
relevant stakeholders for prioritizing and approving Agile software
development work.

Department of Defense (DOD) Space Acquisitions:
Including Users Early and Often in Software Development
Could Benefit Programs (GAO-19-136)

The DOD planned to spend over $65 billion over five years on its space
systems acquisition portfolio, including many systems that rely on software
for key capabilities. However, software-intensive space systems have had
a history of significant schedule delays and billions of dollars in cost
growth. GAO found that program efforts to involve users and obtain and
incorporate feedback were often unsuccessful. This was due, in part, to
the lack of specific guidance on user involvement and feedback. Further,
the programs GAO reviewed also faced software-specific challenges in
using commercial software, applying outdated software tools, and having
limited knowledge and training in newer software development techniques.
This report made two recommendations to DOD, with both related to
software development. The first was that DOD ensure that the
department’s guidance addressing software development provides
specific, required direction on when and how often to involve users so that
such involvement is early and continues through the development of the
software and related program components. The second was that the
departments’ guidance addressing software development provide specific,
required direction on documenting and communicating user feedback to
stakeholders during software system development.

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-19-136

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 27 GAO-20-590G GAO Agile Assessment Guide

GAO report Summary of findings related to Agile
FEMA Grants Modernization: Improvements Needed to
Strengthen Program Management and Cybersecurity
(GAO-19-164)

The Federal Emergency Management Agency (FEMA) intended to
develop and deploy its own software applications for the Grants
Management Modernization program using a combination of commercial
off-the-shelf software, open source software, and custom developed code.
The agency planned to rely on an Agile software development approach.
According to FEMA planning documentation, the agency planned to fully
deliver GMM by September 2020 over eight Agile development
increments. However, the department had not yet completed critical
actions necessary to update its guidance, policies, and practices for Agile
programs in areas such as developing life cycle cost estimates, managing
IT requirements, testing and evaluation, oversight at key decision points,
and ensuring cybersecurity. This report made eight recommendations to
FEMA. For example, one recommendation stated that the GMM program
management office finalizes the organizational change management plan
and time frames for implementing change management actions.

Space Command and Control: Comprehensive Planning
and Oversight Could Help DOD Acquire Critical
Capabilities and Address Challenges (GAO-20-146)

The U.S. Air Force was following Agile development to develop the
technologically complex software for Space Command and Control. The
program faced a number of challenges and unknowns, from management
issues to technical complexity. Additionally, DOD officials had not yet
determined what level of detail was appropriate for acquisition planning
documentation for Agile software programs. They were also not certain
about the best way to provide oversight of these programs, but were
considering using assessments by external experts. These knowledge
gaps ran counter to DOD and industry best practices for acquisition and
put the program at risk of not meeting mission objectives. Additionally,
software integration and cybersecurity challenges existed, further
complicating program development. This report made two
recommendations to DOD. One recommendation stated that the finalized
Space C2 acquisition strategy should include, among other things, a
manpower assessment identifying program workforce needs and state of
expertise in Agile methods.

Agile Software Development: DHS Has Made Significant
Progress in Implementing Leading Practices, but Needs
to Take Additional Actions (GAO-20-213)

Many of the Department of Homeland Security’s (DHS) major acquisition
programs have taken longer than expected to develop or failed to deliver
the desired value. In April 2016, to help improve the department’s IT
acquisition, and management, DHS identified Agile software development
as the preferred approach for all of its IT programs and projects. GAO
found that DHS had addressed four of nine leading practices for adoption
of Agile software development. For example, the department had modified
its acquisition policies to support Agile development methods. However, it
needed to take additional steps to, among other things, ensure all staff are
appropriately trained and establish expectations for tracking software code
quality. By fully addressing leading practices, DHS could reduce the risk of
continued problems in developing and acquiring current, as well as, future
IT systems. This report made 10 recommendations to DHS. Among them
were that DHS should establish target measures for the department’s
desired outcomes of its transition to Agile development and that processes
and the associated set of controls to ensure Agile programs and projects
are reporting a set of core required performance metrics for monitoring
and measuring Agile adoption are defined.

Source: GAO. | GAO-20-590G

https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-20-213

Chapter 2: Agile Adoption Challenges in the
Federal Government and Actions Taken in
Response

Page 28 GAO-20-590G GAO Agile Assessment Guide

These reports all found that Agile adoption and execution challenges
remain in federal organizations. This may be due to significant differences
in focus; many organizations find it difficult to prepare for technical
reviews that do not account for implementation artifacts, the availability of
requirements, and/or design artifacts that are at different levels of
abstraction. On the other hand, some organizations are surprised to
discover they are already performing practices that can ease Agile
adoption, such as establishing user groups that meet frequently with
developers. In addition, while many of the policies and guidance focus on
Agile principles, there are others that address cost, schedule, or
contracting. It is important that organizations reconcile Agile principles
and government policies and guidance with cost and schedule reporting
requirements.

Organizations should supplement the Agile software development
practices described in this guide with additional internal controls, such as
policy and guidance.20 Establishing such internal controls can help an
organization become more efficient and effective. For example, internal
controls can contribute to consistent execution of Agile practices across
the organization and inform learning and improvement efforts. Such
controls also support an organization’s ability to report reliable information
about its software development efforts.

20For more information about internal controls, see GAO, Standards for Internal Control in
the Federal Government, GAO-14-704G (Washington, D.C.: Sept. 10, 2014).

https://www.gao.gov/products/GAO-14-704G

Chapter 3: Agile Adoption Best Practices

Page 29 GAO-20-590G GAO Agile Assessment Guide

Chapter 3: Agile Adoption
Best Practices
Transitioning to Agile software development methods requires
practitioners to do more than implement new or modify existing tools,
practices, and processes.21 Converting to Agile requires adopting the
values and principles of the Agile Manifesto, which introduces challenges
as an organization shifts from Waterfall development methods to those of
an iterative process, such as Agile, which emphasizes rapid, frequent
delivery of production-quality software. Yet, an Agile approach also
presents an opportunity for an organization to improve its acquisition and
development of software.

Organizations can use the best practices described in this chapter to help
them manage and mitigate the challenges in making the transition to
Agile.22 The practices described are organized by functional perspective:
team dynamics and activities, program operations, and organization
environment. The discussion is in general terms in order to be useful
regardless of the Agile method used. The practices highlight the aspects
of Agile adoption that address key risks to be considered and are not
meant to encompass all aspects of software development or program
management. They can be used alone, or in conjunction with information
from other publications that address similar topics.

This chapter assumes that a team, program, and organization has
carefully chosen to adopt Agile software development methods. The
decision to adopt Agile will depend on a multitude of factors, such as the
stability of requirements, nature of the system, and program complexity.
The best practice “Organization culture supports Agile methods”

21As with any significant process improvement effort that an organization undertakes,
change can be difficult and therefore presents risk. Management should consider the
transition to Agile a process improvement or change management effort and manage the
undertaking based on organization change management principles.

22This guide incorporates materials authored by Carnegie Mellon University with funding
and support of the Department of Defense under federal contract FA8721-05-C-00003 for
the operation of the Software Engineering Institute. Contact permission@sei.cmu.edu for
re-use of such materials for other than US government purposes. Also, see our guide on
reducing risks when using Agile methods: GAO, Software Development: Effective
Practices and Federal Challenges in Applying Agile Methods, GAO-12-681 (Washington,
D.C.: July 27, 2012).

https://www.gao.gov/products/GAO-12-681

Chapter 3: Agile Adoption Best Practices

Page 30 GAO-20-590G GAO Agile Assessment Guide

discusses how to make a decision whether or not Agile is the best-suited
software development methodology for an organization’s program.

There are practices often associated with an Agile approach, such as
prescribed roles, events, artifacts, and procedures, but these vary
depending on the methodology used. Over time, teams may refine and
evolve their practices based on experience and lessons learned.

Because the adoption of Agile requires a shift in mindset at all levels of an
organization, attempting to address all of the best practices at the same
time can be difficult to manage and may lead to an inordinate amount of
disruption and change in a short period of time. Therefore, management
might consider prioritizing the best practices so that the most important
have been implemented before moving on to the next set of practices.23

Prioritizing the order of adoption may result in an organization prioritizing
individual practices from the groups (team dynamics and activities,
program operations, and organization environment) of practices
described in this chapter, rather than prioritizing an entire set of practices
from any single group. Consistent with continuous improvement, some
best practices will be more applicable to new adopters, while other
practices will be more applicable to organizations with more experience
using Agile.24

Within each Agile method, specific terms may not fully align with the
terms used in the best practices discussed in this chapter.25 For example,
a program might use a different term from the terms used in this guide to
capture the concept of a product owner. Use of the specific terminology in
this guide is not essential, but the concepts described in each best
practice as a whole should be observable. If not, then organization
officials should be able to explain why excluding a best practice (or

23Although not discussed in this guide, some organizations might wish to consider a
maturity or readiness model to help in prioritizing practices. Maturity models for Agile are
readily available for use independent of this guide, although we cannot attest to the
success or appropriateness of these models. In addition, the CMMI® Institute has
developed profiles for the use of CMMI in environments using selected Agile methods.

24Kanban methods deal with change somewhat differently than other Agile methods and
may not limit the cultural barriers that impede change. Kanban methods enable an
organization to improve its agility in any professional services or knowledge worker
activity, not only software development, without any significant cultural shift and without
implementing new processes. Organizations may choose to adopt other Agile methods in
a similar fashion, focusing on slow, continuous, incremental change to existing business
processes.

25See appendix II for definitions of key terms used in this guide.

Chapter 3: Agile Adoption Best Practices

Page 31 GAO-20-590G GAO Agile Assessment Guide

elements of one) does not introduce unacceptable risk to transitioning to
Agile. Although identified across varying levels, these best practices are
highly interrelated (they all have to be aligned toward common goals) and
therefore, each support the success of other practices.

Figure 2 identifies the best practices associated with each functional
perspective of Agile implementation. Table 5 following the figure
describes the qualities associated with each practice.

Figure 2: Overview of Agile Adoption Best Practices

Chapter 3: Agile Adoption Best Practices

Page 32 GAO-20-590G GAO Agile Assessment Guide

Table 5: Summary of Agile Adoption Best Practices

Agile adoption best practice Summary
Team dynamics and activities
Team composition supports Agile methods · Agile teams are self-organizing

· The role of the product owner is defined to support Agile methods
Work is prioritized to maximize value for the customer · Agile teams use user storiesa to define work

· Agile teams estimate the relative complexity of user stories
· Requirements are prioritized in a backlog based on value

Repeatable processes are in place · Agile programs employ continuous integration
· Mechanisms are in place to ensure the quality of code being developed
· Agile teams meet daily to review progress and discuss impediments
· Agile teams perform end-iteration demonstrations
· Agile teams perform end-iteration retrospectives

Program operations
Staff are appropriately trained in Agile methods · All members of an Agile team have appropriate training, since

techniques used are different from those used for Waterfall development
programs

· Developers and all other supporting team members have the appropriate
technical expertise needed to perform their roles

Technical environment enables Agile development · System design supports iterative delivery
· Technical and program tools support Agile

Program controls are compatible with Agile · Critical features are defined and incorporated in development
· Non-functional requirements are defined and incorporated in

development
· Agile teams maintain a sustainable development pace

Organization environment
Organization activities support Agile methods · Organization has established appropriate life-cycle activities

· Goals and objectives are clearly aligned
Organization culture supports Agile methods · Sponsorship for Agile development cascades throughout the

organization
· Sponsors understand Agile development
· Organization culture supports Agile development
· Incentives and rewards are aligned to Agile development methods

Organization acquisition policies and procedures
support Agile methods

· Guidance is appropriate for Agile acquisition strategies

Source: GAO. | GAO-20-590G
aA user story is a high-level requirement definition written in everyday or business language; it is a
communication tool written by or for customers to guide developers though it can also be written by
developers to express non-functional requirements (security, performance, quality, etc.). User stories
are not vehicles to capture complex system requirements on their own. Rather, full system
requirements consist of a body of user stories. User stories are used in all levels of Agile planning
and execution. They capture the who, what, and why of a requirement in a simple, concise way, often
limited in detail by what can be hand-written on a small paper notecard. While Agile programs may
use different terminology, such as product backlog items, for the purposes of this guide we will use
the term user story throughout.

Chapter 3: Agile Adoption Best Practices

Page 33 GAO-20-590G GAO Agile Assessment Guide

Team Dynamics and Activities

Best practice: Team composition supports Agile
methods

Agile teams are selforganizing

Agile teams should be self-organizing, meaning they are empowered to
collectively own the whole product and decide how work will be
accomplished. The Agile teams’ duties should be well defined, e.g.,
covering lower-level decision making and team formation. The teams’
authorities should highlight the importance of cross-functionality to allow
for autonomy and team stability. The more encouragement and latitude
the team is given, the better it can address technical issues in creative
ways. If teams are not self-organizing or self-managing, the teams may
be inefficient, causing program cost increases and schedule slips.

The Agile team should be structured to allow for its own autonomy so that
it need not rely on outside teams to complete its work. Team members
should have cross-functional skills that allow them to be capable of
performing all of the work rather than a single specialty and collectively
the team should have all the skills necessary to perform the work and
represent the various sections of the organization that touch on software
development, such as business subject matter expertise, quality
assurance, and cybersecurity.26 In addition, the team should be integrated

26If operating in a government setting, the Agile team, or a subset of it, may be
contractors. Contracting for Agile services can limit autonomy due to legal requirements
for performing inherently governmental functions. See, e.g., FAR § 2.101 (defining
inherently governmental function). However, whether using government employees or
contractor employees, each Agile team should consist of personnel with all of the
necessary skill sets. When defining the terms of a contract for Agile services, the program
should work closely with contracting personnel (e.g., contracting officer and contract
specialist) to promote autonomy while ensuring compliance with federal acquisition
regulations. Contracting best practices related to Agile methods are discussed in more
detail in chapter 6.

Chapter 3: Agile Adoption Best Practices

Page 34 GAO-20-590G GAO Agile Assessment Guide

with other areas in the program office.27 Specifically, the team can include
contract specialists, designers, analysts, developers, and testers who,
when working together, are able to decompose high-level descriptions of
features that need to be accomplished into appropriate user stories and
then work to identify logical iteration stopping points for testability. This
level of expertise on the team allows it to solve most problems. If a team
does not have the requisite skill sets, it will be reliant on other teams that
may have other responsibilities, thus delaying progress on the product.

Case study 2: Cross functional teams, from Defense Management,
GAO-18-194

The cross-functional team approach is thought to, among other things, advance a
collaborative culture to address critical objectives and outputs. GAO research identified
eight broad categories of leading practices associated with effective cross-functional
teams: (1) open and regular communication, (2) well-defined team goals, (3) inclusive
team environment, (4) senior management support, (5) well-defined team structure, (6)
autonomy, (7) committed cross-functional team members, and (8) an empowered
cross-functional team leader.

In February 2018, GAO reported that DOD had established a cross-functional team to
address the backlog on security clearances and developed draft guidance for cross-
functional teams that addressed six of seven required statutory elements and
incorporated five of eight leading practices that GAO identified for effective cross-
functional teams. GAO noted that DOD’s guidance for cross-functional teams was
critical to their consistent and effective implementation across the department and that
this guidance would help ensure that such teams were provided with leadership
support and resources and it further promoted collaboration across the department.
GAO found that fully incorporating leading practices would help the teams be
consistent and effective in addressing DOD’s strategic objectives.

GAO, Defense Management: DOD Needs to Take Additional Actions to Promote
Department-Wide Collaboration, GAO-18-194 (Washington, D.C.: February 28, 2018).

The roles for an Agile team can vary based on the Agile methods being
applied; however, certain roles are similar in all Agile environments, such

27See GAO, IT Workforce: Key Practices Help Ensure Strong Integrated Program Teams;
Selected Departments Need to Assess Skill Gaps, GAO-17-8 (Washington, D.C.: Nov. 30,
2016), for a more in-depth discussion of an integrated program team including critical
success factors. GAO also issues a bi-annual series on cross-functional teams at the
Department of Defense. For more information see GAO, Defense Management: DOD Has
Taken Initial Steps to Formulate an Organizational Strategy, but These Efforts Are Not
Complete, GAO-17-523R (Washington, D.C.: June 23, 2017).

https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-17-8
https://www.gao.gov/products/GAO-17-523R

Chapter 3: Agile Adoption Best Practices

Page 35 GAO-20-590G GAO Agile Assessment Guide

as the developers, product owner, team facilitator, and subject matter
experts.28 Figure 3 shows the relationship of the Agile team to customers.

Figure 3: Relationship between the Agile Team and Customers

Team stability, where team members are dedicated to the team and do
not move in and out of the team, is important to ensure consistent
productivity. Frequently shifting resources within a team, or between
teams, can undo learning and shift team dynamics and skills, thereby
diminishing the team’s ability to meet commitments. The level of
commitment of each team member and stakeholder is based on the
needs of the program and should be discussed on a case-by-case basis.
For example, involvement of a database administrator may only be
required on a part-time basis when the team is working on user stories
that require access to, or may indirectly impact, a database. Whether a

28See the best practice entitled “Staff are appropriately trained in Agile methods” in this
chapter for further discussion of the training and technical expertise needed for a team.
Chapter 6 also elaborates on subject matter expertise necessary for the effective
contracting of Agile services.

Chapter 3: Agile Adoption Best Practices

Page 36 GAO-20-590G GAO Agile Assessment Guide

team member is fully or temporarily dedicated to a particular team, all
staff should be available when needed, to the extent possible.

The role of the product owner is defined to support Agile
methods

In an Agile environment, the developers work daily with stakeholders,
including the product owner. The product owner is the authoritative
customer representative who manages the prioritization of the
requirements (e.g., user stories) and acceptance criteria for those
requirements, communicates operational concepts, and provides
continual feedback to the developers as a representative of the
customer.29 The product owner also defines the acceptance criteria for
stories and ultimately decides if those criteria have been met.30 A product
owner should understand the business and strategic values of the
organization and possess subject matter expertise related to the business
need in order to draw alignment with the vision of the product. Linking the
need, vision, and product includes ensuring that prioritized requirements
are evaluated and implemented in a timely manner and that the backlog
is managed. If there is not a clearly identified product owner who is the
authoritative customer representative and responsible for managing
requirements prioritization, communicating operational concepts, and
providing continual feedback, the developers may not be sure which
requirements are priorities if they receive conflicting information. This
uncertainty can result in delays to delivering high-priority features and
deployment of the overall system. If the product owner is not a dedicated
resource, the developers may find that person unavailable to answer
questions when needed, and, if questions are not addressed in a timely
manner, the developers may make assumptions in order to continue with
its development and meet its commitments. If the team assumptions do

29Requirements are typically referred to in an Agile environment as user stories, features,
or epics, depending on the target audience for level of detail of the work. Chapter 5
elaborates on how we use the term ‘requirements’ throughout this guide and best
practices associated with requirements development and management, including the role
of the product owner in those processes.

30As discussed subsequently in chapter 6, when using a contract for an Agile development
effort, the contract must provide sufficient structure to achieve the desired mission
outcomes, while also offering flexibility for adaptation of software requirements within the
agreed-on scope of the system. Nothing in this guide is intended to suggest that a product
owner has legal authority to undertake actions or make decisions that are reserved for
contracting officers or contracting officer representatives.

Chapter 3: Agile Adoption Best Practices

Page 37 GAO-20-590G GAO Agile Assessment Guide

not match the expectations of the product owner, significant rework may
be necessary. This can slow down the development process.

The product owner role and responsibilities can be fulfilled in more than
one way. For example, some organizations may delegate these
responsibilities through multiple product owners, each of whom has clear
boundaries and a clear division of duties, while other organizations may
establish a core group of business officials to make key programmatic
decisions, with a single product owner interacting with the Agile teams on
behalf of the group. Regardless of the structure, the product owner should
be empowered and their responsibilities should be well defined (e.g., the
product owner’s availability to the team). From a functional perspective, a
product owner must be empowered to prioritize decisions about
development. Without the ability to reprioritize work, the development
process can slow down due to waiting on others with competing
responsibilities to consider and respond on behalf of the business.

Since the product owner represents the customer, they routinely interact
with key stakeholders to weigh the value of each requirement and
establish work priorities for the developers.31 The developers may choose
to interact directly with key stakeholders if the Agile team deems it
warranted. However, the team should ensure that functionality is
prioritized by the product owner and not the stakeholders and that this
additional coordination does not impact development productivity.

In order for a product owner to be effective, their responsibilities should
be reduced so as to limit the number of Agile teams the product owner
works with and allow time to interact with and complete duties with the
team, stakeholders, and the customers. Without maintaining contact with
both the developers and the customers, a product owner may not be able
to represent what the customer priorities are and may misrepresent them
to the developers. This could result in a decreased value from the system
if the wrong features are given priority in the backlog or cause schedule
delays if critical features were not developed.

31In this guide, we use the term ‘requirement’ to refer to a condition or capability needed
by a customer to solve a problem or achieve an objective. Requirements will be used to
refer to all development work since specific terminology (e.g., epic, capability, feature,
sub-feature) may be unique to a specific organization. See chapter 5 and appendix II for
more detail.

Chapter 3: Agile Adoption Best Practices

Page 38 GAO-20-590G GAO Agile Assessment Guide

Case study 3: Product owner, from Immigration Benefits System,
GAO-16-467

In 2016, GAO found the United States Citizenship and Immigration Services’ (USCIS)
Transformation program experienced many challenges due to product owners being
stretched among multiple development teams. Product owners for the primary
Transformation program system, the Electronic Immigration System (ELIS), were
responsible for more than four development teams, and, at times, up to twelve teams.
Consolidated release assessments, prior product owner testimony, and GAO
observations identified that not having a dedicated product owner presented many
difficulties for the ELIS development teams. For example, one product owner stated
that it was a challenge to accommodate more than one team and she had to stagger
her time between the teams to support sprint planning and maintain meaningful
dialogue with the team. Additionally, consolidated release assessments indicated that
product owners did not attend 21 percent of sprint planning meetings. Product owner
availability was an issue voiced by development team members and also observed by
GAO during standup meetings and sprint planning.

The more development teams a product owner is responsible for, the less time the
product owner is able to spend with each team. Consequently, this can impact product
owner effectiveness in performing his or her assigned duties. Furthermore, as we
reported in 2016, the program faced challenges in completing work within committed
time frames and product owner availability may have been a contributing factor.
According to USCIS guidance, lack of inclusion and transparency with the development
team’s decision making and processes can result in a disengaged product owner, or
one that makes decisions without adequate consideration of challenges faced by the
team.

GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 7, 2016).

Best practice: Work is prioritized to maximize
value for the customer

Agile teams use user stories to define work

User stories have become a common method of defining small items of
work that can be completed by team members inside of an iteration.
Although some methods do not explicitly require the use of user stories
(e.g., Kanban), they provide additional information beyond the high level
requirement description to help Agile teams work to meet the
requirement. A user story defines who needs the requirement and why.
Regardless of the form used to communicate low level requirements,
ensuring that the team knows who the requirement’s customer is and why
the requirement is needed are important. While Agile programs may use

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-16-467

Chapter 3: Agile Adoption Best Practices

Page 39 GAO-20-590G GAO Agile Assessment Guide

different terminology, such as product backlog items, for the purposes of
this guide we will use the term ‘user story’ throughout to describe a small
segment of work that can be completed in a single iteration and is
determined by the product owner and developers.

The Agile team constructs a general outline for developing the user
stories that comprise an iteration. The user story’s focus is on the value
delivered to the customer, often defines who the customer is, what is
being developed for that customer, and why there is a need for the
functionality. However, striking a balance between too much and not
enough detail can be challenging: each user story should provide enough
detail to allow developers to estimate the user story’s complexity, but not
so much information that there is little room for discussion between the
product owner and the developers around the intent of the user story.
Clearly establishing the components to include in the user story can help
strike this balance. Establishing a common structure for the user story
helps ensure consistency and can help prevent delays when product
owners work with multiple teams or teams are reorganized.

The product owner determines the business value of each user story in
consultation with the developers by refining the size, defining the criteria
for acceptance, and establishing when the user story will be considered to
be done. The value of a user story should be reevaluated based on the
current needs of the organization to ensure the greatest return on
investment. The practice of backlog refinement, along with a discussion of
acceptance criteria and a definition of done is covered in greater detail in
chapter 5.

INVEST

The acronym INVEST defines the characteristics of a quality user story: it should be “I”
ndependent (of all others),”N” egotiable (not a specific contract for features), “V” aluable
(or vertical), “E” stimable (to a good approximation), “S” mall (so as to fit within an
iteration), and “T” estable (in principle, even if there is not a test for it yet). If the user
story fails to meet one of these criteria, the team may want to reword it, or even consider
a rewrite.

Agile teams estimate the relative complexity of user
stories

The developers should use relative estimation, which compares the
current work with work of similar size and complexity, to determine how
much complexity a new user story represents. Relative estimation

Chapter 3: Agile Adoption Best Practices

Page 40 GAO-20-590G GAO Agile Assessment Guide

enables teams to maintain a sustainable software development pace and
predict work commitments. The team should size user stories relative to
one another, assess the complexity of work based on input from the
product owner, refine user stories and estimates over time, and use prior
estimates to inform future estimates. If teams are not using relative
estimation to compare current size and work estimates to historical
completed work, the team may underestimate or overestimate the
complexity and time necessary to complete the user story.

Relative estimation

In software development, an estimate traditionally consists of a quantified evaluation of
the effort necessary to carry out a given development task; this is most often expressed
in terms of duration. Relative estimation is one of several types of estimation used by
Agile teams. It consists of estimating tasks or user stories, not separately and in
absolute units of time, but by comparison or by grouping of items of equivalent difficulty.
Relative estimation, consistent with estimation in units other than time, avoids some of
the pitfalls associated with estimating in general: seeking unwarranted precision,
confusing estimates for commitments. For example, if a team uses a complexity point
scale with the values [1, 2, 3, 5, 8, 13, 21], it should not be assumed that an 8 pt.
backlog item will require four times as long as a 2 pt. one (although, if that is the norm
the team has agreed upon, it could); rather, it will be more than a 5 pt. and less than a
13 pt. item. Also, because estimates are team- and domain-specific, there is little utility
in attempting to use them for cross-team performance or productivity.

When estimating, the team should consider potential factors that can
increase the complexity of the work. For example, a piece of functionality
that requires passing interface testing before it can be accepted might
prove challenging when the team factors in coordination and access to
other systems. Team members are providing only a best estimate based
on experience to date and will not fully know the complexity of the user
story until the work has begun. Accordingly, program management should
remember that estimates for the program are likely to change with each
iteration. Practices such as affinity estimation can help to identify factors
that affect the complexity of a user story.32 Well-defined acceptance
criteria can also help teams estimate a user story’s complexity. Less well-
defined user stories will carry more risk and uncertainty around size
estimates. Additionally, if teams are not estimating user stories
consistently, the teams may be committing to too much work, leading to
user stories lasting longer than one iteration and team burnout.

The team continually revises the estimates of the program as they learn
more about the business priorities and as a user story increases in

32Affinity estimation is a consensus-based technique to estimate the relative effort of work.
This term is further defined in appendix II.

Chapter 3: Agile Adoption Best Practices

Page 41 GAO-20-590G GAO Agile Assessment Guide

priority. However, once an iteration has begun, sizing estimates should
remain unchanged so that the team can examine variances between
estimated and actual work accomplished during the iteration. Estimation
is a team-specific activity and estimates for one team should not be
compared against estimates for another. For example, different
development teams on one program may have a different “idea” of what
the relative size of work is.

Requirements are prioritized in a backlog based on value

To prioritize a user story, the product owner determines the business
value of each user story based on the needs of the customers,
stakeholder priorities, and factors such as its risk level, dependent
relationships, frequency of use, alignment with the vision of the product,
security requirements, expected return on investment, and learning. The
organization and program should have a shared understanding of what
value means in terms of how much a feature satisfies strategic priorities.
Identifying and measuring value, as with other Agile practices, requires
constant collaboration. Agile teams should pull work from a prioritized
backlog, providing frequent deliveries of software with immediate value to
the customer. A lack of traceability between different levels of backlogs
and program planning artifacts could lead to overlooking user stories or
features that are critical to the program due to their high value to the
customer or key dependencies that those user stories or features might
have with other aspects of the system. Further, lack of understanding or
insight into the methods used to measure value for user stories could
cause a disconnect between the customer and developers and allow
delivery of features that do not maximize the value.

The value of the work accomplished by Agile teams should be tracked
and monitored. Once software has been delivered, the product owner
may survey customers to measure satisfaction with each software release
and track the accuracy of initial value estimates.

Value-driven feature development

One way to gauge the value of work is to measure how often a feature of a system is
used by the customer. While there may be situations where a critical feature is
necessary but used infrequently, often the product owner should be focused on
developing features that will actually be used on deployment and therefore are of
immediate value. As with any measure, setting a target for usage beforehand can serve
as a benchmark to compare against on deployment.

Chapter 3: Agile Adoption Best Practices

Page 42 GAO-20-590G GAO Agile Assessment Guide

The team should provide an ongoing assessment of value expected
versus value delivered. In doing so, the organization has another
measure of progress beyond traditional cost or schedule considerations.
Without clearly prioritizing work, the developers could work on features
that are not “must haves” to the customer, resulting in the delivery of
features that may not be used and might contribute to schedule and cost
overruns.

MoSCoW

Many Agile methods use the acronym MoSCoW to classify user stories as “must have,”
“should have,” “could have,” or “would like to have” for prioritizing the backlog.

Case study 4: Release road map, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that the Department of Homeland Security (DHS) modified
its acquisition procedures to allow for an ongoing assessment of progress, and
indirectly the value of work accomplished, via a release road map. DHS guidance
stated that the release road map is to be submitted to the Acquisition Review Board
prior to acquisition decision event 2B. During lower-level technical reviews, exit criteria
for reviews required the development team to follow the release road map and make
adjustments that supported the successful completion of requirements defined at the
acquisition decision event 2B. DHS supplemented these requirements with guidance
on constructing a road map, including a discussion on how a program can sequence its
road map for learning, risk, and economic value.

Within DHS, GAO reported that it reviewed a road map for one development module of
the U.S. Immigration and Customs Enforcement (ICE) Student and Exchange Visitor
Information System (SEVIS) program. This road map listed areas for development in
the order they were intended to be developed and identified the associated business
capabilities. The business capabilities identified in the road map aligned with the sub-
capabilities listed in the program’s operational requirements document. Examples of
business capabilities in the road map that were also sub-capabilities identified in the
operational requirements document included:

· create nonimmigrant record (including supporting forms),

· align nonimmigrant eligibility information with unique nonimmigrant,

· update nonimmigrant biographical information, and

· add/update dependent information.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Because the value of requirements is constantly fluctuating based on the
state of the program and the organization, the product owner reevaluates

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 3: Agile Adoption Best Practices

Page 43 GAO-20-590G GAO Agile Assessment Guide

requirements frequently to reprioritize if necessary as a result of team
discussions. Doing so allows customers to receive the most important
functionality (e.g., those features that provide the greatest value) first.
Likewise, this practice usually provides the biggest return on investment
for the work performed.

Story board mapping (a.k.a. user story mapping)

Story mapping, a concept first formulated by Jeff Patton in 2005 in an article entitled “It’s
All in How You Slice It,” consists of ordering user stories along two independent
dimensions.33 The map arranges user activities along the horizontal axis in rough order
of priority (or “the order in which you would describe activities to explain the behavior of
the system”). Down the vertical axis, it represents increasing sophistication of the
implementation. Working through successive rows fleshes out the product with
additional functionality. One intent of this practice is to avoid a failure of incremental
delivery, where a product could be released that is composed of features that, in
principle, are of high business value but are unusable because they are functionally
dependent on features that are of lower value and, therefore, deferred to future
releases.

Best practice: Repeatable processes are in
place
To successfully meet the demands of rapid development, Agile teams use
repeatable processes to establish consistency, thus providing a baseline
against which improvements can be evaluated and adapted. Repeatable
processes are not to impede the creativity of the Agile team by repeating
the same steps in the same way every time the team operates. Rather,
they characterize how to approach the Agile cadence. Because iterations
are short (often 2-4 weeks in duration), consistency is important as
practices will be repeated dozens of times a year.

Agile programs employ continuous integration

Automation of repeatable processes allows software components that are
added or modified to be continuously integrated into the system. With
short iterations in which to develop working software, integration should
be frequent; thus, continuous integration using automation ensures that
software handoffs between the various stages of development and testing

33Patton, Jeff. “It’s All in How you Slice It.” Better Software. Retrieved July 27, 2020, from
https://www.jpattonassociates.com/wp-content/uploads/2015/01/how_you_slice_it.pdf.

https://www.jpattonassociates.com/wp-content/uploads/2015/01/how_you_slice_it.pdf

Chapter 3: Agile Adoption Best Practices

Page 44 GAO-20-590G GAO Agile Assessment Guide

are performed in a reliable, dependable manner.34 Without continuous
integration using automation, reliable, dependable software handoffs may
not occur. Each stage of the continuous integration process should
include automated tests of both functional and non-functional
requirements with the scope of automated testing tracked and monitored
based on established expectations. Without automated build and testing
tools, the program may experience challenges in delivering the product
on time and may have a limited assurance of product quality. Because
automation depends on early investments in the technical environment,
its success is heavily dependent on the program process best practice,
“Technical environment enables Agile development”.

Mechanisms are in place to ensure the quality of code
being developed

Adherence to coding standards and the use of automated and manual
testing are necessary for improving the quality of code that is ultimately
inserted into the continuous integration build process. Software with a
large number of defects or an inefficient structure not only affects system
performance, it forces the developers to spend critical time and effort to
repair defects. While many methods are available for assuring code
quality, there will always be some code inefficiencies or redundancies that
ultimately limit system performance. These deficiencies can stem from
time constraints, an unsustainable pace of development, undisciplined
coders, or other reasons. The accumulation of these deficiencies over
time is called “technical debt” and can present obstacles to an Agile
program if not properly managed.35 For example, as a code base grows,
additional functions will rely on the deficient code, causing a degradation
in overall system performance. Moreover, as the interest incurred on
technical debt continues to rise, teams will devote more time to cleaning
up errors instead of producing new features.

Technical debt can also be incurred mindfully, when it is more important
to hypothesize the way a module will work in the eventual system (so that

34Due to the continuous integration of a code base in Agile, it is important for the program
to have a mature integrated version control system in place. This is a critical tool to enable
teams to work together and maintain configuration control over the code base.

35Although we only discuss technical debt accrued as a product of development, technical
debt may also be generated by factors outside of the team’s immediate control. For
example, program vision, architecture, and agency factors may all contribute to technical
debt.

Chapter 3: Agile Adoption Best Practices

Page 45 GAO-20-590G GAO Agile Assessment Guide

interfaces can be tested, for example) than to wait for the requirements
for that part of the system to be written in detail. Eventually, both
intentional and unintentional technical debt can increase to the point
where the code base no longer functions properly and a complete refresh
becomes necessary. Code quality should be tracked and monitored
based on established expectations. Table 6 discusses methods that can
be used to assure code quality.

Table 6: Manual Coding Quality Assurance Methods

Method and description Strengths Limitations
Development is test driven: test cases
are written before any code has been
produced and only enough code should be
produced to address the test case.
Subsequent test cases and code are added
via a cyclical process until the user story is
finished.

· Continuous delivery of working
software

· Errors easier to identify and correct in
smaller batches of code

· Erroneous code does not proceed past
development stage

· Automation of testing can be
incorporated

· Strength and accuracy of code
depends on developer or tester who
writes the tests

· Does not ensure execution of tests in
the build process if test cases are not
part of the automated test suite

· Does not ensure adequate
maintenance of the test suite over time

Pair programming: Developers work in
pairs.

· Working software provided more
quickly

· Working software has few defects
· Raises skill level across the team

· Technique must be learned to be
effective

· Success can be hampered by
incompatible dynamics of the pair

· Appearance of not effectively using
resources

Refactoring: A portion of time is set aside
in each iteration to update and improve the
code.

· Addresses technical debt that accrues
· Promotes collective ownership
· Promotes understanding of the code

· Does not remedy systemic issues that
lead to technical debt

· Can be challenging to gain
management support

Code quality and peer review: A team
member who is not the developer of the
code reviews portions of the code base to
assess its quality and adherence to defined
coding standards.

· Catches errors not conceived by the
initial software developer

· Provides added assurance that code
will function as intended when
deployed

· Enhances collective feeling of
ownership of the code base

· Code coverage is limited
· Diverts resources from other efforts
· Is time consuming
· Identifies coding issues after the fact

Source: GAO analysis of Software Engineering Institute literature and other material. | GAO-20-590G

Agile teams meet daily to review progress and discuss
impediments

In addition to repeatable technical practices, there are repeatable
business practices that increase the likelihood a team will succeed when
using Agile methods for its software development. Specifically, teams can
meet daily to coordinate the work, demonstrate working software to the

Chapter 3: Agile Adoption Best Practices

Page 46 GAO-20-590G GAO Agile Assessment Guide

product owner either during or at the end of an iteration to verify it meets
customer needs, or participate in a retrospective meeting.

The daily progress meeting is to discuss any barriers encountered in
completing the work; it is not intended to provide a status update to
management.36 Its purpose is to help the team gauge if it is on track to
meet the iteration goals and adjust as necessary, while holding team
members accountable. Daily meetings usually discuss these three topics:
yesterday’s accomplishments toward the iteration goals, today’s planned
work to advance the iteration goals, and any impediments to achieving
the iteration goals that need to be removed. The larger purpose of the
discussion is to help a team meet its stated goals for an iteration and
increase the flow of work.

Without the daily standup meeting, team members may not be held
accountable for their work. In addition, duplication of work could occur, or
work may not get accomplished because of a lack of communication and
understanding of who is doing what for the program. Without daily
standup meetings, the team might also not identify impediments, which
may result in rework or schedule delays.

Managers can observe the daily meeting and consider actions they might
take to help remove team impediments, but the daily meeting should not
become a status update for management. If used as a status update for
management instead of focusing on progress and impediments, the
meeting could last too long. The meeting is also not a place to solve
problems or hold discussions with stakeholders. Instead, it is a place to
decide what conversations (with what participants) need to take place that
day. Teams can invite subject matter experts or other business
stakeholders to the meeting, as needed, to answer questions regarding a
specific user story they intend to work on that day.

Agile teams perform enditeration demonstrations

Teams should demonstrate the latest version of the software for the
product owner and other stakeholders at the end of each iteration, or as
functionality has been completed. These demonstrations offer an
opportunity for stakeholders to validate that teams are building the right
product, help inform the priorities for the team moving forward, and offer a

36This practice comes from the Scrum method and has been adopted by many other Agile
methods.

Chapter 3: Agile Adoption Best Practices

Page 47 GAO-20-590G GAO Agile Assessment Guide

key opportunity to discover new requirements that can be translated into
user stories. During a demonstration, stakeholders review and react to
the particular portion of working software being demonstrated, rather than
to the whole system. In order for a demonstration to be useful, all
participants must be engaged and the sample software should be
depicted in a realistic setting. Teams should not spend a significant
amount of time preparing for a demonstration, as the focus of this time is
to demonstrate working software and obtain feedback. If end-iteration
demonstrations are not performed, the team may not be able to identify
portions of the software that need improvement or modifications to
provide the anticipated functionality.

Agile teams perform enditeration retrospectives

At the end of each iteration, the team should hold a retrospective meeting
to reflect on what went well and what could be improved for the next
iteration.37 It is an effective tool to enable continuous process
improvement. The findings of the retrospective are determined and
implemented by the team. For example, although retrospectives focus on
process improvements instead of product improvements, the team can
include action items from the retrospective as user stories in the backlog
and track their implementation. If a retrospectives is not held at the end of
each iteration, the team may not reflect on or improve the efficiency and
effectiveness of its work processes, thereby impacting the timely delivery
of a high-quality product. These retrospectives differ from end-of-project
retrospectives in that they provide the opportunity to improve in the next
iteration, not the next project.

Program Operations
At the program level, best practices address training staff in Agile
methods, establishing a technical environment that facilitates Agile
development, and implementing controls that are compatible with Agile.

37If following the Kanban method, retrospectives should be held at an agreed-on interval
because work is not organized by iterations.

Chapter 3: Agile Adoption Best Practices

Page 48 GAO-20-590G GAO Agile Assessment Guide

Best practice: Staff are appropriately trained in
Agile methods

All members of an Agile team are trained in Agile methods

All members of a team using Agile methods need to have appropriate
training, since the techniques used are different from those used for
Waterfall development programs. Team members and all staff who will be
actively developing software, supporting software development activities,
or involved in the acquisition process using Agile should be trained in the
specific Agile method they will be using in order to have a common
understanding about the processes to be used. Training in specific Agile
methods includes the Agile policy and procedures documented by the
organization. Without training, there may be a lack of common
understanding in the program about the Agile methods to be used.

In addition, training requirements should be tracked and monitored for all
team members. Refresher training should occur whenever there are any
changes to the development or acquisition process, such as the use of
new programming languages, applications, compliance requirements,
coding, or security standards. If Agile is adopted throughout an
organization, training of all team members should be considered as part
of the organization’s larger workforce training or strategic human capital
management efforts. Without effective training based on a strategic
human capital analysis, the program will be challenged in helping to
ensure that the required capabilities and mission value will be delivered in
a timely and cost-effective manner.

Developers and all other supporting team members have
the appropriate technical expertise needed to perform
their roles

In addition to training, teams using Agile methods should possess the
competencies, skills, knowledge, and process abilities needed to perform
their role. A program should consider Agile-centric skills when forming
teams. Ideally, team members, including contract specialists, developers,
and testers, should be cross-functional and together possess all the skills
needed to produce working software, as discussed in the best practice,
“Team composition supports Agile methods”. If team members do not
have all the required skills, programs should ensure that each developer

Chapter 3: Agile Adoption Best Practices

Page 49 GAO-20-590G GAO Agile Assessment Guide

has immediate access to people with specialized skills in, for example,
contracting, architecture, database administration, software development,
quality assurance, operations, information security, risk analysis, user
experience, and business systems analysis. Having qualified staff helps
ensure that the flow of development is continuous.

If program development is performed by an Agile services contractor,
program officials should include an evaluation of the qualifications of the
contractor to perform the work as part of the source selection. For
example, on receipt of contractor proposals, a program may require the
offerors to conduct a technical demonstration of their expertise. An Agile
team needs to have all the appropriate technical expertise, or it could be
delayed in completing its work while waiting on input from knowledgeable
specialist outside of the team. Moreover, if individual team members are
not proficient in the skills necessary to complete the work, then the quality
of the product being developed may suffer, requiring substantial re-work.

Case study 5: Technical demonstrations, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that the Department of Homeland Security (DHS) offered
guidance for preparing acquisition strategies through its Procurement Innovation Lab.
Webinars offered by the Procurement Innovation Lab on acquisition strategies for Agile
programs discussed the need for interim delivery of software, close coordination
between contractors and program office staff, contract oversight mechanisms that were
tailored to support Agile development, and refined requirements. For example, the
“Transportation Security Administration Agile Services Procurement” webinar
discussed planning, executing, and de-briefing technical demonstrations used to select
the contract recipient, paying particular attention to the value of transparency and
modifying contract oversight mechanisms.

GAO reported that, within DHS, the U.S. Immigration and Customs Enforcement (ICE)
Student and Exchange Visitor Information System (SEVIS) program evaluated
contractor qualifications to ensure they had the necessary technical expertise.
According to the program manager, contractor qualifications were evaluated in two
stages; first, by assessing the contractor’s proposal, and second, by conducting a
technical challenge to ensure that contractors could demonstrate the technical skills in
the proposal. According to the instructions included in the request for proposals, this
technical challenge required the contractor to leverage Agile best practices to design,
develop, and demonstrate working software that addressed user stories provided by
the program. Although the instructions stated that contractors were required to follow
Agile methods, the ICE SEVIS program manager stated that the primary goal of the
technical challenge was to assess development skills rather than knowledge of Agile.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 3: Agile Adoption Best Practices

Page 50 GAO-20-590G GAO Agile Assessment Guide

Best practice: Technical environment enables
Agile development

System design supports iterative delivery

Planning the design of the system is important in order to understand and
manage the considerations that can enable a loose coupling of
architecture components and to provide architecture to support the Agile
methods and end state for the program. An Agile program should refine
and build out the architecture over time as it learns more about the
system but also allow time to consider system requirements in order to
limit future complexity, rework, and loss of investment. If the program
does not consider the system architecture during its initial planning and
instead relies on building out the architecture as code is developed, the
architecture may not support the needs of the system when fully
operational and require a complete technical refresh.

Architectural runway

Some programs use the concept of an architectural runway to ensure that the technical
infrastructure, dependencies, and interfaces are clearly understood and in place to
support implementing the near-term software in an operational environment. The
architectural runway is continually extended to meet new and evolving needs in front of
development, which avoids the need for large, upfront architectural design.

In designing the system, a loosely structured architecture allows for the
rapid development of modular components in incremental releases. From
an Agile perspective, this allows teams to produce useable code at each
iteration without impacting the larger system, as the architecture provides
the platform for new code to be inserted seamlessly into the operational
environment. In addition, since large federal programs typically have staff
distributed across multiple locations, it is easier for each team to be
responsible for a module. This module is then loosely coupled with
others, eliminating the need for many point-to-point interfaces that would
require significant communication and collaboration between teams.
Frequent testing and reviews can help ensure that newly developed
components are properly integrated with existing ones. Incremental code
delivery can result in more frequent customer reviews that provide
valuable feedback to the developers. Because customers are reviewing
smaller slices of the system than in a typical Waterfall development, the
staff members participating in an Agile development review are likely to
be different than those in a Waterfall development. If software design and

Chapter 3: Agile Adoption Best Practices

Page 51 GAO-20-590G GAO Agile Assessment Guide

architecture are not loosely coupled, changes to individual pieces of the
system may require a significant amount of testing of the entire system,
slowing the pace of development and delivery of the product.

Case study 6: Tools for automated testing and continuous
integration, from Agile Software Development, GAO-20-213

In June 2020, GAO reported that the U.S. Immigration and Customs Enforcement (ICE)
Student and Exchange Visitor Information System (SEVIS) program defined its
technical environment to include technical tools for automated testing and continuous
integration. The team process agreement for one development module GAO reviewed
identified technical tools that supported continuous integration and testing within the
project’s technical environment. This included a tool known as Jenkins for continuous
integration and tools known as MUnit and Soap UI for continuous testing. In addition,
the ICE SEVIS Modernization Test and Evaluation Master Plan discussed tools for
helping to ensure code quality, such as an automated code analytics tool to be used to
identify test coverage of code and cybersecurity code vulnerabilities.

The project also defined management support tools in the process agreement.
Specifically, it identified support tools for tracking and knowledge management, such
as JIRA and Confluence. The team process agreement stated that JIRA should be the
main knowledge management tool and that all changes, discussion, and history should
be tracked in each ticket. This process agreement also stated that JIRA should be the
team’s tracking tool with Confluence used to provide transparency.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Technical and program tools support Agile

To continually monitor progress, Agile program management and
technical tools may be needed to assist Agile teams with electronically
managing the Agile framework they are using to develop software. The
selected tools should be integrated into the program’s technology
environment (e.g., automated regression testing suites and continuous
integration support tools) and access should be available to all team
members and stakeholders who need the access. These electronic tools
can prevent delays in performing critical tasks. If technical and program
tools are not consistently available to those members of the team
requiring access, then the productivity of developers may suffer and result
in increased costs for development.

Organizations sometimes face limited access to the contractor’s tools.
This is based on a perception that providing access could lead to micro-
management of the developers. This fear of micro-management should

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 3: Agile Adoption Best Practices

Page 52 GAO-20-590G GAO Agile Assessment Guide

be addressed because everyone involved in the Agile development effort,
both organization and contractor, should have access to the data. Given
the variety of Agile tools available in the commercial market, program
managers should analyze their current suite of program management
tools to determine to what extent they are aligned with Agile principles
and practices.

Since Agile methods deliver software frequently, they require a certain
degree of automation to avoid creating lags in the process. For example,
to ensure quality products are produced during a delivery cycle, the
software is integrated and tested frequently—usually daily. This rapid
integration and testing can be labor intensive without the support of
automated tools. Automation also reduces the chance of human errors
and can perform many functions much faster than people can. Large
programs not using automated tracking tools could miss key
dependencies between user stories and features. Without automated
tools, the program risks inconsistent implementation of processes across
teams, which may negatively affect product delivery and understanding
the program’s progress.

Best practice: Program controls are compatible
with Agile

Critical features are defined and incorporated in
development

The program strategy should identify the mission, architecture, safety-
critical components, and dependencies that ensure that all aspects of a
program are considered, and these aspects should be revisited on a
regular basis.38 Some programs define these components during an initial
iteration before any software development begins. Doing so can help the
program avoid rework and integration challenges from inadequate
software and the resulting increase in costs and time to deliver all critical
features. Without clearly identifying mission and system-critical
architecture features, the program risks developing these features after
other software is in place and facing substantial rework and integration

38For more information on critical systems in the federal government, see GAO,
Information Technology: Agencies Need to Develop Modernization Plans for Critical
Legacy Systems, GAO-19-471 (Washington, D.C.: Jun. 11, 2019).

https://www.gao.gov/products/GAO-19-471

Chapter 3: Agile Adoption Best Practices

Page 53 GAO-20-590G GAO Agile Assessment Guide

challenges, unnecessarily increasing the cost and time to deliver all
critical features.

In determining the criticality of the software, the program should evaluate
and prioritize the relative value of the work to ensure that each iteration
delivers the most business value, this can ensure that the customer’s
most pressing needs are being met first. Business and mission goals
drive the prioritization of the most advantageous requirements, and
security requirements should be reviewed throughout development. At the
same time, the product owner must consider technical risk relative to
business and mission goals–and if there are significant “unknown
unknowns,” those features may need to be addressed early to understand
what is actually achievable versus what is desired. The program may
need to pivot if technology assumptions are made in the program’s
conception that are not reasonable for the cost allowed or the state of the
technology that must be used. If critical business requirements are not
prioritized appropriately, software may not provide the required
functionality. Lack of communication between the product owners and
developers regarding features’ priorities risks the development of
noncritical software in place of critical software and lower customer
satisfaction with the completed product.

Nonfunctional requirements are defined and incorporated
in development

Although much of the focus in development is on functional needs, the
program must also include nonfunctional requirements, such as security
and privacy, in the program strategy.39 As with critical dependencies,
continuous attention to technical excellence and good design requires the
developers to consider nonfunctional requirements throughout
development. This is particularly true with complex programs such as
healthcare and financial systems that process sensitive data with complex
non-functional requirements. Teams overlooking nonfunctional
requirements may develop a system that does not comply with current
federal regulations (e.g., cybersecurity or interface requirements for IT
programs), causing unnecessary risks to business operations and

39Nonfunctional requirements generally specify criteria that can be used to judge the
operation of a system rather than specific behaviors. This should be contrasted with
functional requirements that specify specific behavior or functions. Typical nonfunctional
requirements are reliability, scalability, maintainability, availability, quality, privacy,
security, and compliance with section 508 of the Rehabilitation Act of 1973, as amended
(29 U.S.C. § 794d (discussing information and data accessibility)).

Chapter 3: Agile Adoption Best Practices

Page 54 GAO-20-590G GAO Agile Assessment Guide

resulting in the software not becoming operational until these components
have been addressed. See chapter 5 for additional discussion on defining
and capturing non-functional requirements.

Agile teams maintain a sustainable development pace

Management should strive to ensure that teams can maintain a
sustainable development pace by prioritizing user stories, some of which
may be non-functional requirements, establishing an agreed-upon
definition of done for those user stories, and reaching a mutual
commitment on the work to be accomplished for each iteration. Many
teams embrace Agile methods because the software is needed quickly;
however, sound engineering and management principles are still required
when employing Agile.

Management should emphasize and encourage teams to maintain a
consistent development pace that can be sustained indefinitely. For this
to happen, management needs to encourage and promote how this
paradigm will benefit everyone. Specifically, teams that can determine a
reasonable pace will not suffer from burnout and will take pride in their
ability to continually produce quality software that pleases the customer. If
teams are not working at a sustainable pace, there is a risk of burnout,
which can cause delays in the program. In addition, working at a
sustainable pace provides management with historical data, such as the
team velocity, that can provide for more accurate cost estimates and time
to develop desired features. While an effective measure if collected and
interpreted properly, it is important that management understand velocity
is team-specific and should not be compared across multiple teams.

Chapter 7 provides additional information related to specific Agile
program monitoring and control and chapter 8 addresses the various
metrics that can be captured to monitor performance. In addition,
appendix V discusses the Scrum and XP methods for achieving a
sustainable pace and how it can be planned for and monitored over the
program’s life. Without establishing a consistent pace, the program
cannot reliably use historical metrics, such as team velocity, to estimate
future efforts required in product development.

Organization Environment
Organization environment best practices address organization life cycle
activities, culture, and acquisition policy and procedures. Although not

Chapter 3: Agile Adoption Best Practices

Page 55 GAO-20-590G GAO Agile Assessment Guide

explicitly called out as a best practice, an organization may also be
responsible for directing, monitoring, and/or controlling the
implementation of program operations and team activities and dynamics.
Best practices related to these topics will be discussed later in this guide.

Organizations all have different missions, goals, existing processes,
culture, and requirements. Consequently, they may adopt different and
varying levels of Agile methods to suit their needs. Before beginning the
process of scaling Agile, management will select or develop a suitable
approach that might include using a pilot program to discover problems
and then mature its processes and incorporate lessons learned before
fully adopting them throughout the organization.40

An organization may have to consider a possible reorganization to enable
a large-scale transformation to Agile software development. This can be
simple, such as reviewing traditional roles and responsibilities and
realigning them with Agile roles (that is, program manager to product
owner), or it can be more complicated, resulting in intensive changes,
such as restructuring one or more components or shifting entire IT
portfolios. One way to help ease an organization’s reorganization is for
management to establish communities of practice or other working
groups of motivated or influential individuals to lead the change. Another
is to use small pilot programs to showcase success and learn first where
the organization’s pain points exist before scaling Agile across the
organization. Either a top-down or bottom-up approach can be successful
in scaling Agile and helping to drive an organization’s change.

Best practice: Organization activities support
Agile methods

Organization has established appropriate life cycle
activities

The organization’s life cycle activities should support the iterative and
incremental nature of an Agile approach. They should also allow for the
organization to tailor life cycle activities to encourage frequent
collaboration between the customer and the developers to support rapid

40In IT, scaling is the ability of a system, network, or process to absorb a growing amount
of work or its potential to be enlarged to accommodate that growth. If the design or system
fails when the amount is increased, it does not scale.

Chapter 3: Agile Adoption Best Practices

Page 56 GAO-20-590G GAO Agile Assessment Guide

development. When making the transition to Agile, sponsors may need to
make structural changes at the organization level in order to support the
iterative nature of Agile. These changes include allowing programs that
are applying Agile methods to tailor life cycle activities, including technical
reviews, and associated artifacts to their cadence of delivery. These
changes may affect the organization, staffing, and interactions with other
groups, such as information assurance and operational test and
evaluation. If programs are unable to tailor life cycle activities, then the
organization’s oversight process could negatively affect the cadence
established by the Agile team, resulting in less predictable development
efforts.

The organization’s life cycle must also allow for refining detailed
requirements. The highest priority of federal IT programs is to satisfy
customers through early and continuous delivery of valuable software. In
order for the mission to succeed, federal organizations’ acquisition policy
and guidance need to allow for refining detailed requirements while
maintaining the high-level program vision and frequently delivering value
in small deployments. There must be frequent collaboration between the
organization and the developers so that the most valuable work is always
completed first. If collaboration is not occurring regularly, then priorities
regarding requirements will not be known and the result may not meet the
program’s vision or customer’s needs.

Programs can respond to changing business needs when early
requirements are defined at a level high enough that the program (or
organization) can fine tune or modify the requirements to reflect a better
understanding of what is needed (see chapter 5 for a discussion of
requirements decomposition). Organizations can do this by considering
whether refined policies and procedures governing life cycle activities and
oversight allow for lower-level requirements to be refined and the speed
with which updated work can be approved. For example, in determining
the appropriateness of the life cycle activities associated with using Agile
methods, an organization can state in policy that satisfaction of the
customer is the main focus and accommodating refining requirements is
acceptable. (See chapter 7 for further discussion of how to monitor
changing requirements with respect to cost, schedule, and scope
commitments.) Where detailed requirement refinement is not understood
or defined at an organization level, the adoption and full realization of the
benefits from Agile methods will be difficult to achieve.

Chapter 3: Agile Adoption Best Practices

Page 57 GAO-20-590G GAO Agile Assessment Guide

Goals and objectives are clearly aligned

A proven method for nurturing a strong relationship among customers,
the developers, and the organization is to align program goals with
strategic IT objectives and to ensure that program goals clearly reflect
stakeholder needs and concerns.41 While this alignment is important in
non-Agile settings, its urgency in an Agile environment derives from the
fact that software will be available earlier to test and interact with other
parts of the system. To effectively implement Agile processes, the
organization’s mission or strategic goals are key inputs for decision
making. If the organization’s goals are not clear or do not adequately
reflect stakeholder concerns and mission needs, then lower-level decision
making may be misaligned with the organization’s focus.42 This
misalignment can, in turn, erode trust and often results in overbearing
governance and bureaucracy, leading to delays. While a program may
need to build trust with developers, the organization needs to trust that
the program office can properly manage itself through delegation and
more targeted governance.

Additionally, it is important that the organization’s software-related goals
are clearly aligned with its program goals. The continuous delivery of
working software depends, for example, on systems engineers and
quality assurance teams having sufficient resources to respond to
repeated software deliveries. If these software-specific needs are not
considered to be part of the larger program goals, then the
implementation of software applications may not fulfill minimum
requirements established by the organization or by the federal
government.

In determining whether software, program, and organization goals and
objectives are strongly aligned, an organization should collect objective
measures, such as data from road maps and product portfolios that are

41Agency plans for capital acquisitions, including plans for IT, should align with and
support advancement of these goals. Alignment to mission and goals is required for major
IT investments subject to Capital Planning and Investment Control (CPIC) reporting. See
chapter 2 for further discussion of legislation impacting Agile adoption in the federal
space.

42The best practice, “Program controls are compatible with Agile” discusses how programs
should consider and capture both critical features as well as non-functional requirements.
Both steps within the practice can help to ensure strategic alignment between the goals of
the organization and those of the program.

Chapter 3: Agile Adoption Best Practices

Page 58 GAO-20-590G GAO Agile Assessment Guide

well defined. These measures should be clearly communicated to the
entire organization so that stakeholders, sponsors, customers, and
developers know exactly which features and capabilities have been
achieved according to the goals and objectives. Doing so will not only
allow an organization to regularly track its productivity but will also
determine how an individual program fits into the organization’s portfolio
and mission. If approved program goals do not align with both the IT and
business goals, then lower-level decision making runs the risk of being
misaligned with the organization’s focus.43 Chapter 8 provides a detailed
discussion of metrics and their use in continuous improvement of
organization processes.

Finally, goals should be clear but not static. Many organizations adopt
Agile precisely because it allows for rapid response to changes in either
the external or internal environment. This rapid change makes it even
more important that an organization effectively and routinely ensures that
program goals are clearly communicated.

Best practice: Organization culture supports
Agile methods
In most organizations, adopting Agile methods involves new behaviors
and a different mindset. This is a major shift in how an organization
operates and will affect the overall climate. For some agencies, the life
cycle management process for an IT system includes not just the
program office, but also outside support functions that are shared across
the organization, such as certification and accreditation or operational test
and evaluation. Policies and regulations can make it difficult to include
these areas when adopting Agile. However, cascading sponsorship helps
ease these problems by having advocates in many places within the
organization who can model new Agile values and behavior, thereby
instilling confidence in the people who are actively trying to adopt the new
practices.

43The best practice, “Work is prioritized to maximize value for the customer”, discusses the
need for the team, and ultimately the program, to routinely deliver the most valuable
functionality each iteration. Ensuring alignment between the user stories delivered in an
iteration and the goals of the program and organization via an agreed-upon artifact such
as a road map that tracks feature prioritization is one way to exhibit the delivery of high
value functionality.

Chapter 3: Agile Adoption Best Practices

Page 59 GAO-20-590G GAO Agile Assessment Guide

Sponsorship for Agile development cascades throughout
the organization

Implementing Agile requires that stakeholders and sponsors embrace and
fully understand the implications of this approach. Without high-level
encouragement, Agile implementation might become a paperwork
exercise, leading to a failure to complete software development. For
example, without encouragement and commitment from upper-level
management, Agile teams may not appropriately collaborate with product
owners when they are unsure about the importance of certain
functionality, causing confusion that ultimately can result in a poor
product. Thus, functionality developed using a process that does not
embrace an Agile mindset might require heavy investment in the post-
deployment correction of errors or functionality enhancements to meet
customer needs.

Sponsorship for a program should start with senior stakeholders openly
and explicitly supporting the use of Agile processes in the organization.
One way to initiate a successful transition is to identify influential
individuals within the organization who are interested in transformation
and can become Agile champions. These champions may or may not be
senior stakeholders but should always be someone who has the respect
of Agile adopters as well as the support of senior leaders. The
champion’s role is to help protect early Agile programs from being
derailed by those who do not understand the new methods or are
skeptical of change. Therefore, the strategy for winning over skeptics will
be for the champion to demonstrate how programs have flourished under
this new approach. Senior stakeholder sponsorship will be helpful to
organizations in transitioning to Agile methods and help to ensure
success with the use of Agile practices. Without sponsorship from senior
stakeholders and the presence of an Agile champion or multiple
champions, the organization may not embrace the transition, which can
lead to inconsistent Agile practices and lackluster results.

Chapter 3: Agile Adoption Best Practices

Page 60 GAO-20-590G GAO Agile Assessment Guide

Case study 7: Agile sponsor, from DOD Space Acquisitions,
GAO-19-136
A practice of Agile development is to identify an Agile sponsor within senior
management—someone with formal authority within the organization to advocate for
the Agile approach and resolve impediments. GAO’s 2019 review of the Mobile User
Objective System (MUOS) program found that the MUOS contractor lacked an Agile
advocate in the program office, which undermined its ability to fully employ an Agile
development approach. For example, even after the contractor adopted an Agile
approach, the program office directed the contractor to plan out all work across
software builds in order to maintain control over requirements—similar to a Waterfall
approach but inefficient in Agile. According to the Software Engineering Institute,
without an Agile advocate in a program’s leadership, organizations only tend to use a
partial Agile or Agile-like approach.

GAO, DOD Space Acquisitions: Including Users Early and Often in Software
Development Could Benefit Programs, GAO-19-136 (Washington, D.C.: March 18,
2019).

While having a clearly defined policy for Agile programs can be effective
in many cases, using a policy or mandate to force adherence to Agile
principles does not produce the healthy adoption of new practices. For
example, putting policies in place too early, before the appropriate
transition mechanisms are solidified, may lead to basic compliance but
without consideration for the organization’s culture and mindset change
that should occur during a successful transition.

Further, since Agile may not be appropriate for all programs, each
program should consider its rationale for the use of an Agile approach in
accordance with defined program and software goals. For example, the
following could be considered indicators that a program is ready to adopt
Agile practices, although this is not the only scheme for evaluating
program readiness for Agile:44

· requirements are flexible;
· an established process is in place to further refine the requirements

over time;
· an Agile champion or program sponsor is available to help the team

overcome impediments;
· customers and/or subject matter experts are readily available to

provide feedback;

44One approach for determining if Agile is best for a program is the Stacey diagram. This
diagram measures requirements agreement against technology certainty.

https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-19-136

Chapter 3: Agile Adoption Best Practices

Page 61 GAO-20-590G GAO Agile Assessment Guide

· teams have been trained in a specific Agile framework or set of
methods;

· a facilitator is available to assist teams in applying Agile methods;
· supporting functions like contracting embrace organizational changes

needed to make Agile work;
· the program is large with a variety of risks, particularly technological

obsolescence; and
· teams desire more responsibility and ownership.

Sponsors understand Agile development

Sponsors and champions should not only be assigned to enable an Agile
transition; they should understand and be able to differentiate between
traditional and Agile roles, Agile cadence, and processes. It is also
important that they are accountable for results. Sponsors should be
committed to supporting the specific Agile approach adopted so that
processes are applied consistently across the organization. While the
roles and responsibilities in a traditional acquisition are well documented
in regulations, policies, and training documents, in an Agile environment
they are more flexible and may not be as easily understood. One of the
biggest obstacles to an Agile transformation can be that very few people
in the organization know and understand Agile methods or that they
implement Agile based on limited experience and understanding of them.
As a result, sponsors and senior stakeholders may need training and/or
coaching regarding their new responsibilities.

Organization policies, therefore, should require sponsors and senior
stakeholders to be fully educated regarding Agile values and principles
and committed to implementing the chosen Agile approach, and
organizations should monitor completion of that training. In doing so,
sponsors can then transmit or reinforce learning from their training to
staff, as needed. If sponsors are unable to effectively differentiate
between Waterfall and Agile implementation, they may hamper or impede
the effective adoption of Agile principles, leading to a breakdown in
processes.

Organization culture supports Agile development

In addition to senior stakeholder and policy support, certain physical and
social environments should be provided by the organization to allow Agile
teams to succeed. For example, Agile environments typically call for

Chapter 3: Agile Adoption Best Practices

Page 62 GAO-20-590G GAO Agile Assessment Guide

locating cross-functional teams in common areas where the teams can
work together and converse regularly. Designating a team space for
physically co-located teams to work with appropriate network and IT
access can be as simple as dedicating a conference room to the team for
the duration of the program. Even if the teams are physically separated,
modern communications and social media methods (such as video-
teleconferences or instant messaging chats) can be used to promote
continuous discussion. For example, some distributed teams may
establish a continuously “open” chat room where team members can talk
about their work. Whether distributed or co-located, the end goal is for all
team members, including the product owner, to be immediately
accessible to ensure questions are answered promptly and team pace is
not delayed.

To facilitate the delivery of a “just enough, just in time” product, a climate
of trust should exist throughout the life cycle between the organization
and the developers. However, since the federal acquisition environment is
built on strong oversight, traditional acquisitions can often result in
adversarial relationships between the acquirers and the developers.
Conversely, in an Agile environment, a climate of trust, built by shared
experiences in which all parties feel respected and accepted, is needed
so that the program team can achieve its fullest potential. A first step
toward developing trust between the developer and the organization
could be a joint workshop or event that focuses on the effort but provides
opportunities for working together across organization boundaries.
Additionally, organizations should consider granting greater autonomy to
Agile teams by providing them with the skills and knowledge necessary to
succeed and an awareness of the long-term goals of the system.

Another method to develop a climate of trust is to consider
communication practices across groups and the amount of transparency
coming from the organization both bottom up and top down. For example,
one option could be to make all artifacts that contribute to the
development of the system broadly accessible to everyone associated
with a program, including oversight boards.45 Availability of team message
boards, instant messaging software, and other collaborative workspaces
can facilitate such communication practices. This can be helped by

45The best practice, “Technical environment enables Agile development”, discusses the
need for a program to consider program management and technical support tools early in
program planning. As part of these deliberations, the program should think about access
to these tools and the level of transparency it might afford to stakeholders that are less
active in the day-to-day operations of the team or program.

Chapter 3: Agile Adoption Best Practices

Page 63 GAO-20-590G GAO Agile Assessment Guide

having a process and terminology in place that are commonly understood
in order to prevent misunderstanding.

After Agile has been implemented, the organization can continue to learn
and adapt from the feedback from key stakeholders and Agile teams. To
do this requires continuous inspection and adaptation to improve the
entire development process, such as in a more formal meeting, a
retrospective, or an informal set of discussions among sponsors. In
addition, ongoing demonstrations of working software can then serve as
touchpoints where an oversight body can gain added assurance that the
Agile teams are developing a system of value in line with its intentions.

To effectively apply lessons learned, relevant, reliable data should be
collected during the transition to help facilitate and support senior
stakeholder adaptation and decision making, since stakeholders are often
removed from day-to-day Agile operations. In addition, modifications to
appropriate policies and processes, such as systems engineering life
cycle documentation, will help ensure that needed changes to Agile
practices and processes are effectively communicated and consistently
applied throughout the organization.

Establishing an environment supportive of Agile can aid team and
program operations in meeting program goals; however, if an
environment supportive to Agile methods is not in place, then team and
program operations might not have the resources necessary to be
successful, thus impeding delivery of the product and not meeting
agreed-upon goals for cost, schedule, and performance.

Incentives and rewards are aligned to Agile development
methods

Open and explicit support by the senior stakeholders also means that
traditionally rewarded behavior is no longer the norm. This is often one of
the hardest concepts for senior stakeholders to consistently practice
when advocating for change. Sponsorship from senior executives takes a
step toward tangibly expressing this larger commitment and fostering an
environment of trust. To that end, an organization should also examine its
existing incentives and rewards systems and consider the extent to which
they might interfere with or reinforce Agile behavior and make changes to
bring those systems in alignment with Agile principles.

Chapter 3: Agile Adoption Best Practices

Page 64 GAO-20-590G GAO Agile Assessment Guide

Changes to incentives and rewards systems may be slow and ineffective,
thus preventing team cohesion and unity and restricting productivity
unless there is active involvement from the appropriate organization
entities, such as human resources and employee unions. To ease the
transition, organizations should identify and include such entities early
and establish an organization goal to align related incentives and rewards
with Agile values and principles. For example, one step to achieve such
an environment and demonstrate support from senior stakeholders is to
establish appropriate incentives to work on Agile teams and offer rewards
to teams that satisfy business needs. That is, rewards should be tied to
accomplishments (e.g., working software) and not to the outputs of an
Agile process.

Most organizations have incentives and rewards that focus on individual
accomplishments. However, in an Agile environment, incentives should
be established to supplement traditional individual rewards with those that
also focus on team success. For example, the reward system should be
closely related to achieving software and program goals. If organization
rewards are not structured to promote team performance,
competitiveness or a lack of respect among team members might
increase, impacting team behavior, productivity, and outputs.46

The organization can use other mechanisms to reward team
performance. For instance, rewards such as public acknowledgment by
presenting a program’s success story at conferences and other
networking events and team access to certificate programs might be used
to supplement individual-focused performance rewards. However, for
such a rewards system to be effective, managers should understand the
kinds of rewards that different individuals value and seek to reward
successful teams accordingly. Structuring organization incentives to
promote improved team performance and behavior will help productivity
and outputs.

46There are certain awards that can be provided to federal employees and other forms of
recognition available to recognize contractor employees. As a result, when awarding team
success, a distinction may have to be made between federal and contractor staff.

Chapter 3: Agile Adoption Best Practices

Page 65 GAO-20-590G GAO Agile Assessment Guide

Best practice: Organization acquisition policies
and procedures support Agile methods

Guidance is appropriate for Agile acquisition strategies

The organization’s Agile acquisition policy and guidance should align with
the planned acquisition strategies.

Before entering into any contract, the program office should analyze the
risks, benefits, and costs associated with the acquisition. In a federal
agency, this can be accomplished with acquisition planning as outlined in
the Federal Acquisition Regulation (FAR) and other agency acquisition
policy and guidance documents. For example, the Department of Defense
has established the Defense Federal Acquisition Regulation Supplement
(DFARS), which provides additional information for DOD programs as
they implement the FAR. Additionally, FITARA grants the agency Chief
Information Officer the authority to approve all information technology
contracts, either directly or as part of active participation in agency
governance.47

Mechanisms should also be in place in the contract and acquisition
strategy to allow for close collaboration between the developers and
stakeholders in order for everyone to agree on what features have the
highest priority. In a commercial environment, the business workforce
includes managers and customers of the product being developed. In the
public sector, these roles may vary and span different organizations, not
to mention the multiple business-related stakeholder roles to be allowed.
These roles can include program office personnel, information assurance,
logisticians, trainers, and others.

Further, the overarching acquisition strategy should match the program’s
Agile cadence. While many contract types can be used to effectively
support Agile development efforts, the way the contract is structured
determines how effective it will be. Therefore, the contract structure and
the acquisition strategy need to support Agile implementation, such as by
allowing for interim demonstration and delivery between official releases.
In addition, Agile program contracts should specify the cadence of

47The law requires CIOs to review and approve IT contracts and OMB’s implementing
guidance states that CIOs may review and approve IT acquisition strategies and plans,
rather than individual IT contracts. 40 U.S.C. § 11319(b)(1)(C)(i).

Chapter 3: Agile Adoption Best Practices

Page 66 GAO-20-590G GAO Agile Assessment Guide

delivery and to what extent product demonstrations will be relied on to
obtain customer feedback. These agreements can be defined as contract
deliverables in the contract data requirements lists.

Accordingly, the contract should be structured to request frequent
deliverables, rather than milestones that span several months, taking care
to ensure that the deliverables meet the requirements. However,
requirements should be written in such a way as to allow the government
representative reviewing the deliverables for acceptance (e.g., the
technical team in coordination with the product owner) enough flexibility to
adjust requirements prioritization and the delivery schedule as the
program evolves. If an acquisition strategy and contract structure do not
allow for interim delivery and product demonstrations, then the
organization may lose opportunities to obtain information and face
challenges when adjusting requirements to meet and adapt to customer
needs. This may negatively impact continuous delivery of software.

Contracts should be structured to align oversight reviews with Agile
practices (e.g., frequent, interim deliverables and product
demonstrations), frame the acquisition strategy to match the Agile
cadence, allow for flexibility to refine detailed requirements, and
encourage close collaboration between the developers and
stakeholders.48 The organization contract oversight mechanisms should
also be aligned with Agile practices. In the federal government, contracts
for large acquisition programs often mandate document-centered
capstone reviews, such as preliminary design reviews and critical design
reviews, which are based on an organization’s policies and guidance
governing the system development life cycle. These reviews analyze
requirements, preliminary design, and detailed design documentation;
software coding does not typically begin until after all these documents
have been approved following the critical design review. However,
contracting language for Agile methods should enable incremental and
frequent progress reviews at key points. If the organization does not
adjust its oversight process to account for Agile methods, then there may
not be adequate insight into the contractors’ productivity may decrease.
Contracting and the federal acquisition process are discussed in more
detail in chapter 6.

48The U.S. Digital Services’ TechFAR handbook offers guidance on how to acquire
products and services in an Agile setting: https://playbook.cio.gov/techfar/. Guidance in
the TechFAR handbook can be supplemented by the U.S. Digital Services Playbook:
https://playbook.cio.gov/.

https://playbook.cio.gov/techfar/
https://playbook.cio.gov/

Chapter 3: Agile Adoption Best Practices

Page 67 GAO-20-590G GAO Agile Assessment Guide

Best Practices Checklist: Adoption of Agile
Methods

Team dynamics and activities

1. Team composition supports Agile methods
· Teams are self-organizing.
· The role of the product owner is defined to support Agile

methods.
2. Work is prioritized to maximize value for the customer

· Agile teams use user stories to define work.
· Agile teams estimate the relative complexity of user stories.
· Requirements are prioritized in a backlog based on value.

3. Repeatable processes are in place
· Agile programs employ continuous integration.
· Mechanisms are in place to ensure the quality of the code being

developed.
· Agile teams meet daily to review progress and discuss

impediments.
· Agile teams observe end-iteration demonstrations.
· Agile teams observe end-iteration retrospectives.

Program operations

4. Staff are appropriately trained in Agile methods
· All program staff have appropriate training since the techniques

used are different from those used for Waterfall development
programs.

· Developers and all other supporting team members have the
appropriate technical expertise needed to perform their roles.

5. Technical environment enables Agile development
· System design supports iterative delivery.
· Technical and program tools support Agile.

Chapter 3: Agile Adoption Best Practices

Page 68 GAO-20-590G GAO Agile Assessment Guide

6. Program controls are compatible with Agile
· Critical features are defined and incorporated in development.
· Non-functional requirements are defined and incorporated in

development.
· Agile teams maintain a sustainable development pace.

Organizational environment

7. Organization activities support Agile methods.
· Organization has established appropriate life cycle activities.
· Goals and objectives are clearly aligned.

8. Organizational culture supports Agile methods
· Sponsorship for Agile development cascades throughout the

organization.
· Sponsors understand Agile development.
· Organization has established an environment supportive of Agile

development.
· Incentives and rewards are aligned to Agile development

methods.
9. Organizational acquisition policies and procedures support Agile

methods
· Guidance is appropriate for Agile acquisition strategies.

Chapter 4: Overview of Agile Execution and
Controls

Page 69 GAO-20-590G GAO Agile Assessment Guide

Chapter 4: Overview of Agile
Execution and Controls
Once a program has adopted an Agile framework for developing its
software, it should also apply effective practices for Agile execution and
control. Effective program management can help programs achieve
strategic goals and increases the likelihood that a program will deliver
promised capabilities on time and within budget. Program management
encompasses many disciplined practices needed to execute and oversee
a program, including requirements development and management,
acquisition strategy development, and program monitoring and control
(e.g., cost and schedule estimating). This chapter provides a high level
background for each of these three areas and chapters 5, 6, and 7
describe best practices for each area and how those best practices apply
for an Agile program.

· Requirements development and management. Having a
documented strategy for developing and managing requirements
helps to ensure that the final product will function as intended.
Developing the requirements includes planning activities, such as
establishing program objectives to outline the course of action
required to attain the desired end result and developing plans for
understanding and managing the work. Effectively managing the
requirements includes assigning responsibility for identifying the
requirements and tracking their status as well as controlling
refinements made to lower-level requirements. Doing so helps to
ensure that each requirement traces back to the business need and
forward to its design and testing. When done well, requirements
management practices provide a mechanism for helping to ensure
that the end product meets the customers’ needs. Agile integrates
planning with design, development, and testing to deliver small
amounts of working software over a shorter time period, making
requirements management an ongoing, continuous process versus a
single phase in a series of processes.

· Acquisition strategy development. Among other things, acquisition
strategies and solicitations for requirements where a contract will be
awarded should define standard Agile terms so that both the
government and contractor know what each term represents. OMB
guidance specifies that all acquisition strategies and plans include
principles that allow for adequate incremental development, which is

Chapter 4: Overview of Agile Execution and
Controls

Page 70 GAO-20-590G GAO Agile Assessment Guide

defined as “Planned and actual delivery of new or modified technical
functionality to users and occurs at least every six months.”49 The
acquisition strategy is also where it is appropriate to establish
expectations, such as the overall development cadence (e.g., iteration
length, release length, synchronization activities among multiple
teams) that should carry forward into the solicitation and resulting
contract. In turn, Agile program contracts should be flexible enough to
allow for lower-level requirements to be refined over time. These
contracts should also provide the means for management to mitigate
risks, track deliverables, and easily monitor contractor performance.

· Program monitoring and control. The ability to generate reliable
estimates is a critical program management function. Typical
estimates include cost and schedule estimates that are updated
throughout the program’s life cycle, forecasts of costs at completion
for work in progress, and plans to establish an Agile work breakdown
structure to identify discrete features that can be monitored.

At first glance, it might appear that applying these more traditional
program management practices to an Agile program would be in conflict
with the principles of the Agile Manifesto. However, existing Agile
artifacts, such as the feature’s lead and cycle time (as described in
chapter 8), the number of defects discovered, and team velocity trends
can be used to effectively oversee an Agile program in a real time
fashion, allowing program management to quickly address risks and
make better decisions. The following sections provide more details about
each of these program management practices and refer to other chapters
for more information, where applicable.

Overview of Requirements Development and
Management
Agile methods integrate planning, design, development, and testing using
an incremental life cycle to deliver small amounts of software to
customers at frequent intervals. These frequent iterations provide
program management with an effective way to measure progress

49Office of Management and Budget, Memorandum M-15-14, Management and Oversight
of Federal Information Technology (June 10, 2015), Attachment B: Definitions of Terms for
the Purposes of this Guidance, “Adequate Incremental Development”.

Chapter 4: Overview of Agile Execution and
Controls

Page 71 GAO-20-590G GAO Agile Assessment Guide

continually, reduce technical and programmatic risk, and respond to
feedback from stakeholders.

Agile teams typically embrace rolling wave planning in which near-term
work is planned in detail, while all future work is identified at a high level.50

Planning near-term work in detail provides the building blocks for constant
updates from feedback and lessons learned that characterize Agile
methods. However, the magnitude associated with requirements
refinement must be confined to the scope of the capabilities in the
program road map. Using an Agile approach is not and should not be
viewed as an opportunity for boundless development.

All remaining work is summarized and documented in what is commonly
referred to as an epic. As time passes and future elements of the program
become better defined, epics are decomposed into features for release
planning and user stories for iteration planning. This incremental cycle of
rolling wave planning continues for the life of a program until all work has
been sufficiently converted into user stories. Agile programs typically use
five levels of planning to progressively define work, as illustrated in figure
4.

50GAO, GAO Schedule Assessment Guide: Best Practices for Project Schedules,
GAO-16-89G (Washington, D.C.: Dec. 22, 2015).

https://www.gao.gov/products/GAO-16-89G

Chapter 4: Overview of Agile Execution and
Controls

Page 72 GAO-20-590G GAO Agile Assessment Guide

Figure 4: Agile Planning Levels

The vision level provides a strategic view of the program goals
expressed at a broad level so that the vision remains basically static and
changes only infrequently; it is similar to a mission needs statement.

The epic level describes large concepts which, when developed, will
move the program toward accomplishing the vision. An epic is useful as a
placeholder to keep track of and prioritize larger ideas.

The release level provides the foundational structure for deploying
needed capabilities to the operational community. It begins with a
planning segment where the team prioritizes the requirements and
establishes preliminary cost and schedule estimates. Releases occur in
fixed intervals throughout the life of a program. An important difference

Chapter 4: Overview of Agile Execution and
Controls

Page 73 GAO-20-590G GAO Agile Assessment Guide

exists between releases and deployments. A release is typically an
internal hand-off of functioning code, whereas a deployment makes the
functionality available to external stakeholders. For some commercial
programs, a release may happen daily or even multiple times a day,
though that is typically not the case for government programs.51

At the iteration level, the developer designs, codes, integrates, and tests
whether the software provides working capabilities that satisfy the needs
of the selected user stories.52 More detailed planning done at the iteration
level ensures that the Agile teams develop software that satisfies the
customer’s prioritized needs. An iteration should always be the same
amount of fixed time, typically 2-4 weeks in length, so that a cadence can
evolve.

The user story level is broken down into tasks that are the daily work of
the teams.

Terminology

Agile programs may use different terminology when referring to the same things. For
example, an epic can be referred to as a theme or high-level requirement; however, it is
important that all members of an Agile program use the same terminology to avoid
confusion.

As discussed previously, Agile programs do not identify all of their low-
level requirements up front; instead, the Agile team refines requirements
by soliciting feedback from the customer. Because the product owner, as
part of the Agile team, is very much involved in prioritizing and reviewing
requirements that have already been developed, the risk that the team
will produce requirements of little value diminishes. For each iteration, the
Agile team focuses on creating only what provides the customer with
value. Since software is developed in smaller increments, stakeholders
can provide immediate feedback on demonstrated capabilities. Using this
information, the team updates the program backlog so that it reflects
desired updates.

51“Release” in the commercial community may not mean the same thing as in the
government. In government settings, the working product at the end of a release may go
to a certifier or independent test organization rather than directly to the end user.

52Agile teams may assign a specific meaning to terms such as “iteration” and “release.”
We have used the terms in this guide as they are most commonly understood by Agile
teams.

Chapter 4: Overview of Agile Execution and
Controls

Page 74 GAO-20-590G GAO Agile Assessment Guide

Requirements are initially expressed as high-level capabilities in a
program’s road map and are prioritized in the backlog on a regular basis.
As the highest-priority capabilities are pulled from the backlog during
each iteration, they are further refined based on customer feedback. As
requirements get more specific, the team must ensure that full traceability
to the business need remains apparent. In addition, the Agile software
team is developing requirements and developing their test plans to
determine acceptance criteria to confirm whether the chosen
requirements have been satisfied at the end of the iteration at the same
time.

As discussed in chapter 1, one of the key differences between a Waterfall
development process and Agile development methods is that Waterfall
starts by developing a plan for all requirements and ends when those
requirements have been completed. Conversely, Agile starts by
developing a high-level program goal and priority requirements and ends
when the program goal has been met with an understanding from
everyone involved in the program that the requirements will be refined
over time as small segments of software are developed and presented to
customers for feedback. In addition, program management tradeoffs are
different for Waterfall and Agile development frameworks. In a Waterfall
development, the requirements are fixed but schedule and cost are
variable, while in Agile development, the program cost and schedule are
fixed but the requirements are variable for each iteration. The different
constraints associated with these two software development approaches
are shown in figure 5.

Chapter 4: Overview of Agile Execution and
Controls

Page 75 GAO-20-590G GAO Agile Assessment Guide

Figure 5: Comparison of Traditional and Agile Development Program Management Constraints

Government programs generally do not have the autonomy to manage a
completely flexible scope. If scope cannot be completely flexible, it is vital
for teams and customers to understand and differentiate the
requirements; that there are “must have” requirements that are different
from the “nice to have” requirements early in the planning effort. Having a
hierarchy will help facilitate delivery of the “must have” requirements first,
thereby providing customers with the greatest benefits as soon as
possible. See chapter 5 for more information on requirements
development and management.

Overview of Acquisition Strategy Development
While there are numerous frameworks available to Agile practitioners,
there are no standard terms for Agile processes and artifacts from the
acquisition viewpoint. Therefore, when implementing Agile methods, the
organization and the contractor must work together to define the Agile
terms and processes that will be used during the development. These
definitions will help establish common Agile terms that can aid everyone
related to the program in understanding the relationship between Agile
and program monitoring and control. Communicating this kind of

Chapter 4: Overview of Agile Execution and
Controls

Page 76 GAO-20-590G GAO Agile Assessment Guide

information is often overlooked, especially as new employees join the
program.

Chapter 6 addresses contracting in an Agile environment in greater detail,
and discusses three best practices: (1) tailor the contract structure and
inputs to align with Agile practices; (2) incorporate Agile metrics, tools,
and lessons learned from retrospectives during the contract oversight
process; and (3) integrate the program office and the developers. These
best practices highlight that acquisition strategies should reflect contracts
that are flexible enough to allow for lower-level requirements to be refined
over time while allowing management to mitigate risks, track deliverables,
and easily monitor contractor performance. As previously stated,
reasonable risk in the contracting process is appropriate as long as risks
are controlled and mitigated. These best practices help to mitigate those
risks common to contracting in an Agile environment by tying the
contracting process and an Agile approach together.

Overview of Program Monitoring and Control
There are several advantages that program monitoring and control
documentation provide for an Agile program. First, since effort is
commonly used as a proxy for cost, estimating effort can determine not
only the program cost, but it can also reasonably predict how long both
near-term and long-term deliverables will take to develop. Second,
understanding capacity (or the total amount of work that Agile teams can
accomplish in one iteration) helps prioritize work and predict the cost of a
delay when “must have” features cannot be accomplished as expected.
Finally, having the Agile team commit to near-term deliverables is
important because those commitments materially affect customer
planning and business objectives while at the same time make the
developers accountable for their work.

Estimating is the key to unlocking the team’s ability to predict and commit
what deliverables can be accomplished in the near-term. Therefore, while
any cost estimate will always be based on the best information available
at a given time, Agile program cost estimates have an advantage over
traditional program cost estimates because they can be regularly updated
to reflect new information in accordance with the program’s cadence. The
regular cycle of iterations and releases provides numerous opportunities
to continuously refine the estimate based on learning what the customer
wants. Even so, it is important to bear in mind that a cost estimate is
typically created or updated before financial commitments have been

Chapter 4: Overview of Agile Execution and
Controls

Page 77 GAO-20-590G GAO Agile Assessment Guide

made and used to establish a performance measurement baseline. While
the estimate should be updated regularly, the original baseline is only
developed once. For example, the estimate at completion may be
revised, but the original cost estimate should rarely be changed so that
variances can be observed.

While Agile supports change and continuous process improvement, the
program should quickly establish a regular cadence of time boxed
releases and iterations so that teams can estimate the cost and time it
takes to develop features with some degree of precision. Since both
releases and iterations are time boxed, estimating the number of
iterations in a release should be relatively straightforward. For example, if
a program has a release every 12 weeks and iterations are two weeks
long, then there should be six iterations for every release. After several
iterations, program office personnel can track a team’s cadence to better
forecast the remaining effort.

Estimating the cost and time it will take to develop software is inherently
challenging because not enough is known at the start about what exact
requirements and functionality are going to be needed. As a result,
requirements need to be iteratively fleshed out and may shift as the
program evolves. Typically, developing an accurate estimate will be
difficult until the team learns more about the program’s requirements, For
these reasons, cost and schedule estimates should always quantify the
effect of changing assumptions using risk and uncertainty analysis.
Additionally, it is important that managers and stakeholders understand
that, because an Agile program’s requirements will be iteratively
determined, collaboration between the customer and developers is
paramount.

Note that, even though Agile methods typically provide working code
more quickly, this approach is often used as an excuse to avoid
documenting traditional program management efforts like formal cost and
schedule estimates. However, formal cost and schedule estimates remain
important. The following case study provides an example of a review of
the cost and schedule for an Agile program.

Chapter 4: Overview of Agile Execution and
Controls

Page 78 GAO-20-590G GAO Agile Assessment Guide

Case study 8: Cost and schedule estimating for an Agile program,
from FEMA Grants Modernization, GAO-19-164

In April 2019, GAO reported that the Federal Emergency Management Agency (FEMA)
Grants Management Modernization (GMM) program’s May 2017 initial life cycle cost
estimate was reliable; however, key assumptions made about the program had
changed. Thus, the initial cost estimate no longer reflected the current approach for the
program. Additionally, GAO found GMM’s program schedule was inconsistent with
leading practices. Of particular concern was that the program’s final delivery date of
September 2020 was not informed by a realistic assessment of GMM development
activities but by imposing an unsubstantiated delivery date.

Key assumptions about the GMM program changed after the May 2017 cost estimate
was approved, including a change in technical approach, an increase in the number of
system development personnel, and significant delays and complexities with data
migration. FEMA officials reported that they anticipated the cost estimate to increase as
a result, and that this increase might be high enough to breach the $251 million
threshold set in GMM’s May 2017 acquisition program baseline. The program informed
the DHS Acquisition Review Board of this anticipated breach, and, on September 12,
2018, the board declared that the program was in a cost breach status. In December
2018, program officials stated that they had completed a revised cost estimate using a
new cost estimating methodology that was developed by DHS’s Cost Analysis Division
and tailored for Agile programs, but it was still undergoing departmental approval.

In addition to an outdated estimate, GAO found GMM’s schedule to be unreliable. One
of the most significant issues was that the program’s final delivery date of September
2020 was informed by an unsubstantiated delivery date. Program officials stated that
they had been uncertain about the level of rigor that should be applied to the GMM
schedule, given their use of Agile development. However, leading practices state that
program schedules should meet all the scheduling practices, regardless of whether a
program is using Agile development. Program officials also stated that the delay in
awarding and starting the Agile contract delayed other important activities. A more
robust schedule could have helped FEMA predict the impact of delays on remaining
activities and identify which activities appeared most critical so that the program could
ensure that any risks in delaying those activities were properly mitigated.

We reported that establishing an updated cost estimate should help FEMA better
understand the expected costs to deliver GMM under the program’s current approach
and time frames. However, without a robust schedule to forecast whether FEMA’s
aggressive delivery goal for GMM is realistic to achieve, leadership will be limited in its
ability to make informed decisions on what additional increases in cost or reductions in
scope might be needed to deliver a complete system.

GAO, FEMA Grants Modernization: Improvements Needed to Strengthen Program
Management and Cybersecurity, GAO-19-164 (Washington, D.C.: April 9, 2019).

GAO has developed processes and best practices for program monitoring
and control in formal guides available on its website. A summary of the
two most relevant guides are included here.

https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-19-164

Chapter 4: Overview of Agile Execution and
Controls

Page 79 GAO-20-590G GAO Agile Assessment Guide

GAO Cost Estimating and Assessment Guide: First released in 2009,
the guide was revised using solicited comments and the new version was
released in 2020.53 The guide establishes a consistent methodology
based on best practices that federal agencies can use for developing,
managing, and evaluating program cost estimates. Best practices related
to program monitoring metrics, such as earned value management, are
also included. The importance of having a reliable cost estimate that
reflects best practices cannot be emphasized enough because, as
resources become scarce, competition for them will increase. It is
imperative, therefore, that government acquisition programs deliver
capabilities as promised, not only because of their value to their
customers, but also because every dollar spent on one program will mean
one less dollar available to fund other efforts.

GAO Schedule Assessment Guide: First released in 2016, the
Schedule Guide is a companion to the Cost Guide.54 Because a cost
estimate cannot be considered credible if it does not account for the
phasing of costs over time as well as the cost effects of schedule
slippage, the guide provides an effective methodology for developing,
managing, and evaluating program schedules. It draws on the scheduling
concepts introduced in the Cost Guide and presents them as ten detailed
best practices associated with developing and maintaining a reliable,
high-quality schedule. The Schedule Guide also presents guiding
principles for auditors to evaluate certain aspects of government
programs.

While cost estimating, earned value management, and scheduling best
practices apply to Agile development programs, there are some
considerations that must be understood, such as recognizing that specific
Agile documents may already contain metrics and data that can be
mapped to traditional management tools to accomplish the same results.
Chapter 7 will examine in more detail how program monitoring and control
processes and best practices can be used in partnership with an Agile
work breakdown structure and Agile principles to ensure a successful
program.

53GAO, GAO Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G (Washington, D.C.: Mar. 12, 2020).

54GAO, GAO Schedule Assessment Guide: Best Practices for Project Schedules,
GAO-16-89G (Washington, D.C.: Dec. 22, 2015).

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Chapter 5: Requirements Development and
Management in Agile

Page 80 GAO-20-590G GAO Agile Assessment Guide

Chapter 5: Requirements
Development and
Management in Agile
Sound management practices are critical for the success of any program,
including one using incremental development methods such as Agile.
These practices include establishing what the system is to do, how well it
will perform those functions, and how it will interact with other systems.55

GAO has developed a body of work that defines the activities and best
practices used to develop and manage the requirements for a system
development program.56 This chapter identifies how traditional
requirements development and management processes can be adapted
for Agile programs and highlights key considerations when assessing
compliance with policy and standards for requirements development and
management.

For the purposes of this guide, we use the term ‘requirements’ to
represent all development work because it is a generally understood
concept from Waterfall development. However, in Agile development, the
term requirement is rarely used. Instead, it is replaced with terms such as

55It is important to distinguish between development and acquisition when discussing
requirements. Many federal programs rely on contractors to develop a system where the
government is responsible for managing and evaluating the contractor’s completion of
requirements defined in a contract. Variability will often occur in the actual management of
those requirements rather than the high-level requirements themselves. For example, in
an acquisition, criteria are established to designate appropriate channels or official
sources from which to receive requirements. Those who receive requirements conduct
analyses of them with the provider to ensure that a compatible, shared understanding is
reached on the meaning of requirements. The result of these analyses and dialogs is a set
of approved requirements reflected in a contract. Chapter 6 offers further discussion of
how to structure a contract to allow for requirements flexibility during development.

56GAO, Framework for Assessing the Acquisition Function At Federal Agencies,
GAO-05-218G (Washington, D.C.: Sept. 1, 2005); Information Technology: Management
Improvements Are Essential to VA’s Second Effort to Replace Its Outpatient Scheduling
System, GAO-10-579 (Washington, D.C.: May 27, 2010); FEMA: Action Needed to
Improve Administration of the National Flood Insurance Program, GAO-11-297
(Washington, D.C.: June 9, 2011); Information Technology: Critical Factors Underlying
Successful Major Acquisitions, GAO-12-7 (Washington, D.C.: Oct. 21, 2011); and Defense
Major Automated Information Systems: Cost and Schedule Commitments Need to Be
Established Earlier, GAO-15-282 (Washington, D.C.: Feb. 26, 2015).

https://www.gao.gov/products/GAO-05-218G
https://www.gao.gov/products/GAO-10-579
https://www.gao.gov/products/GAO-11-297
https://www.gao.gov/products/GAO-12-7
https://www.gao.gov/products/GAO-15-282

Chapter 5: Requirements Development and
Management in Agile

Page 81 GAO-20-590G GAO Agile Assessment Guide

‘epic’ or ‘user story’ and often represents a capability, feature, sub-
feature, or more granular expectation for the system being developed.
The specific terminology will be unique to each organization, which
means it is important for the organization to be explicit in defining each
term and applying that definition consistently within a team, program, or
organization. The terminology will also be based on the duration of the
work or planning exercise. For example, a feature or epic may be
discussed and committed to for a release, whereas an iteration may focus
on the individual user stories that make up the feature or epic.

As discussed in chapter 4, Agile programs typically incorporate five levels
of planning to progressively define all work. At the highest level, the vision
provides teams with a top-level plan, while at the lowest level, the daily
work reflects specific activities that team members can accomplish in a
single workday. After establishing a vision, the program will typically elicit
a preliminary set of very general operating requirements from all
customers. The process for eliciting requirements could take the form of
surveys, face-to-face communication, or a combination of different
techniques. Requirements are often still vague after this exercise. In
Agile, the requirements gathered at this phase are called epics and they
are grouped into general themes.

An epic can help the program to reach agreement with governance
bodies on the priorities for the larger objectives of the program. It is up to
the organization to determine the level of specificity that requirements are
committed to for each governance body and to weigh the benefits of
added governance from, for example, an additional layer of review and
approval.57 A program may commit to a set of operating requirements with
a department investment review board, refine capabilities with a
component review board, detail features or sub-features within a
component’s or program’s integrated program team, and define discrete
user stories with a dedicated product owner. These commitments are
then reflected in artifacts associated with those touch points, such as a
program road map approved by an investment review board, a release
plan associated with the component review board or lower-level

57In chapter 3 of this guide, we highlight the potential risks an organization may incur if it
does not modify the acquisition and software life cycle processes to accommodate Agile
methods.

Chapter 5: Requirements Development and
Management in Agile

Page 82 GAO-20-590G GAO Agile Assessment Guide

integrated program team, and a backlog for management by the product
owner.58

As an Agile program anticipates the development of a theme or epic in
the near-term, the program should define the requirements into smaller
efforts with more granularity so that the team can properly plan and
execute the work. This process may occur at various levels and with
different personnel, depending on the stage of requirements
decomposition. However, the end goal of the program is to have a set of
user stories that can be discussed and further understood by the Agile
teams and the product owner on a routine basis.

Agile in Action 1: Requirements decomposition

In July 2016, we observed release planning for the National Nuclear Security
Administration Program Management Information Systems, Generation 2 (G2)
program. G2 used a requirements hierarchy that allows teams to plan for, manage, and
execute a project. Officials said that this was helpful for clearly defining and
communicating requirements from National Nuclear Security Administration
stakeholders and customers through the federal program manager, product owners,
and development team. According to documentation provided, the requirements
hierarchy decomposed a project down into smaller, more manageable efforts.
Specifically, there were four levels to G2’s hierarchy: road map, feature, user story, and
task, with specific periods of time associated with each level.

Officials said that the road map was the program’s strategic vision, which provided
release planning information for the current development cycle and next three cycles
(three months of work, each). The road map was used to facilitate conversations with
the program’s multiple customers to define and time box desired system features.
Features comprised level 2 of the requirements hierarchy. Requirements were
captured as uniquely numbered features in the backlog; each feature was the starting
point for estimating level of effort and requirements were approved for work at the
feature level.

Documentation provided showed that Level 3 of the requirements hierarchy was
composed of user stories. As features were entered in the backlog, they were
decomposed into user stories (e.g., requirements that can be addressed in one
iteration). Officials said that to ensure requirements traceability, as both features and
user stories are entered, a work breakdown structure (WBS) number was assigned.
Because of the widely varying scope of application requirements, a designated WBS
numbering scheme (as defined in the G2 System Requirements Specification) was
used. Tasks were level 4 of the requirements hierarchy. They were the detailed

58Requirements in Agile development can be thought of as both strategic and tactical. A
set of strategic requirements are necessary to justify a program, and one can generally
assign a work breakdown structure and some form of earned value management
measurement to achieving these goals. The tactical requirements are the lower-level
requirements capturing the features for which customers and stakeholders are looking.

Chapter 5: Requirements Development and
Management in Agile

Page 83 GAO-20-590G GAO Agile Assessment Guide

requirements that could be completed in one day and were assigned to one person to
help maintain accountability. This four-level requirements hierarchy provided
traceability for the requirements through all the program’s planning documents, visibility
for multiple customers engaged in the program, and accountability for the development
team.

Agile values and principles provide guidance for the process an Agile
team uses to develop and manage the requirements for a program. Agile
does not provide a detailed, specific method to be used to perform these
tasks and allows the team flexibility to choose a method. For example, a
team may follow the Scrum concept of product backlogs consisting of
ordered backlog items that are represented on a task board based on
specific commitments made each iteration. Alternatively, a team may
follow the Kanban concept of continuous flow and rely on a Kanban board
that is not reset because Kanban deemphasizes the use of time boxed
iterations.

Because Agile affords such flexibility in requirements development and
management, each program will be unique, depending on the Agile
framework it has adopted and the organization’s governance
requirements. This guide considers both product backlog items and user
stories to be a form of requirements. The difference comes in the
structure and expectations for communicating those requirements. In an
Agile environment, the techniques, resulting work products, and
frequency for each goal may change, impacting how an auditor might
evaluate compliance with existing best practices. The following sections

Chapter 5: Requirements Development and
Management in Agile

Page 84 GAO-20-590G GAO Agile Assessment Guide

describe how a best practice might be modified in Agile and possible
associated artifacts that can help a program to meet the intent of the best
practice.

The following best practices will be discussed in this chapter:59

· Elicit and prioritize requirements.
· Refine and discover requirements.
· Ensure requirements are complete, feasible, and verifiable.
· Balance customer needs and constraints.
· Test and validate the system as it is being developed.
· Manage and refine requirements.
· Maintain traceability in requirements decomposition.
· Ensure work is contributing to the completion of requirements.

Figure 6 shows an overview of requirements management best practices
and table 7 following the figure summarizes the best practices.

59These practices were developed as explained in appendix I.

Chapter 5: Requirements Development and
Management in Agile

Page 85 GAO-20-590G GAO Agile Assessment Guide

Figure 6: Overview of Requirements Management Best Practices

Chapter 5: Requirements Development and
Management in Agile

Page 86 GAO-20-590G GAO Agile Assessment Guide

Table 7: Summary of Agile Requirements Management Best Practices

Best practices for Agile requirements management Summary
Elicit and prioritize requirements · A strong commitment exists to ongoing elicitation and refinement of new

requirements to meet the changing needs of the customer and the
evolving technical landscape while managing requirements already
defined.

· The process relies on surveys, forums, and other mediums in order to
effectively understand the needs of the organization.

· Non-functional requirements are accounted for using regulations or
elicited through coordination with customers throughout the
organization.

Refine and discover requirements · Requirements are further refined as part of ongoing backlog refinement.

Ensure requirements are complete, feasible, and
verifiable

· Prior to development, an overall definition of done and acceptance
criteria for requirements are established.

· A definition of ready may also be established as Agile teams work to set
an expectation of the level of detail needed before teams can start
development on a user story.

Balance customer needs and constraints · A consistent process is in place to measure the value of work to ensure
that user stories are developed based on relative value.

· Backlog refinement is an ongoing, collaborative process between the
product owner and the developers.

Test and validate the system as it is being developed · Continuous integration and automated testing is used in the build
process.

· The product owner agrees and accepts the definition of done for each
user story.

Manage and refine requirements · Additions and refinements to requirements are managed efficiently and
effectively in an evolving prioritized backlog.

· The backlog contains functional and non-functional requirements and
bugs or defects representing revisions to existing functionality.

Maintain traceability in requirements decomposition · Requirements can be traced from the source requirement (e.g., feature)
to lower level requirements (e.g., user story) and back again.

· The program uses Agile artifacts, such as a road map, to ascertain
requirements traceability.

Ensure work is contributing to the completion of
requirements

· Agile teams are continuously working on tasks that directly contribute to
the completion of user stories committed to for that iteration.

· The product owner and Agile teams ensure that the committed user
stories contribute to the commitments made to oversight bodies.

Source: GAO analysis of CMMI, PMI, and SEI documentation. | GAO-20-590G

Elicit and Prioritize Requirements
Officials can analyze and validate Agile program requirements through
various tests; however, the amount of time devoted to the up-front
planning and identification of the requirements will be much shorter than

Chapter 5: Requirements Development and
Management in Agile

Page 87 GAO-20-590G GAO Agile Assessment Guide

when using a Waterfall or another non-Agile development approach.60

Instead of hardening all requirements at the outset of the program, Agile
methods require a strong commitment to ongoing elicitation and
refinement of requirements to meet the changing needs of the customer
and the evolving technical landscape while continually managing the
requirements that have already been defined. If there is not a strong
commitment to ongoing elicitation and refinement of requirements, the
delivered software may not meet the changing needs of the customer or
address the evolving technical landscape.

The process for eliciting customer needs, expectations, and constraints
that comprise the vision and the initial set of epics for an Agile program
provides an opportunity for customer feedback. The process relies on
surveys, forums, and other mediums to understand the needs of the
organization. The overall vision for a program should not change over the
life of it, but because detailed requirements remain flexible in an Agile
program, ongoing elicitation can occur. Furthermore, an organization may
have various levels at which requirements are defined and each layer of
requirements might have a different approach to eliciting customer needs,
expectations, and constraints, and a different process for prioritizing
decisions. The minimum viable product (MVP) is a valuable tool to elicit
feedback by demonstrating aspects to the developing solution.

Minimum viable product (MVP)

A concept popularized in Eric Ries’ 2011 book, The Lean Startup, the MVP is a version
of a working product that allows the team to learn from and interact with their customer
with the least amount of effort.61 An MVP allows the team to better understand their
customers’ needs and interests without committing a large number of resources or
developing a completed product. If done correctly, the MVP can allow a team to refine
the product early in development to ensure it meets customer’ needs rather than later in
development when updates might be expensive or cost-prohibitive. This could mean
significant updates to the product or even abandonment of the product altogether, but
ensures the team is working on a product that the customer actually wants. However,
teams must remember that an MVP is only valuable if the product is sufficiently
developed to allow for customer interaction and to elicit feedback and learning. The
MVP should not simply represent the smallest piece of functionality.

60The importance of modifying the acquisition life cycle to accommodate flexible
requirements is discussed further in chapter 3 under the practice “Organizational
processes support Agile methods”.

61Ries, Eric. The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. New York, New York: Crown Publishing Group,
2011.

Chapter 5: Requirements Development and
Management in Agile

Page 88 GAO-20-590G GAO Agile Assessment Guide

Stakeholders and customers will continue to propose modifications to the
system (e.g., new lower-level requirements) in response to
demonstrations of the functionality of the user stories. Reviews allow the
organization to observe the system and communicate additional
functionality or modifications to existing functionality for the developer.
The product owner can capture this feedback in the backlog for
consideration, even if the suggested functionality cannot be incorporated
into the system. To do this, the program must have a process in place to
field suggestions from customers interacting with the system. In doing so,
the product owner should also proactively seek out customers to inform
future requirements. If the product owner does not capture feedback from
reviews for consideration, there is no historical record of proposed
requirements or modifications for reference. The lack of a documented
change control process could hinder decision makers’ insight into the true
value of delivered features.

Agile methods emphasize customer-facing requirements. These are
requirements for the system to perform a specific function, such as the
ability to search information or aggregate data. However, when the focus
on customer functionality becomes exclusive, the underlying system (non-
functional) requirements can go unnoticed.62 For example, when building
out a search function, the team may not account for potential privacy
issues associated with access to customers’ data. Non-functional
requirements can be derived from regulations or can be elicited through
coordination with customers from other divisions within the organization,
such as security or privacy groups. As with functional requirements, non-
functional requirements will be added, modified, or removed over time
based on ongoing communication between the product owner and
customers.

There are several options for capturing non-functional requirements. One
option is to define each discrete requirement as a separate user story that
traces to a non-functional feature such as architecture. Another option is
to continue building the “definition of done” or acceptance criteria for each
functional requirement to include the non-functional requirements. For
example, a product owner might require the developers to demonstrate
that they have successfully load or stress tested a piece of functionality in
the pre-production environment before accepting the user story as
complete. Due to time and resource constraints, a team or program may

62Non-functional requirements are discussed in chapter 3 under the practice “Technical
environment enables Agile development”.

Chapter 5: Requirements Development and
Management in Agile

Page 89 GAO-20-590G GAO Agile Assessment Guide

adopt the practice of testing some of the non-functional requirements
outside of the iteration. For example, although unit, integration, and
functional testing may be required prior to user story acceptance, an
architecture team may test performance and customer satisfaction
separately just prior to a full release.

Refine and Discover Requirements
In an Agile environment, refining and discovering requirements will
heavily overlap with the elicitation of customer needs and the prioritization
of customer requirements. Due to the ongoing flexibility in requirements,
Agile teams may employ more unique mechanisms, such as the use of
visualization tools. However, the approach to requirements discovery will
vary by team, program, and organization.

Customer requirements are further refined in the backlog as part of
ongoing backlog refinement. Because requirements are the least
understood at the outset of an Agile program, programs are expected to
learn as they progress through development. In order to take advantage
of this learning, a program can incorporate newly discovered
requirements or eliminate requirements previously thought to be
essential. If Agile programs do not learn to discover and refine
requirements throughout the development process, a program may miss
an opportunity to incorporate newly discovered requirements or eliminate
requirements previously thought to be essential, which could create a
disconnect between deployed software and the customer’s needs. The
concept of backlog refinement is addressed in our discussion of other
practices in this chapter. The following case study is an example of an
organization refining its backlog.

Chapter 5: Requirements Development and
Management in Agile

Page 90 GAO-20-590G GAO Agile Assessment Guide

Case study 9: Backlog refinement, from TSA Modernization,
GAO-18-46

In October 2017, GAO reported that the Transportation Security Administration’s
Technology Infrastructure Modernization (TIM) program was expected to manage a
backlog for each software release. The backlog was to identify features and their
derived user stories (the smallest and most detailed requirements) that were to be
delivered in a specific release. Each feature and user story was to be assigned a
priority level to determine the order for development of the next release and associated
sprint.

GAO found the program’s backlogs did not contain prioritization levels for each of the
features and user stories, as called for in Department of Homeland Security (DHS)
guidance. According to program officials, instead of assigning specific prioritization
levels, they identified which features should be developed within the near term (e.g., in
the next several Agile releases). Program officials recognized that they still needed to
prioritize their backlogs by assigning priority levels to all features and user stories, but
they did not have a time frame for completing this effort.

Without ensuring full prioritization of current and future features and user stories, the
program was at risk of delivering functionality that was not aligned with the greatest
needs of the customers, who were responsible for conducting security threat
assessments to protect the nation’s critical transportation infrastructure.

GAO, TSA Modernization: Use of Sound Program Management and Oversight
Practices is Needed to Avoid Repeating Past Problems, GAO-18-46 (Washington,
D.C.: October 17, 2017).

Ensure Requirements are Sufficiently
Complete, Feasible, and Verifiable for the
Current State of the Program
Prior to development, the team is expected to define, overall, what
completion, or “done,” is for that team. If there are multiple teams working
on the system or product release, the teams should also agree on a
mutual definition of done. As teams mature, their definitions of done will
become more comprehensive. However, not having clear criteria and an
established definition of done allows uncertainty into the development
process.

https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-18-46

Chapter 5: Requirements Development and
Management in Agile

Page 91 GAO-20-590G GAO Agile Assessment Guide

Case study 10: Definition of done, from Agile Software
Development, GAO-20-213

In June 2020, GAO reported that the Department of Homeland Security (DHS), in
guidance available to programs on requirements engineering, highlighted that
acceptance criteria defines the boundaries of a user story and confirms when a story
has been completed and is working as intended. Further, the definition of done
identifies all of the activities/artifacts besides working code that must be completed for
a feature or sub-epic to be ready for deployment or release, including testing,
documentation, training material development, certifications, etc.

Within DHS, the U.S. Immigration and Customs Enforcement (ICE) Student and
Exchange Visitor Information System (SEVIS) program generally followed this
guidance with most of its user stories including acceptance criteria. The program also
developed a “definition of done” for all user stories. According to the definition, a user
story was “done” when the following steps had been addressed:

· All code to meet the story’s needs was written according to the system’s
development standards.

· Unit tests were written and run successfully.

· All code was checked in and the build completed successfully.

· All database changes (if required) were complete and checked in (a functional
test could be run).

· The software had been deployed to the system test environment and passed
system tests.

· The product owner agreed that the implementation met the acceptance criteria
written in the story as appropriate.

· All documentation required to support the story was completed (test cases,
interface updates, etc.).

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

In addition to a definition of done and acceptance criteria, Agile teams
may also use a “definition of ready” for user stories. A definition of ready
sets expectations for the level of detail required before a team begins
work on that user story. For example, the team may agree that no work
on a user story can begin until it estimates the relative complexity of the
user story and defines the acceptance criteria for the user story. Since
detailed requirements evolve throughout the program, a definition of
ready helps to ensure that participants work on only the most current and
prioritized requirements and that those requirements always reflect
updates to plans, activities, and work products. Without clear definitions
for ready, acceptance, and done, the team may be working inefficiently
and on requirements that are not high priority.

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 5: Requirements Development and
Management in Agile

Page 92 GAO-20-590G GAO Agile Assessment Guide

Spike

As requirements evolve and an Agile team begins to decompose, prepare for, and
estimate user stories, there can be instances where the user story is challenging to
estimate. This might be due to design questions or a technical challenge that the team is
not experienced in working through. Derived from eXtreme Programming (XP), a spike
can serve as a placeholder user story that represents the research a team needs to
undertake in order to better understand a user story and thereby more effectively
estimate its size.

Balance Customer Needs and Constraints
Waterfall development sets an expectation that all requirements are
established at the start of the program and their value is relatively fixed. In
Agile, where requirements are continuously being discovered and refined,
the program is continually developing functionality to match the
requirements. In doing so, the program developer can maintain flexibility
and offer the option, at any point, for the organization to end the program
if it feels the system is not meeting the original vision and the needs of its
customers or if external constraints require that the program be
discontinued. Moreover, the agency may determine that enough
incremental value has been delivered that the system is meeting agency
needs and the remaining features are no longer necessary.

Chapter 5: Requirements Development and
Management in Agile

Page 93 GAO-20-590G GAO Agile Assessment Guide

Case study 11: User story prioritization, from DHS Acquisitions,
GAO-20-170SP

In December 2019, GAO reported that, in November 2018, Department of Homeland
Security (DHS) leadership approved the Transportation Security Administration’s (TSA)
Technology Infrastructure Modernization (TIM) program’s request to descope and
change its definition of full operational capability (FOC) to include only the
Transportation Worker Identification Credential (TWIC) and TSA Pre√® capabilities. By
the time TIM had fully delivered capabilities for TWIC and TSA Pre√®, TSA had made
ongoing updates and improvements to the remaining legacy vetting and credentialing
systems to meet security and mission demands, which had also sufficiently met end
user needs. According to TSA officials, any additional system development would
produce redundant functionality.

The program updated its key acquisition documents, including its acquisition program
baseline and life-cycle cost estimate to reflect the change in scope. In July 2019, DHS
leadership approved the program’s revised acquisition program baseline. DHS
leadership granted the program acquisition decision event 3 and acknowledged the
program’s achievement of full operating capability—fulfilling TSA Pre√® and TWIC
mission needs for vetting and credentialing—in August 2019. We reported that DHS
attributed a $220 million decrease in the program’s baseline acquisition cost goal to
this scope decrease; however, the program’s operations and maintenance cost goals
increased by $205 million. This increase was primarily due to maintenance of legacy
systems to address user needs.

GAO, Homeland Security Acquisitions: Outcomes Have Improved but Actions Needed
to Enhance Oversight of Schedule Goals, GAO-20-170SP (Washington, D.C.:
December 19, 2019).

The value of individual requirements is subjective and, in Agile, its
determination is often left up to the product owner. The product owner
should have some consistent process for calculating the value of work
and ensuring that user stories are being developed based on relative
value (e.g., that the work is prioritized based on its value to the customer).
For example, a product owner may choose to value high-risk work early in
a release to mitigate the likelihood of encountering delays later in
development that can require substantial re-work. Alternatively, a
developer may prioritize work based solely on resource availability with
regard to time, money, or staff. Other times the work will be valued based
on a holistic consideration for cost, complexity, risk, availability of staff, or
any number of other categories. Each consideration represents the
developer balancing organization needs and constraints.

The product owner reviews and prioritizes user stories in a backlog based
on the relative value of each user story at a specific point. As part of
backlog refinement, the product owner adds detail, estimates, and orders
the user stories based on priority in the backlog. The Agile team, or at
times the entire program, decides how and when refinement is to be

https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-170SP

Chapter 5: Requirements Development and
Management in Agile

Page 94 GAO-20-590G GAO Agile Assessment Guide

performed. However, user stories can be updated at any time at the
discretion of the product owner. Suggestions from organization personnel
should also be incorporated into the backlog and considered by the
product owner.

Higher priority user stories are usually clearer and more detailed than
lower priority user stories. More precise estimates are made based on the
greater clarity and increased detail of a requirement; the lower the order,
the less detail. Figure 7 illustrates the concept of backlog prioritization.

Figure 7: Backlog Decomposition for an Agile Program

Problems can arise if the product owner does not consider the relative
value of the work: all of the user stories can end up being developed just
prior to deployment. While there are situations where this can occur, such
as a very mature requirements decomposition process with an

Chapter 5: Requirements Development and
Management in Agile

Page 95 GAO-20-590G GAO Agile Assessment Guide

experienced product owner, often this is a sign that the product owner is
not prioritizing the requirements and is developing functionality that is not
immediately necessary. This practice of developing each and every user
story can lead to problems if funding is reduced mid-iteration, mid-
release, or mid-program or other external factors impede the progress of
the development work. Further, when the product owner does not
consider the relative value of work, the team may develop functionality
that is not immediately necessary to meet customer needs. If the highest
value requirements are not completed first, the customer may be left
without necessary functionality. The best practice is to rank order
requirements with those of the highest value being completed first so that
if funding ends, the customer will still benefit from the work that has been
completed to date.

Test and Validate the System as it is Being
Developed
In an Agile environment, teams routinely build and test the software
through continuous integration and automated testing.63 Continuous
integration merges all developer working copies to ensure they function
as intended through an automated process by repeatedly integrating the
code multiple times a day. However, continuous integration is only as
strong as the automated testing used in the build process. If a build fails,
the developer should address the issue and resubmit the code for
continuous integration. Once successfully built and adopted into the code
base, the developer and organization can gain confidence that the code
will execute properly in the future.

Code may not meet the requirements of the original user story even if the
quality of the code is good. Then, as part of the backlog refinement
process, the team establishes the definition of done and defines
acceptance criteria for each user story, so that the developers and
product owner have a shared understanding of what it means for a piece
of work to be considered complete. The definition of done encapsulates
both the completion of acceptance criteria and the completion of
additional activities, such as testing or compliance checks. User story
acceptance criteria is specific to just one user story and documents the

63In chapter 3 of this guide, we highlight the potential risks an organization and program
may incur if the organization does not stand up an environment for automated testing and
instead relies on manual tests.

Chapter 5: Requirements Development and
Management in Agile

Page 96 GAO-20-590G GAO Agile Assessment Guide

product owner requirements that must be met, whereas the definition of
done applies to all user stories. In order to validate that requirements
have been met, the product owner should identify acceptance criteria for
every user story prior to development of the story (often as part of
backlog refinement or planning for an iteration) and the program should
agree on a definition of done (e.g., must meet acceptance criteria and be
508 compliant).64

The acceptance criteria and definition of done constitute the expectations
for the user story against which the requirement will be validated and
either accepted or rejected by the product owner. Depending on the
nature of the acceptance criteria, this may require manual interaction with
the system by the product owner and/or organization. Validation of a user
story is performed either as part of a user story demonstration or as part
of a review at the end of each iteration. Although the product owner is
ultimately responsible for the user story, such demonstrations and
reviews allow other customers to observe the functionality and weigh in
on whether it meets the intended purpose or requires further refinement.
Just because a product owner accepts a user story as complete does not
mean that it has been adequately tested according to traditional
standards for testing in order to fully validate the requirement.65 If
customers are not involved in the review and acceptance process for
software functionality, the software may not meet the intended purpose
required by the customer.

Manage and Refine Requirements
Detailed requirements can change as work proceeds and new
requirements are defined. As with developing requirements at the start of
a new program, it is important that the additions and refinements are
managed efficiently and effectively. In Agile, there will be less formality
around the refinements process as a program has flexible lower-level
requirements and Agile empowers the product owner to prioritize
requirements as necessary. Agile does not prescribe how a product
owner should elicit requirements or order and refine the backlog. Instead,
the product owner selects a process that allows them to maximize the

64Section 508 of the Rehabilitation Act of 1973, as amended, 29 U.S.C. § 794d, requires
federal agencies to make their electronic information accessible to people with disabilities.

65The level of testing will depend on the product being developed and the rigor defined in
the agreed-on definition of done.

Chapter 5: Requirements Development and
Management in Agile

Page 97 GAO-20-590G GAO Agile Assessment Guide

value of software delivered during each iteration. If this process is too
inflexible, it becomes a change prevention process and user needs will
not be adequately incorporated into the program, making it less useful to
customers than intended. However, if this process is too flexible, then
boundless development can occur and the organization may not receive
the full value that it requires. Chapter 6 discusses how this can be
managed from a contracting perspective.

As previously discussed, requirements are maintained in the prioritized
backlog for an Agile program. However, a backlog is never complete; it
constantly evolves to meet new requirements. The earlier backlogs lay
out the initially known and best-understood requirements. As the backlog
evolves, the system being developed and the processes governing
development are better defined. As long as a program exists, its backlog
will contain user stories representing discrete pieces of new functionality
to be developed and bugs or defects representing revisions to existing
functionality. User stories may represent both functional and non-
functional requirements.

Maintain Traceability in Requirements
Decomposition
When requirements are managed well, they can be traced from the
source requirement to lower-level requirements and from those lower-
level requirements back to the source requirement. Such traceability
helps to determine whether all source requirements have been
completely addressed and whether all lower-level requirements can be
traced to a valid source.

Agile considers only the work without regard to the terminology or
hierarchical structure used to define that work (e.g., capability versus
feature versus sub-feature). However, the product owner must justify to
oversight groups the value that is being developed each iteration. This
means tracing a user story back to its high-level requirements that the
program committed to with oversight bodies. Without such traceability, a
program cannot justify whether it is meeting the commitments made to
various oversight bodies and, in turn, cannot establish whether the work
is contributing to the goals of the program and thereby providing value.

In a Waterfall development, traceability is demonstrated through a
requirements traceability matrix. In lieu of a requirements traceability

Chapter 5: Requirements Development and
Management in Agile

Page 98 GAO-20-590G GAO Agile Assessment Guide

matrix, Agile development requirements can be traced through Agile
artifacts, such as the backlog.

Case study 12: Requirements traceability, from Agile Software
Development, GAO-20-213
In June 2020, GAO reported that the Department of Homeland Security (DHS)
guidance on requirements engineering recognized that, as a program progressed
through the acquisition and systems engineering life cycles, it was important to trace
requirements from the top-level mission needs or capabilities and/or business
requirements down to the system/sub-system, component, or configuration item level
that enabled those requirements to be met. This helped ensure continuity across
various DHS artifacts, such as the program’s mission needs statement, concept of
operations, and operational requirements document, to vendor specifications (or
applicable equivalent artifacts). This guidance recommended a series of artifacts that
an Agile program could develop to ensure this traceability.

Within DHS, GAO reported that the U.S. Immigration and Customs Enforcement (ICE)
Student and Exchange Visitor Information System (SEVIS) program generally followed
this guidance. The program developed user stories based on business capabilities and
other requirements as determined by the product owner and the business stakeholders.
The program’s operational requirements document described eight business
capabilities that represented core SEVIS functions. According to ICE SEVIS officials,
these business capabilities were addressed through user stories, and there was
traceability in the backlog from user stories to epics to business capabilities/operating
requirements.

GAO, Agile Software Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213 (Washington, D.C.: June
1, 2020).

Ensure Work is Contributing to the Completion
of Requirements
Agile focuses on iterations and the extent to which working software is
delivered rather than on plans and work products.66 Each iteration, teams
are expected to deliver software in accordance with a goal. As such, an
Agile team should always be working on tasks that directly contribute to

66As discussed earlier in this guide, teams applying the Kanban method will not rely on
iterations to time box development work. Instead, these teams will pull in new user stories
on a flow basis as user stories already being developed are completed.

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213

Chapter 5: Requirements Development and
Management in Agile

Page 99 GAO-20-590G GAO Agile Assessment Guide

completing the user stories committed to for that iteration.67 Any work not
associated with those commitments (e.g., a tiger team initiated to fix an
issue for an unrelated team) is a misalignment between the requirements
and work and presents a risk to the program.

From a high-level planning perspective, programs will make commitments
to oversight bodies. As part of those commitments, teams should prepare
the streamlined artifacts required by oversight bodies. At least one of
these artifacts will require the phases and overall structure of program
development to be defined. It is then contingent on the team, and
primarily the responsibility of a product owner during development, to
ensure that the user stories contribute to the commitments made to the
oversight bodies. For example, a management plan may discuss
development in phases and a series of projects within each phase. If the
schedule of projects and phases and the scope of each project are
defined and committed to in advance, there should be alignment between
the user stories being developed and the scope of a specific project. In an
Agile program, a management plan can take the form of a program or
release road map, whereby capabilities or features for development are
laid out in a timeline and planned for future iterations.68

Best Practices Checklist: Requirements
Development
1. Elicit and prioritize requirements

· There is a strong commitment to ongoing elicitation and
refinement of lower-level requirements to meet the changing
needs of the customer and the evolving technical landscape while
managing requirements are already defined.

· The process relies on surveys, forums, and other mediums to
effectively brainstorm the needs of the agency.

67As the Kanban method does not use time boxed development, teams using the Kanban
method for development will not make commitments each iteration. However, teams will
still rely on a Kanban board and all work should contribute toward completing a user story
on that Kanban board.

68In chapter 7, we highlight how Agile programs estimate cost and schedule. This chapter
discusses how requirements are defined and decomposed in order to create an overall
plan for the program.

Chapter 5: Requirements Development and
Management in Agile

Page 100 GAO-20-590G GAO Agile Assessment Guide

· Non-functional requirements are accounted for using regulations
or elicited through coordination with customers throughout the
organization.

2. Refine and discover requirements
· Requirements are further refined as part of ongoing backlog

refinement.
3. Ensure requirements are complete, feasible, and verifiable

· Prior to development, an overall definition of done and acceptance
criteria for requirements are established prior to development.

· A definition of ready may also be established as Agile teams work
to set an expectation of the level of detail needed before
developers can start development on a user story.

4. Balance customer needs and constraints
· A consistent process in place to measure the value of work to

ensure that user stories are developed based on relative value.
· Backlog refinement an ongoing, collaborative process between

the product owner and the developers.
5. Test and validate the system as it is being developed

· Continuous integration and automated testing are used in the
build process.

· The product owner agrees to and accepts the definition of done
for each user story.

6. Manage and refine requirements
· Additions and refinements to requirements are managed efficiently

and effectively in an evolving prioritized backlog.
· The backlog contains functional and non-functional requirements

and bugs or defects representing revisions to existing
functionality.

7. Maintain traceability in requirements decomposition
· Requirements can be traced from the source requirement (e.g.,

feature) to lower level requirements (e.g., user story) and back
again.

· The program uses Agile artifacts, such as a road map, to
ascertain requirements traceability.

8. Ensure work is contributing to the completion of requirements

Chapter 5: Requirements Development and
Management in Agile

Page 101 GAO-20-590G GAO Agile Assessment Guide

· Agile teams are continuously working on tasks that directly
contribute to the completion of user stories committed to for that
iteration.

· The product owner and Agile teams ensure that the committed
user stories contribute to the commitments made to oversight
bodies.

Chapter 6: Agile and the Federal Contracting
Process

Page 102 GAO-20-590G GAO Agile Assessment Guide

Chapter 6: Agile and the
Federal Contracting Process
Agile programs depend on using lessons learned from one release to the
next and should have flexibility to add staff and resources to adapt.
Federal procurement practices used for Waterfall programs can be
adapted to support this flexibility for Agile programs. The Federal
Acquisition Regulation (FAR) was established for the codification and
publication of uniform policies and procedures for use by all executive
branch organizations in acquiring goods and services.69 The FAR helps
organizations ensure that contracts deliver, on a timely basis, the best
value product or service to the customer. Prior to entering into a contract
for information technology, organizations should analyze the risks,
benefits, and costs involved.

What does the FAR say?

“The FAR outlines procurement policies and procedures that are used by members of
the Acquisition team. If a policy or procedure, or a particular strategy or practice, is in
the best interest of the Government and is not specifically addressed in the FAR, nor
prohibited by law (statute or case law), Executive order or other regulation, Government
members of the Team should not assume it is prohibited. Rather, absence of direction
should be interpreted as permitting the Team to innovate and use sound business
judgment that is otherwise consistent with law and within the limits of their authority.
Contracting officers should take the lead in encouraging business process innovations
and ensuring that business decisions are sound.”

 FAR § 1.102-4(e)

Contracts for Agile development must likewise be consistent with FAR
guidance. While the FAR does not specifically discuss Agile development,
it does discuss contracting approaches that can be beneficial for Agile
development efforts. For example, the FAR implements authority to use
modular contracting, a contracting method intended to reduce program
risk and incentivize contractor performance while meeting the
government’s need for timely access to rapidly changing technology.70

69While the FAR applies to executive branch agencies, not all agencies are subject to the
FAR. For example, the FAR does not apply to the Federal Aviation Administration
pursuant to 49 U.S.C. § 40110(d)(2)(G).

70Modular contracting was established in 41 U.S.C. § 2308 and is implemented in section
39.103 of the FAR.

Chapter 6: Agile and the Federal Contracting
Process

Page 103 GAO-20-590G GAO Agile Assessment Guide

Similar to the Agile principle to deliver working software at intervals,
modular contracting may be divided into several smaller acquisition
increments.

The FAR also authorizes the use of simplified procedures for the
acquisition of certain commercial items that fall between specified dollar
thresholds. This is intended to maximize efficiency and economy, and to
minimize burden and administrative costs.71 In addition, OMB and GSA
have developed guides to help organizations apply the flexibility offered
by the FAR to facilitate the use of Agile practices. For example, OMB
issued the TechFAR handbook, which highlights flexibilities in the FAR
that can be used in partnership with the “plays” from the Digital Services
Playbook.72

As discussed in chapter 2, one challenge the federal government faces
for Agile adoption is ensuring that acquisition strategies and contract
structures truly support Agile programs. For example, government
contracts may be designed with heavily structured tasks and performance
checks that are not necessarily aligned with a program’s Agile methods or
cadence. These structured tasks can slow down the program’s Agile
cadence by establishing long contract timelines and costly change
requests that can cause major hurdles in executing Agile development.
Furthermore, contracts without the flexibility to add staff and other
resources needed to meet the work planned for each release or that
cannot adapt to updates from one release to the next can work counter to
Agile adoption best practices and negatively impact a program’s ability to
perform well.

As discussed in chapter 3, long timelines to award the contract and costly
change requests are major hurdles in executing Agile programs, which
require frequent releases. Rather than avoiding using Agile for
development or relying solely on contracting methods that clash with
Agile development, organizations can mitigate their risks by ensuring the
contract supports Agile methods.

71FAR §13.500.

72The U.S, Digital Services TechFAR handbook offers guidance on how to acquire
products and services in an Agile setting: https://playbook.cio.gov/techfar/. Guidance in
the TechFAR handbook can be used in partnership with the U.S. Digital Services
Playbook: https://playbook.cio.gov/.

https://playbook.cio.gov/techfar/
https://playbook.cio.gov/

Chapter 6: Agile and the Federal Contracting
Process

Page 104 GAO-20-590G GAO Agile Assessment Guide

As with any contract, the government must determine the appropriate
contract vehicle based on its assessment of risk and the extent that such
risk will be shared with the contractor. Accepting reasonable risk in
contracts for IT is appropriate as long as risks are controlled and
mitigation processes are put in place. Risks can include schedule
problems, technical feasibility, dependencies between a new program
and other programs, the number of simultaneous high risk programs to be
monitored, funding availability, and program management issues. While
all risks cannot be controlled, the best practices in this chapter highlight
aspects of contracting for Agile IT acquisitions to help address key risks
that should be considered when awarding and monitoring a contract.

Figure 8 shows an overview of acquisition best practices and table 8
following the figure summarizes the best practices.

Chapter 6: Agile and the Federal Contracting
Process

Page 105 GAO-20-590G GAO Agile Assessment Guide

Figure 8: Overview of Agile and Contracting Best Practices

Chapter 6: Agile and the Federal Contracting
Process

Page 106 GAO-20-590G GAO Agile Assessment Guide

Table 8: Summary of Agile and Contracting Best Practices

Contracting best practice Summary
Tailor contract structure and inputs to align with Agile
practices

· Encourage the use of modular contracting.
· Enable flexibility for the contracts requirements.
· Decide to structure the contract for goods or services.

Incorporate Agile metrics, tools, and lessons learned
from retrospectives during the contract oversight
process

· Ensure that contract data requirements rely on Agile metrics
· Enable contract oversight through data from the program’s Agile artifacts
· Conduct retrospectives to continually improve Agile methods based on

lessons learned.
· Ensure that contract oversight reviews align with the program’s Agile

methods and cadence.
Integrate the program office and the developers · Train program office acquisition, and contracting personnel.

· Identify clear roles for contract oversight and management.
· Ensure that all personnel are familiar with the contract’s scope.

Source: GAO. | GAO-20-590G

Tailor contract structure and inputs to align with
Agile practices

Encourage the use of modular contracting

An organization’s contracting process must be deliberate and well
executed to support regular program delivery timelines. Contracting
strategies, processes, and the culture should create a business
environment that supports small, frequent releases and responds to
change, taking into consideration programmatic risks and the scope and
purpose of a program (e.g., whether it is a large weapon system or small
web application). One technique to accomplish this is called modular
contracting. Modular contracting is when an organization’s need for a
system is satisfied by successive acquisitions of interoperable
increments.73 It is intended to reduce program risk and to incentivize
contractor performance while meeting the government’s need for timely
access to rapidly changing technology.74

Agile development is designed to provide usable capabilities rapidly. Use
of modular contracting practices can help an organization achieve these
compressed time frames by eliminating the costly lag between when the

7341 U.S.C. § 2308(b).

74FAR § 39.103(a).

https://www.gao.gov/products/GAO-20-590G

Chapter 6: Agile and the Federal Contracting
Process

Page 107 GAO-20-590G GAO Agile Assessment Guide

government defines its requirements and when the contractor begins
delivering workable solutions. Achieving timely results requires the
contracting cycle to be in alignment with the technology cycle.

For IT investments that use modular contracting, an acquisition may be
divided into several smaller acquisitions, each of which comprises a
system or solution that is not dependent on any subsequent increment in
order to perform its principle functions.75 In other words, the acquisition of
any single program should not commit the government to acquiring any
future systems. In addition, the program should avoid vendor lock-in by
making sure deliverables are properly tested and documented so that a
new vendor can continue work already begun if necessary. If each
program is not separable, then the government may need to acquire
future programs, which could be costly and burdensome.

Modular contracting divides investments into smaller parts in order to
reduce risk, deliver capabilities more rapidly, and permit easy adoption of
newer and emerging technologies.

Enable flexibility in the contract’s requirements

Similar to writing a solicitation for a Waterfall program, schedule
achievement, software quality, user acceptance, and product complexity
should all be considered when drafting a solicitation for an Agile program.
Furthermore, a contract governing an Agile development effort must
provide sufficient structure to achieve the desired mission outcomes,
while also offering flexibility for adaptation of software requirements within
the agreed-on scope of the system. Contract structure for Agile programs
must be designed to support the short development and delivery timelines
that Agile requires.

While contracting for all development methods requires definition, Agile
contracts often define the Agile process and program objectives rather
than detailing specific detailed requirements. For example, many
contracts often rely on a statement of work in section C of the uniform
contract format.76 The statement of work lays out a detailed presentation
of the technical requirements so that contractors can provide an offer

75FAR § 39.103(b)(3).

76The uniform contract format is a standardized format for structuring government
solicitations and contracts. FAR § 15.204-1 provides a list identifying the parts of the
uniform contract format.

Chapter 6: Agile and the Federal Contracting
Process

Page 108 GAO-20-590G GAO Agile Assessment Guide

based on their unique technical solution to a well-defined need. However,
having this level of detail early in the program’s life is typically not the
case with Agile development because the underlying detailed
requirements are unknown and not well-defined at the beginning of the
acquisition process. Therefore, instead of establishing a detailed
presentation of the technical requirements in a statement of work, section
C could use a statement of objectives, whose goal is to develop a broadly
defined statement of high-level performance objectives to provide offerors
with maximum flexibility. The statement of objectives can be used with
any performance-based contract and can include goals and desired
outcomes of the development effort, expected performance standards,
and “build iterations” for software development.

The statement of objectives should include a purpose, scope, period of
performance, location for conducting the work, background, performance
standards (e.g., the required results), and any identified operating
constraints. Performance standards establish the expected
accomplishment level required by the government to meet the contract
requirements. If performance standards are not measurable and
structured to enable performance assessments, the government may not
be able to assess the expected accomplishments.

The statement of objectives focuses on measuring outcomes, rather than
on specific tasks that the contractor is to perform. Table 9 highlights the
differences between a statement of objectives and a statement of work.

Table 9: Differences between Statement of Objectives and Statement of Work

Contract factor Statement of objectives Statement of work
Organization
understanding

The organization understands the objectives but
expects the end state to evolve. Additionally, the
government provides sufficient resources to ensure the
work identified can be completed.

The government has a high level of confidence in the
end state and provides more “hands on” oversight to
ensure that tasks are performed as specified.

Change Change may be a significant factor in achieving the end
state.

Change is expected to be minimal; if encountered,
changes to the statement of work can be disruptive.

Constraint This approach provides the offerors trade space
flexibility in developing their proposals. It should
probably not be used unless a high-level vision or road
map of the work effort required has been established by
the government.

Constrains offerors to the specific tasks identified, so it
must be unambiguous and comprehensive. The
government needs to apply specific constraints on the
tradeoff space of life cycle cost, performance,
interoperability, logistics/training, etc. Additionally, the
government will hold the contractor accountable for
delivery of all tasks described in the statement of work.

Source: GAO analysis of Software Engineering Institute literature. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Chapter 6: Agile and the Federal Contracting
Process

Page 109 GAO-20-590G GAO Agile Assessment Guide

While a statement of objectives provides the additional flexibility
necessary for Agile programs, a statement of work can also be used.
Ideally, the government can provide either as long as it includes the
product vision, strategic themes, an initial road map, and an initial backlog
of features and capabilities. If a statement of objectives is used, the
government can request contractor proposals to include a performance
work statement based on their proposed solution, an Agile development
management plan, and a quality assurance plan, along with other data
required, for a thorough evaluation of the proposal. Focusing on these
items in the statement of work or statement of objectives helps
organizations describe their needs in terms of what is to be achieved
rather than how it is to be performed, thus providing the developers more
flexibility in their processes.

Contract structure and type

The FAR provides a wide selection of contract types and structures to
provide the needed flexibility to organizations to acquire a wide variety of
goods and services. However, to ensure that the contractor does not
perform inherently governmental functions, the organization should
carefully delineate the responsibilities of the contractor in the solicitation.
It may identify the types of decisions expected to be made and ensure
that federal employees oversee and make the final decisions regarding
the disposition of the requirements. These actions should guarantee the
contractor’s work does not become so extensive or close to the final
product as to effectively preempt the government officials’ decision-
making process, discretion, or authority.

Choosing the appropriate contract type and structure depends on many
factors, such as the complexity of the requirements and risk associated
with the work. Typically, any type of contract can be used for Agile
development; however, a critical consideration as part of this decision is
driven by whether the contract is structured for end items (e.g., products
such as the number of features completed) or services (e.g., the work
performed by a specified quantity of developers). For example, the
program office and the contracting officer must communicate whether
they will purchase structured goods or services, since this can provide the
contracting officer with insight into key contracting decisions, such as
contract type, contract vehicle, and what data to request as part of their
contract oversight mechanisms.

Chapter 6: Agile and the Federal Contracting
Process

Page 110 GAO-20-590G GAO Agile Assessment Guide

The following illustrates how different agencies have used different
contract types and vehicles for Agile programs.

Agile in Action: Contracting for an Agile program
General Services Administration (18F) United States Air Force

The 18F office was established in March
2014 as an office within the U.S. General
Services Administration (GSA) that
collaborates with other agencies to fix
technical problems, build products, and
improve how government serves the
public through technology. In November
2018 we met with 18F officials to discuss
their experience with contracting for Agile
programs.

According to officials, not long after its
inception, 18F noticed an increased
demand from partner agencies for help to
support efforts to build new digital
services. In early 2015, 18F created and
tested an Agile blanket purchase
agreement (Agile BPA), under GSA
Federal Supply Schedule 70, Information
Technology. This Agile BPA was intended
to allow organizations to select
developers from a pool of vendors that
use Agile methodologies and customer-
centered design principles. Once the
Agile BPA was established, it provided
GSA with the flexibility to quickly award
flexible contracts through a streamlined
ordering process. As part of competing
the Agile BPA, GSA wanted prospective
vendors to demonstrate their ability to use
Agile practices, GSA asked vendors to
publicly demonstrate their commitment to
customer-centered design and iterative
development by building open source
prototype software. In order to help other
organizations streamline their own Agile
BPAs, 18F has provided examples of
solicitation documentation on GitHub. 18F
found that, by using an Agile BPA, 18F
did not need the vendors to state that
they could operate in an Agile manner
each competition but could instead focus
on the specific details for that contract

In March 2019, we met with Air Force
officials to discuss how they have
developed contracts for Agile programs.
Air Force officials said that they have
chartered an acquisition agency that helps
establish and manage Agile programs for
components within the Department of
Defense that have a similar software
need. Working with these components
through a memorandum of understanding,
the Air Force is able to act as a hub to
optimize different platforms for multi-
domain operations. The Air Force initiates
small, short term contracts (e.g., ~3
months) for a low cost through a broad
agency announcement, which helps them
scout capabilities through many
contractors at once. They also establish
mid-term length contracts (e.g., <3 years
in duration) when promising programs
progress into a longer-term development.
Lastly, as an operational capability
completes development, the necessary
contracts are put in place to ensure a
smooth transition without a loss in
productivity. An indicator that a program is
ready to move to sustainment is when
there are no new capabilities in
development. In addition, officials said
that the Air Force typically uses an
indefinite delivery/indefinite quantity
contract to procure Agile development
teams to fill specific software needs for
specific mission areas.

Through these three different categories
of contracts, officials said they identified
common factors that facilitate a successful
Agile program. For example, the contract
should have a scope broad enough to
provide leeway for decisions. This
flexibility allows for continuous evaluation
of capability delivery throughout the

Chapter 6: Agile and the Federal Contracting
Process

Page 111 GAO-20-590G GAO Agile Assessment Guide

and avoid duplicative administrative
acquisition work.

The Agile BPA, a simplified method of
filling anticipated repetitive needs for
goods or services by establishing “charge
accounts” with qualified contractors, was
an experiment in modular contracting.
Based on lessons learned from the BPA,
18F warned against using open source
prototype software and organizations pre-
establishing vendor pools with large
durations without the ability to onboard or
off-board vendors. Without this capability,
a permanently fixed vendor pool could
yield stagnated competition with vendors
only competing for larger buys.

contract’s life cycle. The Air Force also
found that it is important to document
relationships and responsibilities among
the interested parties and have an active
and engaged product owner. Officials said
that having defined roles helps to manage
expectations of stakeholders and
empowers the product owner.

Both of these examples show that keys to successful contracting include ensuring that
the contract is structured so that it reflects the program and can react to updates in the
program without overly burdensome paperwork. A contract should also reflect learning
from previous contracts to further improve the contracting process.

Generally, the decision regarding which contract type to select should be
based on which contract type will allow the most efficiency in delivering a
product. That is, the contract type should enable the program to
continuously deliver working software. However, if the contract does not
provide sufficient structure to achieve the desired mission outcomes,
while offering flexibility for adaption of software requirements within the
agreed on scope of the system, it may not be able to support an Agile
development approach. A lack of balance between structure and flexibility
increases the likelihood of disruption and delays.

Chapter 6: Agile and the Federal Contracting
Process

Page 112 GAO-20-590G GAO Agile Assessment Guide

Incorporate Agile metrics, tools, and lessons
learned from retrospectives during the contract
oversight process

Contract data requirements rely on Agile metrics

Typically, an IT contract is structured with contract data requirements
(referred to as a contract data requirements list) and relies heavily on
documentation and major reviews at predetermined milestones. However,
the primary deliverable for an Agile program is working code; that is, code
released to the customer that adds value to the program. Therefore,
programs that adopt Agile methods should tailor the contract’s contract
data requirements list to align with Agile metrics to reflect the different
processes and artifacts used in Agile.

Contract data requirements list: technical data package

Obtaining data rights for developed software can be useful if the government changes
contractors for software maintenance. Since the government works closely with the
development contractor in Agile, it is important to tailor the contract to protect the
government’s interests. These data rights can prevent the government from getting tied
to one contractor.

There are many points throughout the Agile development life cycle that
offer the opportunity to collect data about the quality of the software
products. The quantity and type of contract data requirements established
in the contract should account for the program environment. Due to the
anticipated close and continuous work coordination between the
government and contractors, the number of formal deliveries for contract
data requirements list may be less than what is collected for a traditional
IT acquisition. To that end, mindful tailoring of the contract data
requirements list as part of the contract should be performed. If the
contract data requirements list does not account for the Agile
development program environment, the program may miss the
opportunity to collect data about the quality of its software products.

Data from Agile artifacts enables contract oversight

Programs should also collect actual data associated with the program’s
releases, features, and capabilities to enable contract oversight and hold
contractors accountable for producing quality deliverables. Agile metrics
primarily focus on the developers during an iteration. Programs use work

Chapter 6: Agile and the Federal Contracting
Process

Page 113 GAO-20-590G GAO Agile Assessment Guide

elements (e.g., story points, staff hours, task lists, etc.) and burn down
charts to track progress and measure productivity, costs, schedule, and
performance. As previously discussed in chapter 3, the definition of
“done” in the user story should have identified all requirements that must
be demonstrated before a user story is implemented.

A program office and contractor can track several different Agile metrics
for requirements, cost, schedule, performance, architecture,
size/complexity, test, and risk in order to ensure that the organization is
adequately monitoring the contracted development effort. If the program
does not collect Agile metrics for technical management, program
management, and Agile methods, the government may not have the right
information for effective contract oversight and will not be able to hold the
contractors accountable for producing high quality deliverables. Table 10
provides an overview of these three metric categories that can be used
throughout the Agile development life cycle to help enable effective
contract management and oversight. Additional information regarding
best practices to establish program-specific metrics is included in chapter
8.

Table 10: Examples of Agile Metrics by Metric Category

Metric category Description
Technical management Includes metrics that measure the quality of the product delivered. For example,

technical debt provides valuable information regarding the accumulation of
deficiencies over time. Observing technical debt provides insight into the code
quality, ensuring that code quality meets expectations and does not result in an
excess of technical debt and the need for a complete program refresh if the code
base no longer functions properly.

Program management Includes metrics that monitor and report on the cost, schedule, and performance of
an Agile program. For example, lead time provides information about how long it
takes to move a feature from identification to release to management. This allows
managers to observe how rapidly developers are able to meet customers’ needs.

Agile methods Includes metrics that measure how well the program leverages Agile methods. This
can be observed at an organization level through policies in place to support Agile,
at a program level through training staff, and at a team level by implementing
repeatable practices and forming Agile teams that have direct contact to customers
through a product owner. Metrics in this category can include how much customers
use a new feature or how often working code is delivered and demonstrated.

Source: GAO. | GAO-20-590G

Documentation for these metrics can be found in the backlog, design
documents, test scripts, or other sources and is typically updated
regularly when using Agile methods. For additional information about
these metrics and reports, see chapter 8.

https://www.gao.gov/products/GAO-20-590G

Chapter 6: Agile and the Federal Contracting
Process

Page 114 GAO-20-590G GAO Agile Assessment Guide

Chapter 6: Agile and the Federal Contracting
Process

Page 115 GAO-20-590G GAO Agile Assessment Guide

Beware of self-reporting

The process of choosing which metrics to use for contract oversight should include
thoughtful consideration of what information most clearly shows how the contractor’s
work adds value to the program. Some metrics can be collected via self-reporting. For
example, velocity is a measure of the rate at which the team delivers a user story. It is
not comparable from team to team, and should not be used to distinguish one team
from another. It is very easy to show an increase in velocity without adding value to the
program by inflating story point estimates. In other words, increasing velocity does not
always indicate a change in productivity.

Conduct retrospectives to continually improve based on
lessons learned

In addition to including metrics in a contract for an Agile program, the
organization should require reviews with stakeholders to interact with the
developers and product owner in order to better understand the goals for
the end product. The interaction can provide valuable insight to help
inform contract oversight. The following are sample questions that can be
asked at a retrospective with developers and what their answers might
imply.

1. When was the last time a program delivered working software to the
customer?
Implication: The longer the time frame from when the customer need
is identified to the delivery of working software, the greater the risks to
the program.

2. Does the program build a minimum viable product to test the riskiest
assumptions?
Implication: A minimum viable product solves the core customer
needs as soon as possible and helps to validate needs, reduce risk,
and help the program’s course correct quickly, if necessary.

3. What impediments currently facing the program can the sponsor help
remove?
Implication: Agile values leadership through empowerment rather than
power; that is, those who enable others’ success by the ability to use
their position to make others’ jobs easier and more efficient.

4. Does the program have lessons learned to share with the
organization?

Chapter 6: Agile and the Federal Contracting
Process

Page 116 GAO-20-590G GAO Agile Assessment Guide

Implication: Sharing this information with sponsors and throughout the
organization will help organizations identify efficiencies across
programs.

5. Do you need better clarity regarding feature prioritization?
Implication: Goals and priorities are critical in Agile planning and work
better if aligned with organizational strategic goals.

6. What is your biggest bottleneck?
Implication: A key Agile principle is to promote sustainable
development. Normalizing the workload at a system level helps
developers to meet schedules and find additional organizational
efficiencies.

7. How has the program improved since its last review?
Implication: Improvement shows that the team is reflecting on how to
become more effective and adjusts the behavior accordingly. In Agile,
it is important that teams review processes so that they can improve.

8. Is the customer satisfied with the results?
Implication: Working software is the primary measure of progress and
customer satisfaction is an indicator that the program is prioritizing
early and continuous delivery of valuable software.

9. Are iterations finished as planned or are unfinished requirements
pushed to the back of the backlog for future iterations?
Implication: Moving unfinished work to the end of the backlog should
not be done without input from the product owner as the backlog
should be maintained so that the program can ensure it is always
working on the highest priority requirements to deliver the most value
to customers.

Contract oversight reviews align with the program’s Agile
cadence

Contract oversight reviews should align with the program’s Agile methods
and cadence. For example, in a Waterfall model, technical reviews are
used as control gates to move from one sequential phase to the next.
These formal reviews provide traditional programs the opportunity to
discover risks so they can be mitigated before moving on to the next
phase of development. However, in an Agile program, the focus is on
completing each work unit quickly in order to provide a releasable product
in a short period of time. As a result, Agile programs tend to use technical

Chapter 6: Agile and the Federal Contracting
Process

Page 117 GAO-20-590G GAO Agile Assessment Guide

reviews as an opportunity to share information face-to-face and to build
team confidence. A byproduct of this approach is that problems are
discovered early, often before they become too big to control.

As a result of these key differences between Waterfall and Agile program
structures, the same contractual review gates may need to be tailored as
part of the contract deliverables in order to successfully align the contract
requirements with the functional requirements. For example, the
traditional requirements development, preliminary design review, and
critical design review events may be replaced by incremental design
reviews, and, if needed, system-level reviews. The incremental reviews
should be tied to the program’s Agile cadence for completing releases
and will likely occur more often than traditional reviews. As each release
commences, developers will continuously pull and refine features for
development from the backlog that is being constantly prioritized based
on the program’s road map. These recurring efforts provide Agile program
managers the oversight they need to help ensure that the right features
are being developed. Following this approach, reviews may occur
incrementally, following the program’s cadence, throughout the life of the
contract. Figure 9 shows a comparison of Waterfall development reviews
and how an Agile program’s reviews would align with the program’s Agile
cadence.

Chapter 6: Agile and the Federal Contracting
Process

Page 118 GAO-20-590G GAO Agile Assessment Guide

Figure 9: Comparison of Waterfall and Agile Programs’ Review Cycles

Generally, if reviews for the program are not tailored to align with the
program’s Agile cadence, the review structure could impede progress and
cause delays.

Chapter 6: Agile and the Federal Contracting
Process

Page 119 GAO-20-590G GAO Agile Assessment Guide

Integrate the program office and the developers

Train program office, acquisition, and contracting
personnel

Proper training in Agile implementation for all personnel is a key element
for success. Without properly trained program office personnel, including
contracting personnel, staff will not be capable of assisting the program in
making business decisions and trade-offs that come with the
implementation of an Agile effort. Agile practices stress the need for
government program management personnel to be highly involved with
the program and available daily to provide input for the developers. This
may involve both a culture shift and training in new roles and
responsibilities for these program management personnel. To accomplish
this, program office personnel should work with developers to establish a
common understanding of Agile techniques so that an acquisition strategy
can be properly structured to establish a development cadence. This
common understanding often depends on effective training and
collaboration between developers and the acquisition team.

In turn, the small, empowered teams need to have a close partnership
with the program managers, customers (through the product owner), and
contractors (typically the developers). The government contracting
community serves as an invaluable linchpin to enable this relationship in
a collaborative, flexible business environment. Dedicated onsite
contracting personnel, properly trained in Agile implementation, can
assess any impact Agile cadences may have on the program’s acquisition
strategy, enabling a close partnership with the developers.77

Management can create an environment that empowers and motivates
the team. An empowered team has the authority and responsibility to
make decisions rather than a manager. Management can accomplish this
by adopting the role of a mentor to foster an environment of trust and
communicate a positive perception of Agile.

77How dedicated onsite contracting staff is to the Agile team is a decision for the program
office to make and depends on many factors, such as the complexity, duration, and size of
the contract. Another consideration is the availability of adequately trained staff. In order to
maximize effectiveness, the program’s acquisition personnel should have a thorough
understanding of the program’s Agile methods.

Chapter 6: Agile and the Federal Contracting
Process

Page 120 GAO-20-590G GAO Agile Assessment Guide

Identify clear roles

There are various roles and offices involved in the planning, managing,
and executing an Agile contract. Figure 10 depicts these roles.

Figure 10: Roles When Planning, Managing, and Executing an Agile Contract

aContracting personnel typically includes a warranted contract officer, who has express authority to
enter into and administer a contract on behalf of the government and a contract specialist who can
act as a business advisor to program managers; contracting personnel typically assist in planning the
acquisition of goods and services, help negotiated the terms of the contract and provide contract
management and administration services.

Chapter 6: Agile and the Federal Contracting
Process

Page 121 GAO-20-590G GAO Agile Assessment Guide

bThe product owner is the “voice of the customer,” and is accountable for ensuring business value is
delivered by creating customer-centric items (typically user stories), ordering them, and maintaining
them in the backlog. See appendix II: Key Terms for more about the definition of a product owner.
cThe contracting officer’s representative (COR) is a technical expert designated by the contracting
officer to perform specific technical and administrative functions. The COR may provide day-to-day
oversight of the contractor and reviews deliverables to ensure that they meet government
requirements for quality, completeness, and timeliness.
dThe program office refers to all other personnel who support the program. This can include legal
support, program monitoring and control support, and program management support. It is important
that all personnel who support the program are familiar with Agile processes.
eAs discussed in chapter 3, the development team consists of the software developers, team
facilitator, and subject matter experts who code the features for the program.

These roles must be clearly defined and responsibilities should be
faithfully carried out in order to help prevent bottlenecks and ensure that
rapid feedback channels are clearly established from the start of
development. One area of potential confusion can be between the role of
the contracting officer and contracting officer’s representative (COR), and
the product owner. For example, in Agile, the product owner approves the
work delivered by the team, while the COR is responsible for ensuring the
work is technically sufficient and the contracting officer accepts the work.
This confusion could be due to the product owner role not being a typical
role that is used in Waterfall development. While there are similarities
between these roles, each role has distinct responsibilities.

The product owner is typically associated and familiar with the business
aspects of the program office, while the COR has more technical skills.
However, it is important that the product owner and the COR both
understand the program and teams’ Agile methods and that there is one
government focal point for the team to interact with. In other words, the
product owner serves as a bridge between the COR (who generally
judges the technical quality of the contractor’s work for acceptance on
behalf of the contracting officer) and contractor, while also working to
integrate the program office and developers to ensure that the customer
receives the expected business value for the work. As long as the product
owner and the COR remain in close communication, they can continue as
separate roles. Additionally, the product owner and COR work closely to
align the program’s business and technical requirements. Typically, both
the COR and product owner should be government employees so that
they can be empowered to make day-to-day decisions for the
development effort. If the product owner is not a government employee,
the product owner may not be empowered to make day-to-day decision
for the development effort, thus causing development delays.

As stated earlier, dedicated contracting personnel should work closely
with the developers and the product owner. The product owner should

Chapter 6: Agile and the Federal Contracting
Process

Page 122 GAO-20-590G GAO Agile Assessment Guide

represent a government commitment to providing an empowered
customer, a representative who can make decisions quickly and prioritize
requirements within the scope of the program’s road map. Together, the
contracting officer, product owner, and government members of the
development team (e.g., the developers, subject matter experts, and
team facilitator) should consider the following questions as the acquisition
strategy is developed:

1. Have the program’s vision and goals been established?
2. Has the program’s scope been established and are the cost and

schedule constraints identified?
3. Are Agile methods well defined or already in place within the

government program office?
4. Does the program office have executive-level support for Agile

development?
5. Did market research identify qualified contractors with Agile

experience?
6. Are there multiple contractors who will conduct parallel development?
7. Who is the systems integrator (e.g., government or contractor) and

what level of integration is required?
8. What is the overall development timeline?
9. What is the release schedule?
10. How much contracting support is available for the program?
11. Are government resources available to actively manage contractor

support once the contract has been awarded? For example, is there a
dedicated product owner?

12. Is the program considered high risk and what level of risk is the
government willing to accept in its contracting strategy?

13. Are other, similar programs currently using or thinking of using Agile
for development?

14. Can the program leverage previously-established contract vehicles in
order to shorten acquisition times?

15. What are the program’s scope and key deliverables?
16. What are the milestones and how frequently do they occur?
17. What performance metrics are defined in the contract?

Chapter 6: Agile and the Federal Contracting
Process

Page 123 GAO-20-590G GAO Agile Assessment Guide

Furthermore, contracting personnel and other program office personnel
should understand the distinction between contract and functional
requirements that are part of the Agile development process. In many
cases, these two types of requirements differ significantly. For example,
in an Agile environment, contract program requirements are broken down
into high-level capabilities that, over time, are further decomposed into
features, while Waterfall programs define requirements (e.g., functional
requirements) in detail in the statement of work and system segment
specifications. Furthermore, customer collaboration should include any
legal, security, and compliance with section 508 of the Rehabilitation Act
of 1973, or privacy concerns, and should be included as part of the
program’s contract and functional requirements. If these are not clear, all
compliance and security requirements may not be included in the
program.

Awareness of the contract’s scope

Contracting personnel must also watch for “scope creep,” where
requirements are added to the contract without other work being identified
as lower priority. If additional requirements are identified by the customers
after a contract has been awarded, but are still within the scope of the
contract, contracting personnel (along with other members of the Agile
team) should ensure that there is enough time on the contract to
complete the additional work or whether these requirements can
substitute for currently-identified features. This is done by examining the
statement of work or sequence of operations to ensure that new work is
within the scope of the contract and by prioritizing the work in the backlog.
If new work, outside of the contract’s scope is identified and found to be a
higher priority to accomplish goals that are outside the scope of the
current contract, then the contracting officer may issue an out-of-scope
modification to add work to the contract.78 Contract modifications should
be infrequent if the program’s vision and high-level capabilities are broad

78Out-of-scope contract modifications are considered non-competitive contract actions
under the FAR, which requires an approved justification describing the exception to
competition under which the modification is issued and the rationale for the exception to
competition prior to issuance. The FAR, in part 6 and similar sections in parts 8, 13, and
16 (for federal supply schedules, simplified actions, and task orders), describes
exceptions to competition and the requirements for documenting and using these
exceptions.

Chapter 6: Agile and the Federal Contracting
Process

Page 124 GAO-20-590G GAO Agile Assessment Guide

enough so that features resulting from breaking down requirements can
be added to the backlog within the contract’s current scope.79

While a contract cannot be modified without a contracting officer’s
authority, the product owner should be empowered to prioritize the
detailed requirements within the scope of the product vision and thereby
help to avoid scope creep. The engaged and empowered product owner
considers the requirements consistent with the program vision,
participates in incremental planning, iteration and release planning, and
retrospectives in order to minimize contractual changes as the Agile
program evolves. Lack of involvement by the product owner and limited
empowerment can result in bottlenecks in the contracting process.

Successful delivery of a software program requires planning,
management, information gathering, and continual assessment of
performance under the contract by both program office personnel and
developers. All levels are involved in the acquisition and contracting
phases and must understand the Agile process to achieve a successful
outcome. For example, the product owner should be engaged in the
award process to help clarify the customers’ needs from the very start of
the development of the contract. Likewise, contracting personnel should
understand the program’s Agile methods to develop a contract structure
that aligns and supports those specific processes.

Best Practices Checklist: Contracting for an
Agile Program
1. Tailor contract structure and inputs to align with Agile practices

· Encourage the use of modular contracting.
· Enable flexibility for adapting software requirements.
· Decide to structure the contract for goods or services.

2. Incorporate Agile metrics, tools, and lessons learned from
retrospectives during the contract oversight process

79Contract modifications raise numerous legal considerations. For instance, depending on
the scope and circumstances of the modification, an agency may not be able to use the
same appropriation that it used to fund the contract at award. Prior to substituting any
work that is outside the scope of the contract, the product owner and COR must consult
with the contracting officer, contracting specialist, and other government program office
personnel, as appropriate.

Chapter 6: Agile and the Federal Contracting
Process

Page 125 GAO-20-590G GAO Agile Assessment Guide

· Ensure that contract data requirements rely extensively on Agile
metrics.

· Data from the program’s Agile artifacts enables contract oversight.
· Conduct retrospectives to allow stakeholders to interact with

developers and product owners to continually improve Agile
methods based on lessons learned.

3. Integrate the program office and the developers
· Train program office acquisition and contracting personnel.
· Identify clear roles for contract oversight and management.
· Ensure that all personnel are familiar with the contract’s scope.

Chapter 7: Agile and Program Monitoring and
Control

Page 126 GAO-20-590G GAO Agile Assessment Guide

Chapter 7: Agile and Program
Monitoring and Control
Program monitoring and control provide the oversight needed for
legislators, organization officials, and the public to be able to assess
whether government programs are achieving their goals. The government
uses many traditional practices that have been developed for Waterfall
development. These practices may need to be adapted so they can be
applied to an Agile program. For example, as discussed in chapter 4,
traditional methods of tracking and reviewing the status of a program
focus on the big picture, whereas Agile methods are focused on short-
term efforts with the most attention and detailed planning paid to the
current iteration. In spite of this apparent conflict, program monitoring and
controls can be adapted to an Agile program. This chapter discusses how
to adapt a work breakdown structure (WBS) for an Agile program and
how cost estimating, scheduling, and earned value management (EVM)
are applicable to Agile programs.

The WBS is the framework used by federal agencies to organize the work
into manageable, smaller components. It is an essential input to three
principle program controls used by federal agencies: cost estimating,
scheduling, and EVM.80 Using the work breakdown structure, a program’s
cost estimate and schedule are developed and, if warranted, they can be
combined into one baseline used to measure program performance. A
major benefit performance management tracking provides is the
identification of cost and schedule variances from the overall baseline
plan so that program risks can be quickly discerned, tracked, and

80A WBS breaks down product-oriented elements into a hierarchical parent/child structure
that shows how elements relate to one another as well as to the overall end product. A
WBS provides a basic framework for a variety of related activities including estimating
costs, developing schedules, identifying resources, and determining where risks may
occur. It also provides a framework to develop a schedule and cost plan that can easily
track technical accomplishments—in terms of resources spent in relation to the plan, as
well as completion of activities—enabling quick identification of cost and schedule
variances.

Chapter 7: Agile and Program Monitoring and
Control

Page 127 GAO-20-590G GAO Agile Assessment Guide

managed. GAO has established cost, schedule, and EVM best practices
in best practices guides.81

Work breakdown structure in an Agile
environment
A WBS or similar document can be used by management and Agile
teams to provide a clear picture of the total scope of work necessary to
meet a program’s vison and requirements.82 A well-structured WBS
decomposes the program scope into discrete deliverables that can be
measured and tracked, thus providing a framework for planning and
accountability by identifying work products that are outcome-focused.

With the end product in mind, the WBS creates a hierarchical structure
that shows how program elements relate to one another and the overall
program. Similarly, Agile programs break down the work into successive
levels of effort: epic, feature, and user story. Each of these Agile levels
depict what the work entails and how it relates to higher-level program
goals and the final product.83 The levels of effort are described here.

Epic: The epic captures high-level capabilities. It generally takes more
than one or two iterations to develop and test. An epic is usually broad in
scope, short on details, and will commonly need to be split into multiple,
smaller user stories before the team can work on them.

Feature: A feature is a specific amount of work that can be developed
within one or two reporting periods. It can be further segmented into a
user story or stories. The functionality is described with enough detail that

81GAO, GAO Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G (Washington, D.C.: Mar 12, 2020) and GAO
Schedule Assessment Guide: Best Practices for Project Schedules, GAO-16-89G
(Washington, D.C.: Dec. 22, 2015).

82A separate WBS document is not the only solution. Chapter 5 discusses how the
concept of backlog refinement is used to decompose requirements as more information
becomes known. It also describes a set of strategic requirements necessary to justify a
program that can be used to develop a WBS and some form of EVM measurement to
achieving these goals.

83As with any WBS, more detail can be added as additional information is discovered
about the program. The WBS should ultimately be based on existing Agile artifacts (e.g.,
the road map) to reinforce traceability between program monitoring and controls and Agile
planning documents.

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Chapter 7: Agile and Program Monitoring and
Control

Page 128 GAO-20-590G GAO Agile Assessment Guide

it can remain stable throughout its development and integration into
working software. It is this level that should be tracked through program
management products like the life cycle cost estimate and schedule. The
features in the WBS should be fully traceable to the program’s road map.

User story: The user story is the smallest level of detail in an Agile
program and is subject to change based on customer feedback. For this
reason, a user story can be added to or deleted without altering the
overall scope of the features. A user story is weighted for complexity
using story points. It can be used as quantifiable backup data for EVM;
however, a user story should only be added to the WBS after release or
iteration planning and be traceable to the prioritized backlog.

Figure 11 shows a typical WBS for an Agile software development
program and how more detail can be added over time.

Figure 11: Work Breakdown Structure in an Agile Program

Figure 11 shows that, as more information is learned, additional detail can
be added to the WBS. For example, when features are decomposed

Chapter 7: Agile and Program Monitoring and
Control

Page 129 GAO-20-590G GAO Agile Assessment Guide

during iteration or release planning, user stories can be added to the
appropriate parent level item in the WBS. Updating the WBS with
additional information and tying it to Agile documents as more information
is discovered helps provide additional traceability through Agile artifacts
and program control files. A WBS can also help show the relationship
between the Agile development effort and other parts of the program,
such as program management or software licenses.

An Agile environment should have established methods and measures to
ensure progress is monitored objectively. Specifically, lower-level user
stories and tasks are flexible and subject to change throughout the
development process. Because of this instability, the majority of
traditional program monitoring and control best practices should be
maintained at a higher level of the WBS, namely at the epic or feature
level.

The program WBS provides a common structure for cost, schedule, and
EVM. In an outcome-based Agile environment, the WBS is hierarchical,
product-based, and contains the total program scope. Further, the WBS
should reflect high-level capabilities identified in the road map as well as
varying levels of detail at the epic and feature levels when this information
is available, typically only for near-term work. At any specific time, the
WBS should inform the necessary technical activities needed to
sufficiently complete a feature. As program requirements are
decomposed to capabilities (or epics) and features, the derivation of the
WBS should remain traceable to the program’s cost, schedule, and EVM
work, as appropriate. The program should also establish defined
completion acceptance criteria to ensure that performance measurement
is consistent and traceable. In this way, the relationship between a
program’s progress and its technical achievement can be maintained.

Cost estimating best practices in an Agile
environment
The GAO Cost Estimating and Assessment Guide84 (Cost Guide)
establishes a consistent methodology based on best practices used by
federal agencies to develop, manage, and evaluate a cost estimate. The

84GAO, GAO Cost Estimating and Assessment Guide: Best Practices for Developing and
Managing Program Costs, GAO-20-195G (Washington, D.C.: Mar. 12, 2020).

https://www.gao.gov/products/GAO-20-195G

Chapter 7: Agile and Program Monitoring and
Control

Page 130 GAO-20-590G GAO Agile Assessment Guide

Cost Guide recommends the use of a 12-step process that, when
followed, can result in a high quality, reliable cost estimate:

1. Define the estimate’s purpose.
2. Develop the estimating plan.
3. Define the program.
4. Determine the estimating structure.
5. Identify ground rules and assumptions.
6. Obtain the data.
7. Develop the point estimate and compare it to an independent cost

estimate.
8. Conduct sensitivity analysis.
9. Conduct a risk and uncertainty analysis.
10. Document the estimate.
11. Present the estimate to management for approval.
12. Update the estimate to reflect actual costs and changes.

These steps mostly occur in a sequential order; however, steps three
through seven are iterative and can be accomplished in varying order or
concurrently. While the Agile methods differ from Waterfall development
process, the need for a high-quality, reliable cost estimate is applicable.
Whatever development framework is used, every program needs to
establish a budget and be accountable for delivering a value-based
outcome. To that end, an Agile program should follow the GAO 12-step
cost estimating process to develop an estimate that reflects cost
estimating best practices. One advantage of Agile development is that
this approach follows an iterative process that results in new data that is
generated and collected after every iteration to keep the estimate
updated. Furthermore, while Agile lowers the technical risk through
incremental delivery, sensitivity, risk, and uncertainty analyses can be
performed to inform management decisions. Finally, while Agile places
the value of working software over comprehensive documentation,
documenting the cost estimate assumptions is still important.

Chapter 7: Agile and Program Monitoring and
Control

Page 131 GAO-20-590G GAO Agile Assessment Guide

Agile measures and documenting the cost
estimate
Agile software development produces documentation, measures, and
artifacts that can be used as evidence to assess whether the program is
following GAO’s cost estimating process and best practices and to aid
auditors in assessing the planning and assumptions made by the program
office to develop their cost estimate. Table 11 compares GAO’s cost
estimating process to a typical Agile process.

Table 11: 12-Step Cost Estimating Process and Agile Cadence Examples

12-Step estimating process step and definition Agile environment and the GAO cost estimating process
Step 1: Define the estimate’s purpose
The purpose of a cost estimate is determined by its intended use,
which determines its scope and detail.

During release or initial planning, determine how any cost
estimates will be used.

Step 2: Develop the estimating plan
This step involves selecting the estimating team members and
developing a schedule that includes enough time to perform all
steps commensurate with the estimate’s purpose.

During initial planning, identify the cost estimating team that will
develop the estimate and any technical experts that will be
needed to support the estimating effort. The estimate plan should
also include details about when the government program office
plans to update the estimate with Agile metrics.

Step 3: Define the program
Program personnel identify the technical and programmatic
parameters on which the team will base the estimate. This
information should be kept updated at all times so that it remains
current.

These steps (steps 3-7) should first occur during initial program
planning with the development of a road map or vision and be
updated as the estimate is refined at established intervals, such
as after a release, in support of program milestone reviews, or
whenever there are updates to the road map. Agile performance
measures and artifacts such as burn up/burn down charts,
velocity metrics, and the product backlog can be used to update
the estimate accordingly.
It is important that the cost estimating team is integrated into
release planning so that team members can fully understand the
changes to the plan and update the estimate to reflect those
changes that occur naturally during the Agile process (e.g.,
additional detail is provided through a requirements
decomposition process).

Step 4: Determine the estimating structure
This step defines at various levels of detail what the program
needs to accomplish to meet its objectives. Typically, estimators
will have access to a work breakdown structure (WBS) that
decomposes the work into a product-oriented, hierarchical
framework supplemented by common elements like program
management, systems engineering, and systems test and
evaluation, etc. A WBS promotes accountability by clearly
identifying work products and enables managers to track technical
accomplishments. It also outlines how program elements
progressively subdivide into more detail as new information
becomes available.

Chapter 7: Agile and Program Monitoring and
Control

Page 132 GAO-20-590G GAO Agile Assessment Guide

12-Step estimating process step and definition Agile environment and the GAO cost estimating process
Step 5: Identify ground rules and assumptions
The estimating team establishes ground rules that represent a
common set of agreed to estimating standards such as what base
year the team will use to express costs, the number of expected
program quantities, and the anticipated contracting strategy. When
information is unknown, the estimating team must fill the gaps by
making assumptions so that the estimate can proceed. Because
many assumptions profoundly influence cost, management should
fully understand the conditions the estimate was structured on.
Well-supported assumptions include documentation of their
sources along with a discussion of any weaknesses or risks.

An independent cost estimate should be developed after the
initial cost estimate and then repeated at major milestone reviews
for the program. Between estimates, a sufficiency review of the
cost estimate after major updates should be performed to assess
the credibility of the program office estimate.

Step 6: Obtain the data
The team collects, normalizes, documents, and archives the cost,
schedule, programmatic and technical data it will use for the cost
estimate.
Step 7: Develop the point estimate and compare it to an
independent cost estimate
The team creates a time-phased cost estimate for each WBS
element using a variety of techniques including analogy,
parametric, and engineering build up. Once each WBS element
has been estimated using the best methodology from the data
collected, the estimating team adds all WBS costs together to
determine the program’s point estimate. This “point estimate”
represents the best guess at the cost estimate, given the
underlying data and represents one potential cost among a range
of many possibilities. To validate the estimate, the team reviews it
for errors as well as any omissions and compares it to an
independent cost estimate to understand where and why there are
any differences.
Step 8: Conduct sensitivity analysis
The team examines the effect of changing one assumption or
variable at a time while holding all other estimate inputs constant in
order to understand which factors most affect the cost estimate so
that cost drivers are evident.

Sensitivity analysis should be performed after the initial point
estimate has been developed and then updated whenever the
point estimate is refined to determine if there are any changes to
the estimate’s cost drivers and what impact those changes have
on the overall cost estimate.

Step 9: Conduct a risk and uncertainty analysis
Using a risk and uncertainty analysis, the team quantifies the
cumulative effect that uncertain data inputs, changing
assumptions, and variations underlying estimating equations have
on the estimate. Based on probabilities produced from the
analysis, the team determines a range of costs associated with the
point estimate so that management can decide how much
contingency funding it needs to mitigate potential risks.

Risk and uncertainty analysis should be conducted to better
understand the risk range around the cost estimate due to
variations in estimating assumptions such as sizing metrics,
velocity, number of iterations, and labor rates. This analysis
should be repeated after major updates to the cost estimate.

Step 10: Document the estimate
The team documents its entire estimating process including what
assumptions, data sources, and methodologies it used. The
documentation should reflect sufficient detail so that someone
unfamiliar with the program can easily recreate the estimate and
get the same result.

Documentation of the cost estimate should be updated regularly
following the same cadence that the Agile program has
established for updating other program management documents
such as the vision, road map, and product backlog.

Chapter 7: Agile and Program Monitoring and
Control

Page 133 GAO-20-590G GAO Agile Assessment Guide

12-Step estimating process step and definition Agile environment and the GAO cost estimating process
Step 11: Present the estimate to management for approval
The team presents management with an overview of the estimate
that contains enough information about the basis for the estimate
including the quality of the program definition, availability and
reliability of the data, and key assumptions made. The
presentation should also include the outcome of the risk and
uncertainty analysis so that management can approve the
estimate at a confidence level of its choice.

Management should review and sign off on the estimate and its
underlying ground rules and assumptions before any major
program reviews (as established and required by the
organization) so that the most recent and applicable information
is available to inform decisions. Management should review and
approve the presentation to show their understanding of the
documented assumptions.

Step 12: Update the estimate to reflect actual costs/changes
The team continually replaces the original estimate with actual
data and records reasons for variances and any lessons learned.
The team refreshes the estimate on a regular basis using EVM
information and updates the estimate to reflect major changes.

The estimate should be updated with information taken from
Agile artifacts and measures (e.g., burn up/down charts, velocity,
actual vs. planned work, changes in requirements, program risk
assessments, etc.) at predetermined times that align with the
program’s Agile cadence. While new data is created and should
be captured in each iteration, it is recommended that the cost
estimate be updated before any major milestone decision in order
to provide the most recent information to decision makers. For
example, if the program plans to negotiate a new development
contract, the estimate should be updated to help provide
information for the contract negotiation process.

Source: GAO. | GAO-20-590G

These 12 steps are tied to four best characteristics of a high-quality,
reliable cost estimate. These four characteristics, used to determine how
reliable a cost estimate is, also apply to Agile programs with some unique
considerations, as discussed here.

Well documented: The cost estimate should be clearly documented,
showing step-by-step how the estimate was constructed so that a person
unfamiliar with the program could, from the documentation alone,
reconstruct the cost estimate. Once the teams have been determined,
cost estimates for Agile programs tend to be straightforward, with the
number of iterations needed to work off the product backlog being based
on relative sizing methods such as assumed function points or story
points, and dividing the total number in the backlog by an average team-
specific velocity factor.

Comprehensive: An Agile cost estimate should reflect all effort contained
in the product backlog and each item in the product backlog should be
directly linked to value-based high-level requirements captured in the
program vision and road map. Ideally, all of the lower-level items that are
defined in the release or the iteration are hierarchically linked to the
product vision. A product-oriented WBS consisting of epics, features, user
stories, and other supporting items should provide a consistent framework
for the cost estimate, the schedule, and the EVM system.

https://www.gao.gov/products/GAO-20-590G

Chapter 7: Agile and Program Monitoring and
Control

Page 134 GAO-20-590G GAO Agile Assessment Guide

Accurate: Historical data from other software programs should be used
as input to the initial point estimate. Additionally, Agile cost estimates
should be developed in constant year dollars and appropriately time-
phased to account for inflation, updated frequently as more information
becomes available or a new contract is awarded, and provide
documentation for any variances between planned and actual costs in
order to develop lessons learned to better inform future estimates.

Credible: Agile cost estimates are credible when input (e.g., the assumed
number of iterations, velocity, etc.) has been tested for sensitivity, and a
confidence level for the point estimate has been determined based on risk
and uncertainty analysis, cross checked by cost estimators using another
estimating method, and compared to an independent cost estimate with
similar results. These analyses can provide insight, whether extra
iterations or additional resources are needed to deliver the must have
features identified by stakeholders and customers.

Table 12 shows GAO’s characteristics of a reliable cost estimate and
examples of Agile measures that can be used to ensure that the Agile
cost estimate meets GAO’s characteristics of a reliable cost estimate.

Table 12: Characteristics of a Reliable Cost Estimate and Agile Measures

Characteristic Examples of Agile measures and documentation
Well-
documented

· Release notes that discuss what features and enhancements are included in that release, any known defects,
and a summary of the spend plan.

· Iteration commitments based on number of story points or other unit of measure used by the developers
· Contracted labor rates.
· Number and composition of teams developing software.
· Program documentation that is updated regularly. For example, a plan that captures technical changes to the

system, a process plan that outlines the business rules and workflow for the program, a quality assurance plan,
a cybersecurity plan, etc.

· Retrospective reports that discuss lessons learned and highlight features where more attention is needed in
future releases.

· Release planning session executive briefings showing changes made to the road map during the planning
session.

Comprehensive · Road map and prioritized backlog that indicate must have features to be developed with input from
stakeholders and subject matter experts.

· Road map or vision aligned with program requirements (e.g., a Statement of Objectives or Statement of Work).
· Schedule reflecting all activities the organization, its contractors, and others need to perform to deliver the must

have requirements.
· Prioritized backlog consisting of epics, features, and stories.
· Backlog queues and unfinished work and any defects, listed in priority order.
· Relative sizing estimates and assumed velocity, number of iterations, and blended labor rate.

Chapter 7: Agile and Program Monitoring and
Control

Page 135 GAO-20-590G GAO Agile Assessment Guide

Characteristic Examples of Agile measures and documentation
Accurate · The road map and vision documents are used to time phase the estimate to properly account for inflation.

· The estimate should be updated using actual data from the burn up/down charts so that decisions impacting the
budget can be based on the most recent information.

· After the estimate has been updated, retrospective and release planning executive briefings should discuss
variances between planned and actual costs to provide lessons learned for future estimates.

Credible · Customer feedback from retrospective to provide insight into risks and priority of requirements.
· Retrospective and release planning executive briefings should discuss threats and opportunities, including team

size, management support to avoid distractions, availability of tools to aid Agile efforts, and external
dependencies.

· Daily standup meetings and other techniques used to mitigate threats and take advantage of opportunities for
the program.

Source: GAO. | GAO-20-590G

Considerations for developing a cost estimate
for an Agile program
Since Agile programs have flexible requirements and fixed budgets for an
iteration, some have argued that conventional performance management
tools, such as life cycle cost estimating, are not applicable to Agile
programs. Those arguments are made because Agile programs have
structures and processes that are dynamic and iterative and spread
planning activities throughout the program’s duration instead of
conducting extensive planning upfront, as in traditional program
development. However, as previously mentioned, reliable cost estimates
are still applicable as all federal programs must follow the federal
budgeting process. In addition, program controls provide necessary
oversight that legislators, government officials, and the public can use to
observe whether government programs are achieving their goals. The
following are three areas should be examined for Agile programs when
developing a cost estimate:

· Consistent sizing. Developers typically rely on relative estimation
methods to determine the software size. However, these methods are
not consistent across different Agile programs, or even across
different teams working on the same Agile program. Consistent sizing
is a key data quality consideration for reliable cost estimates.

· Expertise of the developers. The cost estimate is dependent on the
expertise of the developers.

· Cost estimating benefits. Since Agile programs have fixed costs, the
benefits of developing and updating an Agile program’s cost estimate
may not be recognized as important by technical personnel.

https://www.gao.gov/products/GAO-20-590G

Chapter 7: Agile and Program Monitoring and
Control

Page 136 GAO-20-590G GAO Agile Assessment Guide

Next, we discuss estimating issues and provide examples of how to apply
traditional cost estimating concepts to an Agile program.

Consistent sizing

While relative estimation methods, as discussed in chapter 3, are typically
used by developers throughout the estimating process, these methods
can vary from team to team on a single Agile program and do not provide
a consistent measure that can be used to develop a cost estimate. This
lack of consistency creates a challenge for cost estimators to normalize
the data received from the program’s reporting metrics (e.g., the burn
up/down charts).

However, traditional size metrics can be used with Agile relative
estimating metrics. Each sizing metric can serve a unique purpose for an
Agile program. For example, developers use relative estimating
techniques to determine how many story points to accomplish in an
iteration. After a release, estimators can use a traditional sizing technique
to establish the size of the effort and productivity rate achieved for the
features developed in that release. Then, the cost estimators work with
the developers to understand how the features relate to the traditional
sizing metrics. While traditional sizing metrics would not eliminate the
challenges associated with the initial program estimate, data collected
could help cost estimators refine the initial estimate with respect to the
remaining requirements. This could also help establish an Agile program
database based on traditional sizing metrics, to be used to help the
government program office develop initial cost estimates for future Agile
programs.

Table 13 provides an overview of the different measurement techniques
used by developers and cost estimators.

Table 13: Comparison of Consistent Sizing and Relative Sizing

Cost estimating team:
consistent sizing

Developers:
relative estimating

Purpose To develop a life cycle cost estimate for the
program.

To scale the size of work to assist in iteration and
release planning.

Strengths Provides a method that can be used across
programs and teams to measure work. From this,
cost estimates can be developed and databases
can be started to provide a basis to estimate
future programs.

Is performed by the team performing the work at a
granular level to increase the accuracy of the
estimate.

Chapter 7: Agile and Program Monitoring and
Control

Page 137 GAO-20-590G GAO Agile Assessment Guide

Cost estimating team:
consistent sizing

Developers:
relative estimating

Limitations Using consistent sizing is typically performed at a
higher level and requires insight into the
program’s scope, complexity, and interactions.

Relative estimating is team-dependent so
measures cannot be used for comparison
between programs or even different teams on the
same program. Additionally, it is also performed
later in the life cycle so it cannot be used at the
start of the program.

Examples Source lines of code, function points. Story points, t-shirt sizing.

Source: GAO. | GAO-20-590G

Choosing a consistent sizing method depends on the software application
(purpose of the software and level of reliability needed) and the available
information. Cost estimators should work with the developers to
determine the most appropriate method. Further, when completing a
software size estimate to develop a total program cost estimate, it is
preferable to use two different methodologies, if available, rather than
relying on a single approach.

Agile in Action 3: Sizing and estimating before Agile teams are
established

In March 2019 we met with the Department of Homeland Security’s Cost Analysis
Division to discuss how they piloted a simple function point analysis methodology to
estimate Agile software development costs for acquisition programs. According to
officials, this methodology uses the correlation of transactions to functional size, which
is known to be correlated to program cost. The Simple Function Point Association, an
international non-profit association dedicated to evolving and promoting Simple
Function Point methods, has published a measurement manual, examples of counting
in simple function points, and templates to facilitate the calculation of measurements.
The Cost Analysis Division used this measurement manual as the basis for elementary
process factors.

The Cost Analysis Division used a program’s concept of operations document as the
basis for determining the number of function points. The concept of operations is to
describe the functional capabilities of a program, including a comprehensive list of
business functions and a list of all applicable stakeholders. In addition, the Cost
Analysis Division decomposed the functional capabilities into three types of
transactions: elementary processes, saves, and interfaces.

Officials described the process used to develop a simplified function point estimate:
over a period of two to three days, one Cost Analysis Division analyst will review the
concept of operations and manually count the number of action verbs (e.g., “create,”
“submit,” “maintain,” “receive,” “respond,” “withdraw,” “register,” “appeal,” “cancel”).
Each verb is associated with a number of transactions. Each type of transaction is
weighted based on difficulty to develop, with elementary processes having the lowest
weight and interfaces having the highest weight. The analyst then estimates function
points by summing the weighted value of each transaction. After the count has been
completed, a second analyst will review the number. Once finalized, the Cost Analysis

https://www.gao.gov/products/GAO-20-590G

Chapter 7: Agile and Program Monitoring and
Control

Page 138 GAO-20-590G GAO Agile Assessment Guide

Division works with the Chief Technology Officer, Program Office, and Chief
Information Officer to validate the count.

After the function point count has been validated, the cost analysis division uses
historical data and industry standards to develop and apply a productivity factor to the
count along with other factors to account for growth, complexity, and uniqueness. The
function point count multiplied by the various factors results in a cost estimate. Lastly,
the Automated Cost Estimator tool of the ACEIT software suite is used to determine a
final risk adjusted output.

Because Agile considers high-level requirements in the long term as opposed to
knowing requirements up front, the Cost Analysis Division believed that using simple
function point analysis would give cost estimators a faster, reliable, repeatable process
for cost estimates and will allow program managers and oversight groups to track and
manage progress toward completion by tracking estimated function points.

Cost Analysis Division officials noted that the simple function point analysis
methodology still needs further research and refinement to properly calibrate the tool
they created and discover appropriate uncertainty distributions.

While traditional estimating methods can be used by the organization’s
program office to develop a cost estimate for an Agile program before
development begins, Agile development metrics can be used to refine a
program’s cost estimate. For example, Agile uses velocity as a measure
of productivity that captures the amount of work each team can deliver in
each iteration. Because velocity is a team-specific metric, it should not be
used to dictate how much work any team should complete in an iteration;
however, a team-specific velocity that is traceable in their Agile tool can
be used as an input for a cost estimate once development has begun.

No matter which sizing method is chosen, actual costs can vary widely
from the estimated costs. As a result any point estimate should be
accompanied by an estimated range of probability, as identified in step 9
of the GAO 12-step estimating process listed previously in this chapter.
This is especially important for initial program estimates that are used to
develop a budget.

Expertise of the developers

There is no generally recognized standard unit of measurement for any of
the common approaches to Agile estimation. That is, story points, user
stories, etc. are all subjective and dependent on the experience and skills
of the developers. As a result, cost estimators for Agile programs rely on
the composition and expertise of the developers. Therefore, to improve
the quality of the estimate, cost estimators should be integrated with the
developers and should participate in release planning sessions to

Chapter 7: Agile and Program Monitoring and
Control

Page 139 GAO-20-590G GAO Agile Assessment Guide

understand the relationship between the backlog and the developers’
relative estimating techniques so that they can further refine the total
program’s cost estimate.

In other words, Agile cost estimating requires a more iterative, integrated,
and collaborative approach. Traditional programs often treat cost analysis
as a separate activity, rather than as an integrated team endeavor. For an
Agile program a cost estimator should be co-located with the systems
engineers and developers as each release is scoped, developed, and
tested. This ongoing collaboration among the customers, developers,
systems engineers, cost estimators, and other stakeholders is critical to
ensure agreement on requirements prioritization in the backlog and to
gain a thorough understanding of the amount of effort required for each
release. It also enables an integrated assessment of the operational and
programmatic risks, technical performance, cost drivers, affordability, and
schedules.

Cost estimating benefits

Cost estimating for an Agile program can be challenging, especially for
teams new to Agile development.85 However, a reliable cost estimate can
provide benefits to an Agile program. For example, the cost estimate can
be used to support the government budgeting process and to help inform
management decisions.

Cost estimating techniques for an Agile program are similar to traditional
development programs, since the federal budgeting process requires an
estimate of the total cost of the program before it has been approved.
However, as discussed in the GAO Cost Guide, because cost estimates
predict future program costs, they are associated with uncertainty. This
level of uncertainty decreases over time as the program definition
increases for both Agile and traditional programs due to a better
understanding of the work and more insight into the programs’
productivity.

While a program can develop a rough order of magnitude cost estimate
early in its life cycle, it may be challenging to precisely understand costs

85As discussed in the GAO Cost Estimating and Assessment Guide: Best Practices for
Developing and Managing Program Costs, GAO-20-195G, there are many challenges to
estimating software costs. These challenges will apply to Agile programs, especially when
deriving an initial estimate for program initiation. See the GAO Cost Guide software
appendix for more information.

https://www.gao.gov/products/GAO-20-195G

Chapter 7: Agile and Program Monitoring and
Control

Page 140 GAO-20-590G GAO Agile Assessment Guide

or schedule until the teams have established a rhythm to their work. As a
result, cost estimating for an Agile program consists of an ongoing just in
time activity tightly integrated with the activities of the developers and
engineers. Moreover, the fidelity of the cost estimate increases once
teams have been established to help estimate the level of work for each
requirement, as described in chapter 5, and can further improve with
subsequent releases as the estimating team captures performance
productivity metrics for deployed releases. Furthermore, the 12-step cost
estimating process described earlier in this chapter provides a framework
that can be used to develop a reliable estimate and provide information
for use during negotiations and in justifying acquisition decisions.

Maintaining an integrated cost estimating effort throughout the course of
the program allows Agile programs to collect the data necessary to
estimate the requirements/features that fit within the program’s total
budget as it progresses. A budget may be fixed for a single iteration, but,
if the requirements are not completed at the end of an iteration,
management may need information to provide justification for additional
funds and a change in the schedule. Cost estimating can provide
managers with valuable information about the budget needed to maintain
a certain level of support.

Scheduling best practices in an Agile
environment
The GAO Schedule Assessment Guide (Schedule Guide) was developed
in 2015 to establish a consistent methodology based on best practices for
developing and maintaining high-quality schedules that forecast reliable
dates. The GAO Schedule Guide discusses 10 best practices that, when
followed, should result in a high quality, reliable schedule. These best
practices are part of a cyclical process where each best practice is one
step in that process.

These steps have been collapsed into four general characteristics for
sound schedule estimating: comprehensive, well-constructed, credible,
and controlled.

Just as in any other approach to program execution, developing and
executing a schedule for an Agile program is important because it
provides a focus on deadlines for specific goals and activities to ensure
that all required actions are (planned to be) completed. For example, it

Chapter 7: Agile and Program Monitoring and
Control

Page 141 GAO-20-590G GAO Agile Assessment Guide

identifies predecessor and successor relationships to ensure that
prerequisites are covered in planning for iterations and user stories, it
identifies timelines, and provides an estimate for the amount of time
required to complete various functions/activities.

While the Agile software development philosophy is different from that of
Waterfall development methods, the need for a high-quality program
schedule is still applicable to all federal programs. All programs need to
establish a schedule to be accountable for delivering a value-based
outcome. To that end, Agile programs should adhere to GAO’s
scheduling best practices to develop a schedule. The following narrative
describes the applicability and benefits of scheduling best practices for an
Agile software development program by identifying key documentation
differences between Agile and traditional scheduling and highlights key
considerations when scheduling an Agile program.

Agile measures and scheduling best practices
Agile methods provide many useful progress indicators to inform
management about the status of high-priority features. Many measures
used to manage Agile development programs can be evidence that the
program is meeting GAO’s scheduling best practices. These items can
aid in assessing the planning that program offices performed in
developing their schedule. Table 14 shows GAO’s ten scheduling best
practices, a description of each best practice in an Agile environment, and
examples of Agile measures that can be used to support the findings of
that best practice.

Table 14: 10-Step Schedule Estimating Best Practices and Agile Cadence Examples

Scheduling best practice
Agile environment and scheduling best
practices

Examples of Agile measures, artifacts,
and documentation

Step 1: Capturing all activities
The schedule should reflect all activities as
defined in the program’s work breakdown
structure (WBS), which defines in detail
the work necessary to accomplish a
program’s objectives, including activities
both the owner and contractor are to
perform.

During planning, the road map should be
prioritized with input from stakeholders and
subject matter experts. The schedule
should include epics and features from the
road map that are linked to the contract
statement of work, the backlog, and all
organization-specific tasks.

· Road map
· Prioritized backlog

Chapter 7: Agile and Program Monitoring and
Control

Page 142 GAO-20-590G GAO Agile Assessment Guide

Scheduling best practice
Agile environment and scheduling best
practices

Examples of Agile measures, artifacts,
and documentation

Step 2: Sequencing all activities
The schedule should be planned so that
critical program dates can be met. To do
this, activities need to be logically
sequenced—that is, listed in the order in
which they are to be carried out and joined
with logic.

The program schedule should reflect work
at the epic and feature levels. The order of
work should align with the prioritization
included in the road map and iteration
backlog. Additionally, any key
dependencies between features should be
identified, where applicable.

· Kanban board (or similar)
· Government work/oversight
· Road map
· Prioritized backlog

Step 3: Assigning resources to all
activities
The schedule should reflect the resources
(labor, materials, overhead) needed to do
the work, whether they will be available
when needed, and any funding or time
constraints.

During release planning, each team
member should assess his or her
availability for development activities with
respect to other commitments (e.g.,
vacations, holidays, etc.). Additionally,
these assessments should account for
team facilitator and other subject matter
experts that could be needed to complete
the planned work.

· Kanban board (or similar)
· Team calendars

Step 4: Establishing the duration of all
activities
The schedule should realistically reflect
how long each activity will take. Durations
should be reasonably short and
meaningful and allow for discrete progress
measurement.

Durations are time boxed in Agile, which
makes each release a consistent duration
in the schedule. However, since
requirements can fluctuate, it is important to
track what work has been accomplished for
each release in the schedule (see best
practice #9 for more information).

· Prioritized backlog
· Release plans
· Road map

Step 5: Verifying the schedule can be
traced horizontally and vertically
The schedule should be horizontally
traceable, meaning that it should link
products and outcomes associated with
other sequenced activities. The schedule
should also be vertically traceable—that is,
varying levels of activities and supporting
sub-activities can be traced.

To be horizontally traceable, the program
schedule should include the sequenced
plan for developing all epics and features,
along with all dependency information.
To be vertically traceable, the program
schedule should align with the Agile road
map, prioritized backlog, and burn up/down
charts.

· Road map
· Releases included in program

schedule
· Prioritized backlog
· Kanban board (or similar)
· Burnup/down charts

Step 6: Confirming that the critical path
is valid
The schedule should have a valid critical
path—this path defines the program’s
earliest completion or minimum duration.
The critical path should be the path of
longest duration through the sequence of
activities.

In the schedule, critical path management
should be performed at the epic and feature
levels, since Agile software development
could impact the critical path with non-Agile
software development tasks. For an Agile
program, the critical path is managed
during iteration planning and daily standup
meetings.

· Epics and features sequenced
according to the road map

Step 7: Ensuring reasonable total float
The schedule should identify reasonable
float (or slack), which represents an
estimate of the overall flexibility of the
program.

Float is tracked at the epic and feature
levels.

· Burnup/down charts

Chapter 7: Agile and Program Monitoring and
Control

Page 143 GAO-20-590G GAO Agile Assessment Guide

Scheduling best practice
Agile environment and scheduling best
practices

Examples of Agile measures, artifacts,
and documentation

Step 8: Conducting a schedule risk
analysis
A schedule risk analysis uses a good
critical path method schedule and data
about program schedule risks to predict
the level of confidence in meeting a
program’s completion date.

As mentioned, even though iterations are
time boxed, a schedule risk analysis can
help provide a confidence level to the
schedule’s end date to determine if
additional resources need to be added to
deliver all must have features. To do this,
risk ranges should be applied to all
assumptions, including the number of
iterations needed and the team velocity
measures. Risk analysis also helps identify
threats and opportunities (e.g., team size,
management support, availability of tools,
etc.) facing the program. Additionally,
iteration planning sessions provide valuable
information on particular risks that could
impact the delivery of must have features
that can be used to inform the risk analysis.

· Iteration 0 planning
· Iteration planning sessions
· Retrospectives
· Assumptions regarding the number of

iterations, story points, and velocity

Step 9: Updating the schedule using
actual progress and logic
Progress updates and logic provide a
realistic forecast of start and completion
dates for program activities.

In Agile programs, feature development
progress is updated at the end of each
iteration and the cumulative results for all of
the features and epics are displayed
through burn up/down charts. Quantifiable
back-up data regarding the completion of
user stories should inform feature progress.
Additionally, retrospectives are conducted
to capture lessons learned at the end of
each release to reduce future risks, improve
customer commitment, and motivate teams.
Demonstrations of working software
determine stakeholder and customer
satisfaction. Finally, daily standup meetings
are conducted to check feature
development status during iterations and
any impediments the team is encountering.
If the program requires more time to finish
the epics and features, then the schedule
should be extended to reflect this delay.

· Epics and features are included in
program schedule

· Prioritized backlog
· Burnup/down charts
· Retrospective summaries

Step 10: Maintaining a baseline
schedule
A baseline schedule is the basis for
managing the program scope, the time
period for accomplishing it, and the
required resources. The baseline schedule
is designated the target schedule.

The road map and release plans become
the baseline from which to measure
schedule variances. Demonstrations of
working software determine stakeholder
and customer satisfaction. Additionally,
retrospectives are conducted to capture
lessons learned at the end of each release
to reduce future risks, improve customer
commitment, and motivate teams.

· Iteration planning sessions
· Prioritized backlog
· Releases plans and reports
· Retrospective reports

Source: GAO. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Chapter 7: Agile and Program Monitoring and
Control

Page 144 GAO-20-590G GAO Agile Assessment Guide

Considerations for scheduling an Agile program
Since an Agile program consists of time boxed units with a fixed
schedule, some have argued that conventional performance management
tools, such as an integrated program schedule, should not be applied to
an Agile program. Those arguments are made because Agile programs
have structures and processes that are dynamic and iterative and spread
planning activities throughout the program duration, compared to the
traditional methods where extensive planning is performed upfront.
However, we explore the following five areas in more detail to further
encourage the use of high-quality, reliable schedules to help manage
program risk:

· Planning for all activities
· Minimize the use of schedule constraints
· Assign resources
· Conduct a schedule risk analysis
· Develop and use a schedule baseline

The following discusses these issues and provide examples on how to
apply these scheduling concepts to an Agile program.

Planning for all activities

While Agile emphasizes that only near-term work is planned in detail
(e.g., the next iteration), programs need to define their overall goal in a
vision and plan the releases needed to satisfy the vision. The detailed
plan is subject to change, but the vision provides a high-level view and
direction for the work to be accomplished for the entire program.
Additionally, while the team self-organizes its own work, it must be
cognizant of dependencies with other teams, related Agile and non-Agile
programs, and equipment.

An integrated master schedule or similar artifact that includes Agile
software development efforts should capture all the planned features
needed to accomplish the program goals at an appropriate level of detail
using rolling wave planning. This schedule should include all government
and contractor activities. Developing an integrated master schedule for
the whole program provides a comprehensive, end-to-end view of all the
features necessary to accomplish the program’s goals. Including features

Chapter 7: Agile and Program Monitoring and
Control

Page 145 GAO-20-590G GAO Agile Assessment Guide

enhances the utility of the schedule as a coordination and communication
tool and allows for better performance tracking and measurement. For
example, additional information in the schedule helps to ensure that it can
serve as the summary, intermediate, and detailed schedule. Including
high-level features in the schedule is also a foundational best practice for
most other scheduling best practices, because if the schedule does not
contain planning for all the features for the duration of the program, it will
lack horizontal and vertical traceability, a valid critical path will not exist,
and the schedule’s risk analysis will not be valid.

Minimize the use of schedule constraints

A common approach in Agile software development is to develop and
deliver working software in fixed-length iterations, typically 2-4 weeks in
length. Constraints may appear to provide a straightforward way to model
the fixed start and end dates of iterations; however, using constraints
reduces the utility of the schedule as a coordination tool among Agile
teams, management, and other resources. The value of this coordination
is highlighted by several effective practices for applying Agile methods on
federal IT programs, such as effectively involving experts and other
resources, addressing requirements related to security and progress
monitoring, and identifying and addressing impediments at the
organization level as well as within the program.86

Additionally, removing constraints from the schedule end dates allows the
schedule to supplement the duration planning information included in
other Agile tools for tracking. By managing teams to observe what work is
scheduled to occur after milestones are set during early Agile planning,
program managers can make key decisions (e.g., whether more
resources are needed to complete the work in the set time frame or if
those requirements can be completed after the Agile deadline).

Using constraints only when necessary and justified in the schedule
documentation helps to ensure that planned dates in the schedule can
respond dynamically to changes. Minimizing constraints increases the
ability to meet other best practices as well, because constraints can make
resource allocations unrealistic, reduce horizontal traceability, and make it

86GAO, Software Development: Effective Practices and Federal Challenges in Applying
Agile Methods, GAO-12-681 (Washington, D.C.: July 27, 2012).

https://www.gao.gov/products/GAO-12-681

Chapter 7: Agile and Program Monitoring and
Control

Page 146 GAO-20-590G GAO Agile Assessment Guide

difficult to track the scope represented by giver/receiver milestones,
produce an invalid critical path and result in inaccurate float calculations.

Assign resources

Because Agile emphasizes stable and self-organizing teams, one might
think that resources (e.g., the developers) do not need to be explicitly
assigned and managed. However, many activities require interfacing with
resources outside of the program, such as activities involving subject
matter experts and non-labor resources. Agile emphasizes working at a
sustainable pace, including resources in the schedule can help ensure
this occurs by providing insight into developers’ availability and when
additional equipment is needed.

Furthermore, the amount of available resources affects estimates of work
and duration, so the schedule should include the labor and non-labor
resources needed to accomplish the work. The level of detail used in
assigning resources should be commensurate with the level of detail of
activities in the schedule. For example, as more information is known
about the program, additional resources, such as automated testing tools,
could be identified for purchase in order to increase the productivity rate.
Among other things, assigning resources helps ensure that the schedule
is a useful tool for coordinating among resources so they are available
when needed, that schedule estimates are valid, and that the schedule
risk analysis provides a full understanding of schedule risk.

Conduct a schedule risk analysis

Agile self-organizing teams and iterative processes can be viewed as
ways to mitigate risk in complex software programs. Accordingly, some
might argue that conducting a schedule risk analysis is unnecessary.
However, all programs face risk and uncertainty and the likelihood and
consequences of each risk should be examined. For Agile programs,
effective practices include developing initial plans at a high level and
updating frequently as more is learned about the program. Further, the
potential impact of some issues, such as technical debt or team size,
should be considered earlier rather than later.

A schedule risk analysis should be conducted throughout an Agile
program’s iterative process to identify the risks, paths, and activities most
likely to delay it and to serve as a basis for determining schedule risk
contingencies or other mitigating measures. If time or resources are

Chapter 7: Agile and Program Monitoring and
Control

Page 147 GAO-20-590G GAO Agile Assessment Guide

insufficient to conduct a schedule risk analysis for the full program or the
level of detail is unclear because of rolling wave planning, the analysis
should be performed on a summary version of the schedule. Additionally,
as Agile emphasizes trading off scope in order to meet a fixed completion
date, potential delays or opportunities and mitigating contingencies
should also be considered in terms of fixed time boxes aligned with the
program’s cadence (e.g., number of iterations) and what desired scope
(e.g., user stories in the prioritized backlog) may be affected or re-
prioritized. Lastly, the schedule risk analysis should consider the risks that
are most likely to delay a program. For an Agile program, this could
include risks affecting team performance, such as team size or the
availability and feasibility of tools and practices necessary to achieve the
team’s goals. For example, a commonly accepted Agile practice is the
use of continuous integration to automatically run unit and integration
tests every time code is checked in. This greatly increases the speed of
testing and provides instant feedback on code quality, so if the team
plans to use continuous integration but is not provided the resources to
implement it, the program would likely not be able to meet all the
requirements in the time allotted.

Develop and use a schedule baseline

A central tenet of Agile is to welcome change. As a result, teams practice
rolling wave planning, in which only near-term work is planned in detail.
However, welcoming change does not mean that software is developed
and delivered in an undisciplined or ad hoc manner. Agile’s priority to
deliver software in iterations, typically in time boxed iterations of 2-4
weeks, is guided by the program’s vision, which establishes a high-level
definition of the cost, schedule, and scope goals for the program and
provides a basis for specifying expected outcomes for each iteration.
These critical features identify the program’s schedule baseline and thus
allows product owners to reprioritize work in accordance with the vision at
the end of each iteration.

In creating the baseline using the rolling wave planning process, updates
should contain enough detail to enable a collaborative agreement
between product owners and developers without making schedule
updates overly frequent or cumbersome. As the schedule is updated,
changes should be documented in progress records and the schedule
narrative. For example, this could include using data from the completed
backlog and burn up/down charts. Schedule trends should be used to
identify deviations from the baseline and to understand the need for

Chapter 7: Agile and Program Monitoring and
Control

Page 148 GAO-20-590G GAO Agile Assessment Guide

changes. Developing and using a schedule baseline provides a good
basis for measuring and understanding progress and maintaining
accountability.

Earned value management best practices in an
Agile environment
The goal of any software development process should be to maximize the
flow of value to the customer. One method frequently used in the federal
government to measure the value of work accomplished is earned value
management (EVM), which can alert program managers to potential
problems sooner than they might be discovered if only tracking
expenditures. In fact, EVM is often required for programs once they reach
a certain threshold.

There are other methods besides EVM that can be used to track
performance for Agile programs; however, effective performance
management practices should still be in place, regardless of the
development paradigm. For example, volume 1 of the DOD section 809
Report states that the program manager should approve the appropriate
program monitoring and control methods, which may include EVM.87 The
report states that these methods should provide faith in the quality of the
data and, at a minimum, track schedule, cost, and estimate at completion.
It adds that program managers should select the appropriate resources
for their toolkit based on program characteristics. For example, an Agile
programs should use real-time tools designed to track and monitor Agile
software development. In other words, for EVM to work with Agile,
program office staff must tailor EVM to integrate into the overall program
management approach.

The GAO Cost Estimating and Assessment Guide methodology for
developing, managing, and evaluating cost estimates is based on best
practices across the federal government. It also outlines 13 activities that
are fundamental to the earned value management process.

1. Define the scope of effort with a work breakdown structure.

87Section 809 Panel, Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations, Volume 1 of 3, section 4: “Earned Value Management for
Software Programs Using Agile”, (Arlington, VA: January 2018).

Chapter 7: Agile and Program Monitoring and
Control

Page 149 GAO-20-590G GAO Agile Assessment Guide

2. Identify who in the organization will perform the work.
3. Schedule the work to a timeline.
4. Estimate the resources and authorize budgets.
5. Determine objective measure of earned value.
6. Develop the performance measurement baseline.
7. Execute the work plan and record all costs.
8. Analyze earned value management performance data and record

variances from the performance measurement baseline plan.
9. Forecast estimates-at-complete using earned value management.
10. Conduct an integrated cost-schedule risk analysis.
11. Compare estimates-at-complete from earned value management

(step 9) with estimates-at-complete from risk analysis (step 10).
12. Take management action to respond to risks.
13. Update the performance measurement baseline as changes occur.

To evaluate the consistency of an organization’s EVM system, GAO
identified three characteristics of a high-quality, reliable earned value
management system that can be used to determine the overall quality of
that EVM system. Table 15 displays the characteristics and best practices
identified in the GAO Cost Estimating and Assessment Guide.

Table 15: GAO Earned Value Management Best Practices

Characteristic Best practice
Comprehensive: a comprehensive earned value
management system is in place

The program has a certified earned value management (EVM) system
An integrated baseline review verified that the baseline budget and schedule
capture the entire scope of work, risks were understood, and available and
planned resources were adequate
The schedule reflects the work breakdown structure, the logical sequencing
of activities, and the necessary resources
EVM system surveillance is being performed

Accurate: the data resulting from the earned value
management system are reliable

EVM system data do not contain anomalies
EVM system data are consistent among various reporting formats
Estimates-at-complete are realistic

Informative: the program management team is using
earned value management system data for decision-
making purposes

EVM system data are reviewed on a regular basis
Management uses EVM system data to develop corrective action plans
The performance measurement baseline is updated to reflect changes

Source: GAO. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Chapter 7: Agile and Program Monitoring and
Control

Page 150 GAO-20-590G GAO Agile Assessment Guide

The GAO Cost Guide also describes key benefits of using EVM. These
include improving insight into program performance, reducing cycle time
to product delivery, focusing management attention on the most critical
issues, fostering accountability, and providing objective information for
measuring progress. While Agile approaches should reduce program
technical risks through early delivery, EVM can provide additional insight
into the relationship between scope, cost, and schedule and this
integrated data can be used to better inform management decisions.

Agile measures and Earned Value
Management
According to the Federal Acquisition Regulation (FAR), an EVM system is
required for major acquisitions for development, in accordance with OMB
Circular A-11. The FAR also states that the government can require EVM
systems for other acquisitions, in accordance with agency procedures.
For example, the Department of Defense requires compliance with EVM
guidelines for cost or incentive contracts greater than or equal to $20
million.88 However, just as EVM is not applied to all traditional programs, it
should not necessarily be applied to small Agile programs. The amount of
effort implementing EVM on small programs may pose unnecessary costs
for little value in return. However, in contrast it can be implemented on
medium and large Agile programs. Table 16 shows the 13 activities of an
EVM system implementation and execution with examples of how a
program can meet each of the steps for an Agile program.

Table 16: 13 Earned Value Management Activities and Agile Examples

EVM Activity Agile environment example
Activity 1: Define the scope of effort with a work
breakdown structure

The work breakdown structure should be based on the prioritized
backlog; however, the work breakdown structure should not extend
below the feature level. Lower levels, such as user stories, should not be
in the work breakdown structure, but metrics from these levels provide
quantifiable backup data for measuring performance at the feature level
and higher.

Activity 2: Identify who in the organization will perform the
work

As in conventional programs, work assignments should be consolidated
at the level of a control account manager. This is often done during
iteration and release planning sessions and tracked in Agile program
management tools.

88DOD Instruction 5000.02T, table 9 (Jan. 7, 2015, incorporating change 6, Jan. 23, 2020).

Chapter 7: Agile and Program Monitoring and
Control

Page 151 GAO-20-590G GAO Agile Assessment Guide

EVM Activity Agile environment example
Activity 3: Schedule the work to a timeline The schedule should be based on the product road map, which shows a

plan for epic and feature development across releases.
Activity 4: Estimate resources and authorize budgets Features should be the basis for identifying work package scope and

budget.
Activity 5: Determine objective measures of earned value Progress should be tied to the completion of scope and not the

completion of time boxed events. The technique used for taking credit
for performance should be documented. Additional information on
measuring earned value is described in this step.

Activity 6: Develop the performance measurement
baseline

The performance measurement baseline should be based on the work
breakdown structure and the integrated master schedule and be
traceable to the product road map. The smallest building block for the
performance measurement baseline is at the control account level where
each control account is based on a feature or group of features.

Activity 7: Execute the work plan and record all costs The level at which effort is converted into cost in the performance
measurement baseline should be defined and traceable to Agile metrics
captured by the program. These metrics can vary from program to
program, but some common ones to consider tracking are the iteration
burn down chart, cycle time, and cumulative flow diagram.

Activity 8: Analyze EVM performance data and record
variances from the performance measurement baseline

Variances should be determined at the work package level within each
control account based on quantifiable backup data that supports each
associated feature. For example, an iteration burn up chart can show
what work that was planned was not accomplished during the iteration.
Further, release retrospectives can highlight impediments that occurred
during a release and highlight whether feature development is on track
according to the road map developed at the beginning of the release.

Activity 9: Forecast estimates-at-complete using EVM Metrics generated from Agile tools can typically be used to forecast
estimates-at-complete. Adding the completed work and the remaining
work divided by an efficiency factor yields an estimate-at-complete. The
efficiency factor is calculated by dividing the completed work by the
effort used to perform that work.

Activity 10: Conduct an integrated cost-schedule risk
analysis

Similar to a cost risk/uncertainty analysis and schedule risk analysis, an
integrated cost-schedule risk analysis can be completed by developing
risk distributions around Agile-specific metrics to provide a range around
the program’s cost and schedule related to the total number of
requirements in the prioritized backlog.

Activity 11: Compare estimates-at-complete from EVM
(step 9) with estimates-at-complete from risk analysis (step
10)

These two steps should be performed for Agile programs as they are for
other programs.

Activity 12: Take management action to respond to risks
Activity 13: Update the performance measurement
baseline as changes occur

Activities in the product backlog and road map at the feature level should
have an assigned budget that is under baseline control. Changes to the
backlog at this level should be documented and should occur in
accordance with baseline change processes. Any changes that occur
can be documented and reviewed by management in release
retrospective notes.

Source: GAO analysis of data from DOD, National Defense Industrial Association’s Integrated Program Management Division, and GAO. | GAO-20-590G

Rework, such as developers modifying or revising existing code to
improve performance, efficiency, readability, or simplicity without affecting

https://www.gao.gov/products/GAO-20-590G

Chapter 7: Agile and Program Monitoring and
Control

Page 152 GAO-20-590G GAO Agile Assessment Guide

functionality, may be needed for program completion. Agile programs
should include adequate budget and schedule for rework in the
performance measurement baseline and integrated master schedule so
these will also appear in EVM. Some programs may assign rework to a
separate planning package from the original task. Alternatively,
adjustments to earned value can reflect that specific features were not
completed or that rework is occurring.

Some Agile programs are required to provide EVM reporting based on
guidance and established reporting thresholds. These data can assist the
program manager in providing oversight officials with vital program
performance information. Much of the data already associated with
implementing Agile can be used to support EVM reporting, so providing
EVM reporting does not have to be an overly time consuming task.

Ultimately, EVM is effective for Agile programs when it is integrated with
technical performance and EVM processes are augmented with a
rigorous systems engineering process. The following is an example of
how one program supported by existing Agile metrics reported to the
Office of Management and Budget.

Agile in Action 4: Performance reporting requirements

In February 2018, we met with The National Nuclear Security Administration’s (NNSA)
Generation 2 (G2) to discuss how they meet the Office of Management and Budget’s
(OMB) Capital Planning and Investment Control (CPIC) reporting requirements for
major IT Investments. Officials said that they worked closely with OMB and NNSA
senior management to meet the program’s CPIC reporting requirements to align the
program’s Agile methods. For example, officials said that G2 defines “project” as a
program increment (e.g., 14 weeks comprised of seven two-week iterations).

However, because CPIC’s project reporting structure did not align with G2’s Agile
cadence or contractors’ cost reporting requirements, officials said that reporting cost
and schedule variances for CPIC reports posed a challenge to G2. As a result, the
program developed a repeatable and transparent way to proportion their cost and Agile
cadence to the CPIC reporting structure. To determine the prorated project cost of a
program increment within a month, G2 calculates the number of days for the program
increment in a month compared to the total days and proportion it has to the actual
effort charged for the whole program. Since the activities are time boxed with variable
scope, there is no schedule variance.

Officials said that, although this allows G2 to follow CPIC reporting requirements,
resulting variances may be misleading and require further explanation. For example,
G2 provided the following rationale for a cost variance in its August 2019 CPIC monthly
report: “Project/activity PI12 completed on schedule and finished with a positive 3%
financial variance as previously projected.”

Chapter 7: Agile and Program Monitoring and
Control

Page 153 GAO-20-590G GAO Agile Assessment Guide

CPIC reporting also requires a documented risk register. Officials said that, while G2
addresses high-level risks through a traditional risk register, the program primarily
addresses risk through activities (e.g., release planning and retrospectives) as part of
using the Agile methodology. For CPIC reporting, risk actions are typically reported at a
high level, tying updates to formal risk reviews for each program increment in the
reporting period.

Traditional programs analyze and review EVM data on a monthly basis so
that problems can be addressed as soon as they occur and cost and
schedule overruns can be avoided. Then, using the EVM data, managers
assess cost and schedule performance trends. When cost and schedule
are not fixed for a program, EVM data shows a negative cost variance if
the program will be over budget and a negative schedule variance if the
program is behind schedule.

Agile programs use alternative methods to track risk in combination with a
flexible scope and fixed cost and schedule; however, EVM concepts can
provide managers with important insights since, for government
programs, scope is flexible for an iteration or release, but is not
necessarily flexible for the program as a whole. To highlight this
difference, instead of monthly reports that show projected cost or
schedule variances, reports could be included as part of a release
retrospective summary that show, along with other metrics familiar to
Agile practitioners, what the estimated cost and schedule overruns are for
the program if it completes all work in the backlog. Figure 12 shows a
how to visualize EVM tracking for traditional and Agile methods.

Chapter 7: Agile and Program Monitoring and
Control

Page 154 GAO-20-590G GAO Agile Assessment Guide

Figure 12: Traditional and Agile Earned Value Management Tracking Methods

Figure 12 shows that, for an Agile program, it might be appropriate to
view a “cut off” point, where based on the current budget and schedule,

Chapter 7: Agile and Program Monitoring and
Control

Page 155 GAO-20-590G GAO Agile Assessment Guide

which features can be accomplished. The figure shows that this project
will be able to accomplish releases A and B, but not release C.

Considerations for applying earned value
management to an Agile program
Since Agile differs from Waterfall development with respect to its
treatment of requirements, some say that conventional performance
management tools, such as those for EVM, should not be applied to Agile
programs. Those arguments are made because Agile programs have
structures and processes that are dynamic and iterative and spread
planning activities throughout the program duration, whereas traditional
methods perform extensive upfront planning. However, EVM can be a
valuable performance management tool that decision makers can use to
see how the program is progressing compared to its initial plan. The
following areas should be examined for Agile programs when using EVM:

· Tracking work breakdown structure detail
· Measuring earned value
· Calculating variances
· Controlling baseline changes

The following narrative will discuss these issues and the application of
traditional EVM concepts to an Agile program.

Tracking work breakdown structure detail

One of the major concerns with applying EVM to Agile programs is the
level of detail tracked in the work breakdown structure. As previously
discussed, the WBS used for EVM, like the one for the integrated master
schedule, should not track Agile data at the level of iterations or user
stories, but should be monitored at a higher level, including features and
epics. Given the dynamic nature of Agile, tracking at too low a level will
not yield valuable data because of the frequent changes made. However,
the Agile data at the iteration level (e.g., the prioritized backlog) should be
available for use as quantifiable backup data for the work tracked in the

Chapter 7: Agile and Program Monitoring and
Control

Page 156 GAO-20-590G GAO Agile Assessment Guide

EVM system.89 Figure 13 shows a hierarchy of Agile products, time boxed
elements, the relationships among them, how they relate to the EVM
system, and the different levels where EVM data are tracked along with
where Agile metrics can be used to provide quantifiable backup data.

Figure 13: Comparison of Traditional and Agile EVM Products

aOne or more sized epics define the scope for the control accounts.
bOne or more features define the scope for the work packages.
cA feature consists of multiple user stories. Multiple features are implemented in each release.
dA user story is a small, well-defined system function that can be developed within one iteration.
Multiple user stories are implemented in each iteration.

89Quantifiable backup data is information that is used to gauge the progress of a capability
based on the technical completion of each feature, which, in turn, is based on the
accomplishment of the feature’s acceptance criteria.

Chapter 7: Agile and Program Monitoring and
Control

Page 157 GAO-20-590G GAO Agile Assessment Guide

Other structures mapping EVM to Agile relationships can be developed,
but should be documented so that decision makers can easily observe
what the data collected means in relationship to the work to be
performed.

Measuring earned value

One way to establish EVM measures is to use the percent complete90

method at the feature level. For example, at the feature level, percent
complete is calculated based on the number of associated user stories
that have been completed and some measure of the user story’s weight,
using the 0/100 method91 to determine if a user story has been
completed. On completion, the full credit is taken for the user story. This
measure can be based on the number of story points. Figure 14 illustrates
this method of measuring earned value at the feature level.

Figure 14: Example of Measuring Earned Value for an Agile Feature

In this example, the feature contains user stories with a combined 16
story points. When the first user story is complete, the feature is 31

90In the percent complete method, performance is equal to the percent a task is complete.
Percent complete should be based on underlying quantifiable measures as much as
possible and be measured by the status of the resource-loaded schedule.

91In the 0/100 method, no performance is taken until a task has been finished. This aligns
with the Agile concept of user stories; only user stories that are 100% complete are
counted at the end of each iteration.

Chapter 7: Agile and Program Monitoring and
Control

Page 158 GAO-20-590G GAO Agile Assessment Guide

percent complete because five of the total 16 story points within the
feature have been completed.

Calculating variances

Since lower-level Agile requirements (captured in the prioritized backlog)
are updated frequently, calculating variances between completed work
and planned work can be difficult. However, every program (including
Agile programs) needs a method to measure performance. Meaningful
variances require measuring performance against a baseline. As noted,
the work breakdown structure should not extend below the feature level.
When the work breakdown structure is established at the feature level,
the variance would be calculated as follows:

· If a feature is planned to be completed in 100 hours, but it takes 200
hours to complete it, then the cost variance for that feature would be -
100 hours.

· If the feature is planned to occur over three iterations, but is not
complete until after four iterations, then the schedule variance for that
feature is -25%, or the length of one iteration.

A similar concern is calculating the program’s estimate-at-complete. In
general terms, an estimate-at-complete is computed as follows, where the
completed work represents the actual costs to date and the remaining
work is the budgeted cost of the remaining work.

The efficiency index is based on program performance to date. For Agile
programs, we can present the estimate at complete equation by replacing
cost and work with effort:

For a feature, effort could be measured in story points and the efficiency
index calculated as the ratio of total hours expended to total story points
for completed iterations for that feature. Estimated total effort for larger
elements, such as epics, could be calculated similarly, using story points
and hours expended; however, this requires the estimation of story points
to be consistent across the features that make up the epic. If different
teams have different story point estimation schemes, then the estimate-

Chapter 7: Agile and Program Monitoring and
Control

Page 159 GAO-20-590G GAO Agile Assessment Guide

at-complete will not be as accurate. In that case, it may be preferable to
use feature-level data to calculate estimated total effort for the epic that
comprises those features. A program level estimate-at-complete could be
composed of the sum of epic-level estimates at completion. Alternatively,
the program-level estimate-at-complete could also be calculated as
follows, where the velocity is the completed weighted user story value
across the program’s development teams divided by the total length of
iterations completed to date.

The remaining effort is the work remaining in the prioritized backlog and is
measured in story points. This formulation assumes that the development
teams have attained a stable velocity that will remain consistent through
the end of the program. These estimated effort equations can be easily
converted to estimated costs by replacing the completed effort with actual
costs to date and replacing the remaining effort with the budgeted costs
for the remaining backlog. That is, multiplying the effort hours by the
average labor rate will convert effort to cost.

Controlling baseline changes

As mentioned previously, in order to have the ability to measure program
performance, there must be a baseline to measure against. Accordingly,
a process should be established to manage baseline changes. The goal
of this process is to preserve the integrity of the performance baseline
and to ensure it reflects the most current plan so that credible
performance measurement can occur. This process creates reliable data
for management to rely on for making program decisions. Initially, it may
seem that a formal change process interferes with the flexibility of an
Agile program to reprioritize the backlog from iteration to iteration.
However, a properly designed change process will not restrict the Agile
process while also maintaining a credible baseline.

The following three examples are of possible baseline changes.92

· If a feature was originally planned for the current release and then
moved to a future release, then the associated baseline change action

92Derived from the National Defense Industrial Association’s Integrated Program
Management Division, An Industry Practice Guide for Agile on Earned Value Management
Programs, (Arlington, VA: May 26, 2019).

Chapter 7: Agile and Program Monitoring and
Control

Page 160 GAO-20-590G GAO Agile Assessment Guide

would be to re-plan the feature into the future release and the
associated user stories would be returned to the backlog.

· If a feature is worked on during the current release, but not finished,
then the unfinished user stories are moved to the next release. In
most cases, this move does not constitute a baseline change;
however, failure to finish the feature within the planned release will
create a schedule variance and could possibly create a cost variance.

· If a feature is worked on during the current release, but the product
owner removes scope from the feature or associated epic, this would
necessitate a baseline change. The feature should be finished with
the reduced scope. Any budget associated with the eliminated scope
should be removed from that feature and reassigned.

Best Practices Checklist: Agile and Program
Monitoring and Control
Detailed best practice checklists are found in the companion guides; the
GAO Cost Estimating and Assessment Guide (GAO-20-195G) and the
GAO Schedule Assessment Guide (GAO-16-89G).

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Chapter 8: Agile Metrics

Page 161 GAO-20-590G GAO Agile Assessment Guide

Chapter 8: Agile Metrics
GAO has consistently emphasized the need for organizations to collect
and use data about program performance to help inform and measure
organization operations and results.93 Performance information can be
measured at various stages of software development and at different
levels of an organization. Such information can be used to, among other
things, identify problems and take corrective actions, develop strategies
and allocate resources, recognize and reward performance, and identify
and share effective approaches. Accordingly, regardless of their preferred
Agile development framework, organizations and programs should
establish an appropriate set of metrics and associated processes to use
to measure their performance goals early in the development cycle. In
keeping with the Agile Manifesto, Agile metrics should be geared toward
measuring outcomes and meeting customer needs.

Organizations can use the following best practices to help them develop
meaningful metrics.94

· Identify key metrics based on the program’s Agile framework.
· Ensure metrics align with and prioritize organization-wide goals and

objectives.
· Establish and validate metrics early and align with incentives.
· Establish management commitment.
· Commit to data-driven decision making.
· Communicate performance information frequently and efficiently.

93For example, see GAO, Managing for Results: Government-wide Actions Needed to
Improve Agencies’ Use of Performance Information in Decision Making, GAO-18-609SP
(Washington, D.C.; Sept. 5, 2018); Managing for Results: Further Progress Made in
Implementing the GPRA Modernization Act, but Additional Actions Needed to Address
Pressing Governance Challenges, GAO-17-775 (Washington, D.C.: Sept. 29, 2017);
Government Performance: Lessons Learned for the Next Administration on Using
Performance Information to Improve Results, GAO-08-1026T (Washington, D.C.: July 24,
2008); and The Government Performance and Results Act:1997 Government-wide
Implementation Will be Uneven, GAO/GGD-97-109 (Washington, D.C.: June 2, 1997).

94Programs are unique, as are the needs of organizations where they operate. For these
reasons, organizations are in a position to establish the appropriate thresholds and
guardrails associated with performance metrics.

https://www.gao.gov/products/GAO-18-609SP
https://www.gao.gov/products/GAO-17-775
https://www.gao.gov/products/GAO-08-1026T
https://www.gao.gov/products/GAO/GGD-97-109

Chapter 8: Agile Metrics

Page 162 GAO-20-590G GAO Agile Assessment Guide

Figure 15 shows an overview of these best practices to develop
meaningful metrics and table 17 following the figure summarizes the best
practices.

Figure 15: Overview of Agile Metrics Best Practices

Chapter 8: Agile Metrics

Page 163 GAO-20-590G GAO Agile Assessment Guide

Table 17: Summary of Agile Metrics Best Practices

Agile metrics best practice Summary
Identify key metrics based on the program’s Agile
framework

· Metrics should be tailored based on a program’s needs.
· Different metrics are important for technical management, program

management, and Agile methods.
· Metrics should be tailored based on the intended audience.

Ensure metrics align with and prioritize organization-
wide goals and objectives

· Connections between strategic goals and objectives should be traceable
to Agile artifacts such as the road map and backlog.

· Metrics facilitate feedback and communication between internal and
external customers.

Establish and validate metrics early and align with
incentives

· Metrics should motivate desired behaviors and emphasize a greater
focus on results for the team rather than the individual.

· Metrics can be used to measure team performance, product quality and
performance, and the team’s adherence to Agile development best
practices.

Establish management commitment · Management should ensure that the processes for measuring
performance are established, reflect an Agile approach, and are used
consistently over time.

· Management must be committed to balance periodic program-wide
health assessments with monitoring progress made to deploy
capabilities.

Commit to data-driven decision making · Metrics are designed to support specific decisions that need to be made
at different levels of the organization.

· Performance goals should be assessed frequently to match the Agile
development cadence.

· Metrics for performance monitoring should be identified in the contract.
· Metrics should be captured using automated tools, whenever possible.

Communicate performance information frequently and
efficiently

· Agile program management and software development tools are used to
capture and display Agile metrics in real time.

Source: GAO. | GAO-20-590G

Identify key metrics based on the program’s
Agile framework
Each software development program should select and tailor its metrics
according to the program’s chosen Agile framework. Additionally, different
types of software development will need a tailored approach. For
example, customizing commercial software requires a different approach
than developing custom software for specialized hardware. Metrics
should also be transparent. For example, the program has a clearly
stated goal or objective with a metric that clearly conveys to the Agile
team what data to gather and to the customer what the metric means.

https://www.gao.gov/products/GAO-20-590G

Chapter 8: Agile Metrics

Page 164 GAO-20-590G GAO Agile Assessment Guide

General categories of metrics include:

· Technical management (e.g., testing and integration)
· Program management (e.g., cost, schedule, and performance)
· Agile methods (e.g., collaboration or continuous improvement)

In addition to the general categories of metrics, there are different metrics
for the organization, program, and team levels.

In designing performance metrics, organizations should ensure that the
metrics have the key attributes of a successful metric. Specifically,
metrics should be quantifiable, meaningful (e.g., have targets for tracking
progress, be clearly defined, and be linked to organization priorities),
repeatable and consistent, and actionable (e.g., be able to be used to
make decisions). We have previously reported on the importance of
ensuring that metrics reflect these attributes.95 Without meaningful, clear,
and actionable metrics, management will not have the information they
need to evaluate program performance.

In addition, Agile developers and managers should tailor metrics to their
intended audience. For example, developers should convey meaningful
information that addresses customers specifically. Some metrics may be
powerful measures for the team to evaluate its performance, but they may
not be of interest to the customer and do not need to be shared with
them, while others may address specific customer questions. If a program
is not aligning metrics with customer questions, they may not need the
data to evaluate program performance.

Although the set of metrics used to measure program performance can
vary for different programs, metrics such as lead and cycle time are
frequently used for all Agile programs. Lead time measures how long it
takes to move from the identification of a capability or feature to when that
capability or feature is to be released into the production environment.
Cycle time is the time it takes from starting to work on a feature to getting
it into production.

Other frequently-used metrics include how often a feature is delivered
and its value. Value can be determined by measuring specific benefits

95See, for example, Information Security: Concerted Effort Needed to Improve Federal
Performance Measures, GAO-09-617 (Washington, D.C.; Sept. 14, 2009).

https://www.gao.gov/products/GAO-09-617

Chapter 8: Agile Metrics

Page 165 GAO-20-590G GAO Agile Assessment Guide

derived from that feature, such as increased productivity, or measuring
the use of a new feature delivered to a customer.

Case study 13: Identify key metrics based on Agile framework,
from Immigration Benefits System, GAO-16-467

In July 2016, GAO reported that the U.S. Citizenship and Immigration Services
(USCIS) Electronic Immigration System (ELIS), the case management component of
the Transformation Program, partially met the key Agile practice of monitoring and
reporting on program performance through the collection of reliable metrics. GAO
found some metrics were reliable and addressed their intended purpose. For example,
the program provided evidence of collecting reliable metrics associated with code
quality. However, other metrics were either unreliable or were not collected. For
example, the program did not monitor internal USCIS user satisfaction with USCIS
ELIS. Therefore, it could not measure the level of satisfaction of adjudicators or others
using the system to facilitate the processing of applications.

GAO reported that USCIS ELIS calculated production defect/incident metrics,
automated code scanning results, code issue counts, and code development metrics to
gauge the quality of code delivered during a sprint. These metrics were included as
part of a monthly status report and used for high-level planning. The results of
measurements associated with these metrics identified underlying challenges the
program was facing with product quality. For example, production metrics showed that
the rate in which issues (e.g., defects, incidents, bugs) were found exceeded the rate
the issues could be closed. Such metrics may indicate a quality issue somewhere in
the development process; however, the use of the metrics allows the program to
identify such concerns and take steps to address them.

GAO also determined that USCIS ELIS did not measure internal user satisfaction.
Officials from the Quality Assurance Team (USCIS staff responsible for the collection of
program metrics) stated that they monitored issues raised by adjudicators and
adjudicator representatives during program reviews and retrospectives. Further, the
Chief of the Capability Delivery Division stated that the operational test agent obtained
internal user feedback on USCIS ELIS. However, the Chief of the Office of
Transformation Coordination explained that incident management (e.g., reporting
defects or issues by the field and service centers) and operational test agent reports
were not proven to be a useful tool for obtaining internal user feedback. As such, the
Chief stated that the Office of Transformation Coordination was developing a method
for capturing internal user satisfaction. Program officials did not elaborate on the steps
the program was planning to take to collect internal user satisfaction or provide a time
frame for collecting such metrics. By not establishing metrics to obtain user feedback,
GAO reported that the program limited its understanding of the value being delivered
with each software release.

GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 15, 2016).

A cumulative flow diagram is an analytical tool that allows teams to
visualize their effort and program’s progress. The graph is built from
different colored bands representing different tasks and shows how tasks

https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 166 GAO-20-590G GAO Agile Assessment Guide

mount up over time and their distribution along the stages of the process.
Ideally, the cumulative flow diagram will show the bands rising evenly,
except for the completed tasks, which should be getting taller. Figure 16
contains an example of a cumulative flow diagram. It shows five phases:
ready to start, in progress, in testing, ready for approval, and remaining to
be done. This example shows that there is no bottleneck as work ready to
deploy expands over time.

Figure 16: Example of a Cumulative Flow Diagram

Lead time measures the time required for a feature in the backlog to
move into production. Cycle time reports the time after work starts on a
story before its goes into production. Development teams strive for lead
and cycle times to be short.

Ensure metrics align with organizationwide
goals and objectives
Aligning program metrics with organization-wide goals and objectives
reinforces the connection between long-term strategic goals and day-to-

Chapter 8: Agile Metrics

Page 167 GAO-20-590G GAO Agile Assessment Guide

day activities. We previously reported that organizations that have
successfully adopted performance metrics ensured that the metrics were
tied to program goals and demonstrated the degree to which the desired
results were achieved, limited the metrics to a few that were considered
essential for producing data for decision making, covered multiple
priorities, and provided useful information for decision making.96 In an
Agile methodology, these connections should be traced from the road
map through releases and items in the prioritized backlog, such as in the
epics and user stories. If the metrics do not allow traceability from the
road map through the releases and prioritized backlog, the organization
may not have the right information to make decisions about prioritization
and potential re-planning.

An organization should also define and organize the goals, objectives,
and performance information that are appropriate to the managerial
responsibilities and controls at each level of the organization. An
organized structure will increase the usefulness of performance
information collected by decision makers at each level by helping to
ensure that metrics are aligned with management goals. Further, this
alignment will reinforce the connection between strategic goals and the
day-to-day activities of the development team. In addition to providing
insights to the development team, Agile metrics can be tailored to convey
the developers’ progress and achievements to internal and external
customers. This can facilitate feedback and communication between both
entities.

Establish and validate metrics early and align
with incentives
Early in the process, the Agile team should establish and validate the
appropriate metrics to ensure they are in place to use to monitor and
evaluate the team from the beginning. These metrics should be aligned
with incentives for the team and be monitored at the organization,
program, and team levels. Incentives will help ensure that the teams are

96GAO, Managing for Results: Enhancing Agency Use of Performance Information for
Management Decision Making, GAO-05-927 (Washington, D.C.: Sept. 9, 2005);
Information Security: Concerted Effort Needed to Improve Federal Performance
Measures, GAO-09-617 (Washington, D.C.: Sept. 14, 2009); and Managing for Results:
Government-wide Actions Needed to Improve Agencies’ Use of Performance Information
in Decision Making, GAO-18-609SP (Washington, D.C.: Sept. 5, 2018).

https://www.gao.gov/products/GAO-05-927
https://www.gao.gov/products/GAO-09-617
https://www.gao.gov/products/GAO-18-609SP

Chapter 8: Agile Metrics

Page 168 GAO-20-590G GAO Agile Assessment Guide

appropriately rewarded for achieving the desired goals.97 If metrics are
not aligned with incentives, then the teams may not feel appropriately
rewarded for achieving program goals.

Having incentives is particularly important in an Agile environment, as
reward and incentive structures are based on team, rather than individual,
accomplishments. At the same time, the Agile team should make sure
that the value delivered by each metric exceeds the effort to collect the
data because if the effort to collect data to support a metric is too
extensive, the metric may not deliver enough value to justify its collection.

In addition to Waterfall development metrics, various Agile frameworks
are associated with metrics that can help determine the status of software
development efforts at the team level. Examples of these metrics include:

· velocity (volume of work accomplished in a specific period of time by a
given team)

· features or user stories delivered98

· number of defects or bugs
· cumulative flow
· customer satisfaction
· time required for full regression test
· time required to restore service after outage

For example, velocity is a metric that quantifies the work developers can
deliver in each iteration. Velocity is reported in story points and can be
captured using a type of chart called a burn up or burn down chart. A
team can use historical velocity data from a previous iteration as it plans
future work. Note that this metric is specific to a team and therefore
cannot be used for comparison across teams.

Other effective measures of team performance are the number of user
stories completed in an iteration and whether any were carried over to the
next iteration. Some metrics measure the flow of work over time through
the use of cumulative flow diagrams or by reporting the number of

97As mentioned in chapter 3, incentives may differ between government and contractor
staff due to contract requirements and forms of recognition available.

98A further elaboration of this metric may consider user stories or story points committed
versus user stories or story points accepted.

Chapter 8: Agile Metrics

Page 169 GAO-20-590G GAO Agile Assessment Guide

features delivered in each iteration or release. Other metrics are
associated with product quality and performance. An example of a metric
associated with product quality is the number of defects identified after
deploying a product into the production environment. Various tests at
different development stages also help ensure a quality product. A
program may also capture metrics that measure a team’s adherence to
Agile software development best practices. Some of these metrics are
described in chapter 6, which discusses the execution of contractual
obligations.

Agile in Action 5: Health radars

In October 2014, GAO met with Agile Transformation, a consulting company that offers
tools and coaching to Agile programs, to discuss the AgilityHealth® platform, which is a
tool for continuous measurement and growth platform used to provide companies
visibility into the performance and health of their program teams, product lines, and
portfolios. According to those interviewed, the assessments help evaluate maturity,
performance, and delivery of outcomes on an individual, team, program, or
organization level. One way to collect and review this data is through a “health radar”.
Each radar provides a comprehensive picture of a program and team over time and
can indicate whether an Agile implementation is progressing as planned.
Documentation provided shows that the radars are shaped like a wheel and delineate
metrics into three levels: key areas are labeled on the outer most edge and then are
divided into drivers in the second level and each driver is then divided into success
metrics. For example, one driver may be “Manage changing business priorities,” with
the following associated metrics: existence of single backlogs to manage work for each
portfolio/program/team; business customer engagement and ownership of managing
their backlog ranking; and continuous backlog refinement processes that manage the
addition, removal, re-ranking, slicing, or renaming of user stories. Each metric is
associated with a set of questions based on a maturity scale to be answered by Agile
team members. The result is an AgilityHealth radar score for that objective. The Agile
Transformation Program Office said that the assessment is typically performed at a
release retrospective, perhaps once a quarter. The meetings are facilitated by a
certified AgilityHealth facilitator, who explains the questions associated with each
metric and helps ensure the assessment is objective.

Agile Transformation said that teams can use the TeamHealth Assessment to review
its strengths, improvements, and impediments and then build a growth plan with the
most important areas it wants to improve in the next quarter. They showed us their
secure portal where these results are benchmarked against the results of other teams
and industry for comparison. AgilityHealth’s assessments are one tool that can be used
to provide Agile programs a consistent way to measure health and performance of
teams, product lines, and portfolios, and a holistic view for how the program is
performing.

Chapter 8: Agile Metrics

Page 170 GAO-20-590G GAO Agile Assessment Guide

Establish management commitment
The commitment of an organization’s managers to establishing effective
performance metrics and using performance information to inform
program decisions is critical to program success. Management should
ensure that the processes for measuring performance are established
and used consistently over time, including establishing procedures,
monitoring the establishment and use of performance metrics, and taking
the necessary corrective actions. Management should also perform
health assessments to ensure that adequate resources, including people,
funding, and tools are provided so performance management and
evaluation activities can be implemented appropriately at various levels.
Management can also issue guidance or procedures for programs using
Agile methodologies. Guidance or procedures can include the metrics
used to evaluate the program and help ensure that the necessary tools
are in place to support automation and Agile program management and
reporting.

Management commitment to using performance metrics is critical when
adopting and using performance information for program decisions and
evaluation. Managers demonstrating their willingness and ability to make
decisions and manage programs on the basis of results and inspiring
others to embrace such a model are important indicators of
management’s commitment. For example, if management determines
that a program is not achieving its intended results in a timely manner,
management should take steps to identify changes that will help the
program better achieve its intended results. If management does not
demonstrate a commitment to use performance metrics, others may not
embrace metrics as useful.

At an organization level, management should allow programs to tailor
metrics to ensure that they meet organization needs while also limiting
unnecessary work on the part of the program. For example, organizations
might consider calling for programs to establish a dashboard that can
provide management with real-time updates on a program’s progress and
success. Regardless of the tailored set of metrics used by a program,
organization management needs to have information to hold an Agile
program accountable.

Management must also be committed to balancing periodic program-wide
health assessments with monitoring the progress made in deploying
capabilities during each release. Agile cadence enables frequent, regular

Chapter 8: Agile Metrics

Page 171 GAO-20-590G GAO Agile Assessment Guide

performance review meetings to discuss progress made toward achieving
the desired results. Staff from different levels of the organization should
be involved in performance review meetings to assess a program’s
progress and results and to discuss any issues or concerns raised.
Involving staff from different levels helps to ensure that decisions can be
made efficiently with a view toward course correction if necessary. To
achieve this, the feedback loop needs to be short.

Case study 14: Frequent performance reviews, from TSA
Modernization, GAO-18-46

In October 2017, GAO reported that the Transportation Security Administration’s
Technology Infrastructure Modernization (TIM) program management office conducted
frequent and regular performance reviews. Specifically, program management officials
monitored TIM’s performance and progress during weekly program status review
meetings and in periodic Agile reviews that were conducted at the end of each release.
The program used an automated tool to track and maintain a complete list of all
corrective actions that had been identified and monitored these actions during weekly
program status reviews. The periodic Agile reviews included officials from the
development teams and program stakeholders. The reviews focused on, among other
things, velocity, progress, and product quality. They also included the status of key
activities and risks impacting cost, schedule, and performance. TSA had documented
processes for the program’s Agile milestone reviews, such as conducting workshops at
the end of the release cycle to perform a system demonstration, reviewing qualitative
metrics, and promoting continuous quality improvement.

However, GAO reported that, while the program management office used performance
metrics, the program had not established thresholds or targets for acceptable
performance levels for these metrics. Program officials said that they planned to
develop targets based on the capacity of work that development teams are expected to
complete in a release, but the program had developed three releases and continued to
lack performance thresholds and targets. GAO reported that until program officials
established performance thresholds and targets, oversight bodies may lack important
information to ensure the program is meeting acceptable performance levels.

GAO, TSA Modernization: Use of Sound Program Management and Oversight
Practices is Needed to Avoid Repeating Past Problems, GAO-18-46 (Washington,
D.C.: October 17, 2017).

Commit to datadriven decision making
An organization realizes the benefits of collecting performance
information when management commits to using the information to make
decisions aimed at improving results. Since the success of an Agile
software development program is measured in the value delivered to the
customer, metrics should be designed to support specific decisions that

https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-18-46

Chapter 8: Agile Metrics

Page 172 GAO-20-590G GAO Agile Assessment Guide

need to be made at different levels of the organization. There are many
dimensions of the software development program that inform how
valuable the software is to the customer and how efficiently the work is
being completed. Decision makers, developers, and customers need to
have insight into the people, processes, technology, quality, and cost,
schedule, and performance of the program to determine the value the
program is delivering. The actual metrics used to evaluate performance
depend on the specific circumstances of the program, such as type of
development program, the maturity of its Agile adoption, the program
team, and the size and complexity of the program. Metrics typically fall
into three categories: technical, performance measurement, and process
improvement.

Frequent assessment of performance goals across different program
dimensions allows management to determine whether Agile development
activities contribute to organization goals as planned. Furthermore, these
metrics reviews should match the cadence of the development process in
order to provide timely feedback or take the necessary corrective actions.
To help guide such reviews, organization or program management should
establish target values for critical metrics. For example, a program should
have established expectations for how long it should take from the time of
program launch to its deployment of minimum viable product (or base
functionality). Similar target values should have been established for
deploying high-priority functionality to production and fixing software bugs
found in production. Product quality and customer satisfaction should be
monitored throughout the development life cycle. Given the frequent
interaction with customers, changing priorities should be monitored as
well. If the metric review schedule does not match the cadence of the
development process, then management may not be able to provide
timely feedback to take the necessary corrective actions in order to
maximize the value of delivered software.

Much of the software development work conducted for the federal
government is conducted by contractors. With regard to monitoring
contractors’ performance, the requirements captured in the contract will
form the basis for performance monitoring. Examples of metrics could
include software size, development effort, schedule, requirements
definition and stability, staffing, progress, computer resource utilization,
and number of working capabilities delivered and in operation. Contracts
should be formulated in a way that allows flexibility for implementation
and, at the same time, provides meaningful information to decision
makers. If contracts are not formulated to capture the requirements to

Chapter 8: Agile Metrics

Page 173 GAO-20-590G GAO Agile Assessment Guide

align with Agile processes, decision makers may not have the meaningful
information they need to manage development.

With respect to overall program performance, a program may rely on
earned value management reporting generally applied to conventional
development efforts to gain insight into the costs associated with delaying
work or missing a milestone. More details on applying EVM to Agile
programs are provided in chapter 7. Additionally, a program may estimate
the cost of technical debt and time and effort necessary to repay the debt.
The program may also measure and monitor the frequency of releases as
well as product delivery and progress. Earned value management has
been used successfully to monitor progress in a variety of environments.
Nevertheless, some Agile practitioners may feel that EVM does not
capture the information that they seek to help manage their programs and
they prefer to rely on other metrics. Notably, teams rely on burn up and
burn down charts to communicate progress during iterations, and the
backlog across iterations and within releases to track and measure value.
As mentioned in chapter 7, a work breakdown structure tied to a
program’s Agile structure can help implement EVM reporting and ensure
the program collects metrics to measure overall program performance.
Without collecting metrics for overall program performance, organizations
will not have a good understanding of the cost and time required to
achieve a valuable product.

Further, metrics should be captured, to the greatest extent possible, by
automated tools already in use by a program, such as Agile program
management suites, version control systems, testing, or continuous
integration pipelines. Programs should use automated tools, as they
capture a variety of metrics that can be a starting point before additional
resources are committed to developing other metrics. Automated tools
and the availability of data may also enable programs to use advanced
analytics to determine their status. The data collected should be
evaluated for its completeness, comprehensiveness, and correctness to
ensure that it is suitable for its intended purpose. Otherwise data can
mislead decision makers instead of accurately informing them about the
program’s status.

Testing is an area where automated tools are critical for providing instant
feedback to developers. Automated testing can support unit and
regression testing, as well as static code analysis. An automated
approach to code testing can reveal defects early in the development
process. Our prior work has emphasized the importance of monitoring
and using data from automated testing to inform program decision

Chapter 8: Agile Metrics

Page 174 GAO-20-590G GAO Agile Assessment Guide

making.99 An absence of automated testing or an over-reliance on manual
testing can be an indicator of an organization that is still maturing in the
adoption of Agile practices. (See chapter 3.)

Data obtained from automated tools will not be sufficient to inform all
aspects of program performance. For example, data related to team
dynamics and other organization behaviors will also need to be captured
using tools other than those used in software development. Accordingly,
this data should be augmented with data from other sources, such as
periodic surveys or questionnaires, to provide a complete view. Without
data collected by using both automated tools and other data collection
processes, decision makers may not be able to determine if the program
is delivering its desired value and outcomes.

Communicate performance information
frequently and efficiently
Agile software development methods employ short delivery time frames
for deploying usable features to the customers. The short time frames
require that progress be tracked daily and be made visible to all
stakeholders at all levels of the organization to enable feedback as
quickly as possible. The relevance, reliability, and timeliness of metrics
help mitigate Agile adoption and program execution risks.

Agile program management and software development tools provide
capabilities for capturing and displaying key Agile metrics that can help
enable frequent and efficient communication of performance information.
These tools can greatly facilitate access to and dissemination of
performance metrics. Co-located teams can also display the information
using whiteboards or other means of visual communication that don’t rely
on software tools. These “information radiators”—highly visible and easily
accessible physical or electronic displays of information—can improve
communication of performance information among staff and stakeholders.
Such improvements in information dissemination can facilitate better use
of performance information.

99Because Agile operates differently from previous approaches, earned value
management applied to Agile programs leverages different artifacts to measure progress.
These are treated in more detail in chapter 7.

Chapter 8: Agile Metrics

Page 175 GAO-20-590G GAO Agile Assessment Guide

Frequently reporting performance information allows decision makers to
take action in a timely manner to make improvements or corrective
actions. For example, providing frequent data on the number of defects
found versus the number of defects addressed can help identify and
address issues that may be rooted in architectural or code-based
decisions. However, while performance information should be reported
frequently, it should also be reliable and traceable back to requirements
so that decision makers are aware of its value.

Case study 15: Reporting reliable metrics to management, from
Immigration Benefits System, GAO-16-467

In July 2016, GAO reported that the U.S. Citizenship and Immigration Services
(USCIS) Electronic Immigration System (ELIS), the case management component of
the Transformation Program, lacked traceability between its reporting and planning
metrics which miscommunicated performance to management. USCIS ELIS was
reporting the scope of each release in the form of sub-features to be delivered within
each release. The program identified the planned number of sub-features to be
developed in each release and updated this number to reflect the actual number of
sub-features developed. Based on review of the backlogs for releases 6.1, 6.2, and
7.1, GAO found the program had not fully documented if it was delivering the sub-
features it had intended to deliver in each release. The backlogs provided to GAO in
March 2016 included a field termed “traceability,” which mapped a user story to a
supporting sub-feature and/or feature. According to this field:

· Six of the nine sub-features were not developed or were not clearly traceable
to the backlog for release 6.1.

· The one sub-feature associated with release 6.2 was not developed or was
not clearly traceable to the backlog.

· Nineteen of the 28 sub-features were not developed or were not clearly
traceable to the backlog for release 7.1.

GAO reported that, in a written response, the Business Integration Division of the
Office of Transformation Coordination recognized issues in traceability of user stories
to sub-features. This division stated that the process that was used to verify the
number of sub-features implemented against planned was based on verbal
confirmation from the product owner. The division subsequently determined that this
process was not effective since it relied solely on the review of the user stories and was
not as exact and reliable as expected. As a result, the division stated that there could
be sub-features that were reported as implemented by the product owner but that
would not show any associated user stories because they were not directly mapped to
the sub-feature in the software management tool. The lack of traceability between
scope metrics reported by the program and the release backlogs indicated a level of
unreliability in reporting on scope. The continual need for additional effort after delivery
of a sub-feature raised additional concerns regarding the extent to which the program
had effectively forecasted future work in its cost and schedule projections. The division

https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 176 GAO-20-590G GAO Agile Assessment Guide

noted that requirements traceability is critical to avoid scope creep and to demonstrate
that the user stories implemented addressed mission needs.

GAO, Immigration Benefits System: U.S. Citizenship and Immigration Services Can
Improve Program Management, GAO-16-467 (Washington, D.C.: July 15, 2016).

Automated tools and dashboards with current information can be used to
provide real-time input into oversight and decision making. Under the right
circumstances, automated dashboards have the potential to help
management view data consistently across programs. For these tools to
be useful, the information displayed must be carefully reviewed. An
example of such a tool is a visible burn up or burn down chart; a tool to
track the progress to the program’s completion. In a burn up chart, the
horizontal axis represents time, while the vertical axis tracks progress
measured in story points. Burn-up charts show how past iterations reveal
cumulative story points completed since the beginning of the program. In
combination with the product vision and road map, such information can
inform management decisions about resources and funds by tracking the
progress of the development program.100 A burn up chart can track
progress for releases or iterations. Burn down charts can be used in a
similar fashion to help the team track progress toward requirements. After
analyzing historical data, the team can project minimum, average, and
maximum velocities to estimates when it will complete all the story points.

Similarly, developers can create dashboards for customers to encourage
feedback so the team can address issues and concerns early. Without
automated tools, management may not have access to data that allows
them to assess all programs consistently and quickly.

Best Practices Checklist: Agile Metrics
1. Identify key metrics based on the program’s Agile framework

· Metrics are tailored based on the program’s needs
· The metrics support their intended use:

· technical management
· program management
· Agile methods

100Another Agile tool—the burn down chart—represents the remaining work (on the
vertical axis) over time (on the horizontal axis).

https://www.gao.gov/products/GAO-16-467

Chapter 8: Agile Metrics

Page 177 GAO-20-590G GAO Agile Assessment Guide

· Metrics are tailored based on the intended audience
2. Ensure metrics align with and prioritize organization-wide goals and

objectives
· Connections between strategic goals and objectives are traceable

to Agile artifacts such as the road map and backlog
· Metrics facilitate feedback and communication between internal

and external customers
3. Establish and validate metrics early and align with incentives

· Metrics should motivate desired behaviors and emphasize a
greater focus on results for the team rather than the individual

· Metrics can be used to measure team performance, product
quality and performance, and the team’s adherence to Agile
development best practices

4. Establish management commitment
· Management has ensured that the processes for measuring

performance are established, reflect an Agile approach, and
consistently used over time

· Management is committed to balance periodic program-wide
health assessments with monitoring progress made to deploy
capabilities

5. Commit to data-driven decision making
· Metrics are designed to support specific decisions that need to be

made at different level of the organization
· Performance goals are frequently assessed to match the Agile

development cadence
· Metrics for performance monitoring are identified in the contract
· Metrics are captured using automated tools, whenever possible

6. Communicate performance information frequently and efficiently
· Agile program management and software development tools are

used to capture and display Agile metrics in real time

Appendix I: Scope and Methodology

Page 178 GAO-20-590G GAO Agile Assessment Guide

Appendix I: Scope and
Methodology
Our objective was to identify and describe Agile software development
practices, key challenges that agencies face in applying these practices,
and best practices for Agile adoption, execution, and program control and
monitoring. This guide provides a brief overview and background of Agile
software development practices and the challenges faced by federal
agencies as they acquire and manage IT systems and transition to and
manage Agile software development. In addition, the guide lays out some
of the risks to Agile adoption that face organizations, programs, or teams;
providing Agile adoption, execution, and control best practices. This guide
is not meant to encompass all aspects of software development or
program management.

To develop these best practices, we reviewed information from a variety
of sources related to Agile adoption and compiled a draft of leading
practices commonly mentioned across these different sources.1 We also
convened a working group of knowledgeable specialists that met with us
between August 2016 and August 2019 to review and discuss these best
practices. We established the composition of the working group by
contacting our cost and schedule working group members to identify
those specialists with Agile program management expertise. We also sent
letters of inquiry to both the General Services Administration and the
Chief Information Officer’s Council to identify additional specialists with
Agile technical expertise. The group expanded over time through referrals
from group members and inquiries to GAO throughout the course of our
audits on Agile programs.

1See, for example, Booz Allen Hamilton, Agile Playbook, Version 2.0 (Washington, D.C.:
June 2016); California Department of Technology, California Project Management Office,
Understanding Agile, Version 1.0 (California: Dec. 5, 2016); National Association of State
Chief Information Officers and Accenture, Agile IT Delivery: Imperatives for Government
Success (Washington, D.C.: 2017); Office of Management and Budget, U.S. Digital
Services, Playbook (version pulled on Dec. 22, 2017); TechFAR: Handbook for Procuring
Digital Services Using Agile Processes (version pulled on Mar. 8, 2018); Project
Management Institute, Inc. Agile Practice Guide, 2017; and Software Engineering
Institute, The Readiness & Fit Analysis: Is Your Organization Ready for Agile? (Pittsburgh,
PA: Apr. 2014). A complete list of references is included at the end of this guide.

Appendix I: Scope and Methodology

Page 179 GAO-20-590G GAO Agile Assessment Guide

The group met at GAO headquarters, both in person and via telephone,
three times a year. The meetings were open to all with interest and
technical expertise in Agile (e.g., developers), as well as program
managers and organization executives. Meeting members were from
government organizations, private companies, independent consultant
groups, trade industry groups, and academia from around the world.

Prior to each meeting, we sent an agenda to the working group mailing
list of approximately 400 knowledgeable specialists, and received
feedback and discussion on agenda items through in-person discussion,
telephone participants, and email. In-person, the meetings provided an
open forum for the working group and all discussion and opposing views
and were documented and archived. We used information from these
discussions and analysis of literature to inform the information in this
guide.

We identified best practices in the areas of Agile adoption, execution, and
program control and monitoring and best practices to establish Agile
metrics. For each set of best practices, we reviewed available information
and discussed practices and terminology with our working group of
knowledgeable specialists. We then developed draft Agile guide chapters
and asked the working group to review the chapters and provide
feedback, both during meetings and by email.

To develop this exposure draft, we asked for comments on sections of the
original draft and vetted each comment received on whether it was (1)
actionable, (2) within scope, (3) technically correct, and (4) feasible.
During development of the exposure draft we received and vetted 912
comments from our working group. We made appropriate changes
throughout the guide to reflect these comments.

To supplement the information included in the guide’s contents, we
presented case studies and Agile in action cases as examples. Case
studies were taken from GAO reports and highlight problems typically
associated with a specific Agile practice. These examples were chosen to
augment key points and lessons learned that are discussed in the guide.
Agile in Action excerpts feature practices adopted by programs and
organizations we interviewed that we believe illustrate Agile key practices
executed in an exemplary or innovative way. The difference between a
case study and an Agile in action example is that the Agile in action
examples are not based on published GAO reports, but rather our
research, interviews, and self-reporting entities. For more information on
case studies and Agile in action examples, see appendix VII.

Appendix I: Scope and Methodology

Page 180 GAO-20-590G GAO Agile Assessment Guide

Consistent with our methodology for best practice guides, this public
exposure draft is released for 12 months for input and feedback from all
who are interested. Please click on this link https://tell.gao.gov/agileguide
to provide us with comments on the Guide.

https://tell.gao.gov/agileguide

Appendix II: Key Terms

Page 181 GAO-20-590G GAO Agile Assessment Guide

Appendix II: Key Terms
The terms and definitions provided in this appendix are intended for this
guide. These terms can be both contextually and organizationally
dependent.

Acceptance criteria: These criteria by which a work item (usually a user
story) is judged to be successful or not; either “all or nothing”, it is “done”,
or “not done”. Acceptance criteria are developed to identify when the user
story has been completed and meet the preset standards for quality and
production readiness.

Acceptance testing: Formal testing conducted to determine whether or
not a user story satisfies its acceptance criteria in preparation for the
customer to accept or reject it.

Affinity estimation: An estimating technique used to quickly estimate for
release planning a large number of user stories and story points. It is
often used when a project has just started and has a backlog that has not
been estimated yet. It gives new programs an idea of how to scale user
stories and helps communicate that information to stakeholders. This is
related to a group estimation technique known as wide-band Delphi from
traditional planning.

Agile: An umbrella term for a variety of best practices in software
development. Agile software development supports the practice of shorter
software delivery. Specifically, Agile calls for the delivery of software
requirements in small and manageable predetermined increments based
on an “inspect and adapt” approach where the requirements change
frequently and software is released in increments. More a philosophy than
a methodology, Agile emphasizes early and continuous software delivery,
fast feedback cycles, rhythmic delivery cadence, the use of collaborative
teams, and measuring progress in terms of working software. There are
many specific methodologies that fall under this category, including
Scrum, eXtreme Programming, and Kanban.

Architecture: a set of values and practices that support the active
evolution of the planning, designing, and constructing of a system. The
approach evolves over time, while simultaneously supporting the needs of
current customers.

Appendix II: Key Terms

Page 182 GAO-20-590G GAO Agile Assessment Guide

· Enterprise architecture is the conceptual model of principles and
practices to guide organizations through the structure, operation,
information, process, and technology changes necessary to execute
and achieve their current and future strategies and objectives. These
practices use the various aspects of an enterprise to identify,
motivate, and achieve the necessary changes.

· Functional architecture is the infrastructure and road map used to
fully address the needs of the system in the present and in the future.

· System architecture is the conceptual model that defines the
structure, behavior, and views of a system, organized in a way that
supports reasoning for its structures and behaviors.

Backlog: The backlog is a list of features, user stories, and tasks to be
addressed by the team, program or portfolio and is ordered from the
highest priority to the lowest priority. A backlog includes both functional
and non-functional work, including technical team-generated user stories,
features, or epics. If new requirements or defects are discovered, they are
added to the backlog. A backlog can occur at varying levels; for example,
a product backlog is a high-level backlog that contains all the
requirements for the entire program, and an iteration backlog includes a
list of user stories intended for that iteration.

Backlog refinement: The process for keeping the backlog updated by
adding detail and revisiting the order and estimates assigned to work that
teams agree to be necessary. This allows details to emerge as
knowledge increases through feedback and learning cycles. This is also
called “backlog grooming.”

Business manager: A person who uses program management
techniques and Agile principles to deliver business value. This person is
responsible for removing impediments, stimulating empowerment,
collaboration and communication, and makes decisions that ensure a
sustainable pace.

Business sponsor: Owns the business case for a program and is
responsible for the business solution. The sponsor is usually the most
senior person on the program and typically allows the program to
progress without interference; generally only getting involved with
escalated issues.

Burn-down chart: A visual tool displaying progress via a simple line
chart representing the remaining work (vertical axis) over time (horizontal

Appendix II: Key Terms

Page 183 GAO-20-590G GAO Agile Assessment Guide

axis). It shows where the team stands regarding completing the tasks that
comprise the backlog items. Related to the burn-up chart, except burn-
down charts display remaining work instead of work accomplished.

Burn-up chart: A visual tool displaying progress via a simple line chart
representing work accomplished (vertical axis) over time (horizontal axis).
Burn-up charts are also typically used at the release and iteration levels.
They are related to the burn-down chart except they display
accomplished work instead of remaining work.

Cadence: The rhythm and predictability that a team enjoys by delivering
in consistent time boxes.

Capacity: The quantity of resources available to perform useful work.

Champion: Spreads Agile principles and continually makes adjustments
to Agile practices that suit the environment for successful outcomes. Their
goal is to assist with Agile adoption and transformation and influence
others, regarding the Agile process.

Coding standards: An agreed upon approach for programming style,
practices, and methods. Coding standards keep the code consistent and
comprehensible for the entire team to read and refactor. The concept is
that code that looks the same encourages collective ownership.

Collective code ownership: A software development principle
popularized by eXtreme Programming. Its principle is that all contributors
to a given codebase have access to and are jointly responsible for the
code in its entirety. Collective code ownership, as the name suggests, is
the explicit convention that “every” team member is not only allowed, but
has a positive duty, to make changes to “any” code file as necessary: to
complete a development task, to repair a defect, or to improve the code’s
overall structure.

Complexity point: Units of measure used to estimate development work
in terms of complexity but not effort.

Continuous delivery: Continuous delivery is one of the principles of the
Agile Manifesto. Continuous delivery builds on continuous integration by
taking the step of orchestrating multiple builds, coordinating different
levels of automated testing, and moving the code into a production
environment in a process that is as automated as possible.

Appendix II: Key Terms

Page 184 GAO-20-590G GAO Agile Assessment Guide

Continuous deployment: Continuous deployment builds on continuous
delivery and is a software delivery practice in which the release process is
fully automated in order to have changes promoted to the production
environment with little or no human intervention.

Continuous integration: Teams practicing continuous integration seek
two objectives: to minimize the duration and effort required by “each”
integration episode and to be able to deliver at any moment a product
version suitable for release. In practice, this dual objective requires an
integration procedure that is reproducible at the very least, and mostly
automated. This is achieved through version control tools, team policies
and conventions, and tools specifically designed to help achieve
continuous integration.

Could have: Refers to those features that are not critical for the program.
While these features have a higher priority than nice to have features,
they do not need to be delivered as part of the core capabilities. (See
also: should have, must have, and nice to have.)

Cross-functional team: A team that is made up of people who have a
mix skills and ability to define, build, and test ideas into a working product.

Customer: Synonymous with business sponsor because the customer is
ultimately the user of the solution. The customer is an integral part of the
development and has specific responsibilities depending on the Agile
methods used. The customer wants continuous improvement of products
and services.

Daily standup meeting: A brief, daily communication and planning forum
where the developers and other relevant stakeholders evaluate the health
and progress of the iteration. Attendees also discuss any impediments to
their planned progress.

Definition of done: A predefined set of criteria that must be met before a
work item is considered to be complete. This set of criteria serves as a
checklist that is used to check each work item for completeness and used
as the work item’s artifact.

DevOps: An extension of Agile that includes operations and all other
functions that support the application development life cycle to increase
efficiency, consistency, quality, and sustainability.

Appendix II: Key Terms

Page 185 GAO-20-590G GAO Agile Assessment Guide

Epic: A large user story that can span an entire release or multiple
releases. An epic is progressively refined into features and then into
smaller user stories that are at the appropriate level for daily work tasks
and are captured in the backlog. It is useful as a placeholder to keep track
of and prioritize larger ideas.

Evolutionary development: The evolutionary strategy develops a
system in builds, but differs from the incremental strategy in
acknowledging that the customer need is not fully understood and all
requirements cannot be defined up front. In this strategy, customer needs
and system requirements are partially defined up front, then are refined in
each succeeding build.

eXtreme programming (XP): A software development approach based
on the values of communication, simplicity, feedback, and respect. Some
of XP’s core practices are: test-driven development, refactoring, pair
programming, collective ownership, continuous integration, coding
standards, and sustainable pace.

Feature: A functional or non-functional distinguishing characteristic of a
system that, can be an enhancement to an existing system. Features are
a customer-understandable, customer-valued piece of functionality that
serves as a building block for prioritization, planning, estimation, and
reporting.

Framework: A collection of values, principles, practices, and rules that
form the foundation for development.

Function point: A unit of measure for functional size that looks at the
logical view of the software code accounting for external inputs, external
outputs, external inquiries, external interface files, and internal logical
files.

Integration testing: The phase in software testing in which individual
software modules are combined and tested as a group. It typically occurs
after unit testing and before validation or acceptance testing.
Organizations without continuous integration/continuous development
(CI/CD) need integration testing at the end of iterations, but those with
CI/CD do not.

Iteration: A predefined, time boxed and recurring period of time in which
working software is created. Instead of relying on extensive planning and
design, an iteration relies on rework informed by customer feedback.

Appendix II: Key Terms

Page 186 GAO-20-590G GAO Agile Assessment Guide

Kanban: The term “Kanban” is Japanese and derived from roots that
translate to “visual board”. Kanban’s focus is to optimize the throughput of
work by visualizing the flow of work through the process, limiting work in
progress, and explicitly identifying policies for the flow of work. Kanban
has distinct differences from other popular Agile methodologies, primarily
the fact that it is not based on time boxed iterations, but rather allows for
continuous prioritization and delivery of work.

Kanban board: Unlike a task board, the Kanban board is not reset at the
beginning of each iteration; its columns represent the different processing
states of a unit of value, which is generally (but not necessarily) equated
with a user story; each column may have associated with it a work-in-
progress limit. The priority is to clear current work-in-progress, and team
members will “swarm” to help those working on the item blocking the flow
of the work.

Kanban method: An approach to continuous improvement that relies on
visualizing the current system of work scheduling, managing flow as the
primary measure of performance, and whole-system optimization. As a
process improvement approach, it does not prescribe any particular
practices. Agile teams employing a Kanban method may deemphasize
the use of iterations, effort estimates and velocity as a primary measure
of progress; rely on measures of lead time or cycle time instead of
velocity; and replace the task board with a “Kanban board.”

Minimum viable product: The simplest version of a product that can be
released. A minimally viable product should have enough value that it is
still usable, demonstrates future benefit early on to retain customer buy
in, and provides a feedback loop to help guide future development.

MoSCoW: A prioritization technique used to reach a common
understanding with stakeholders on the importance placed on the delivery
of each requirement, it is also known as MoSCoW prioritization or
MoSCoW analysis. MoSCoW is an acronym for, must have features,
should have features, could have features, and will not have features.

Must haves: Those features that are critical for a program; these are the
features that must be delivered as part of the requirements. In addition to
must have features, there are also should have, could have, and nice to
have features.

Appendix II: Key Terms

Page 187 GAO-20-590G GAO Agile Assessment Guide

Nice to have: Those features that are not critical for the program’s
success. These are the features that are developed if there is enough
time or money to develop them.

Pair programming: Two developers working side-by-side to develop
code and how may frequently switch roles to complete tasks. This method
of programming provides a real-time code review, allowing one developer
to think ahead while the other thinks about the work at hand, and it
supports cross-training. The concept can also be extended to pair
designing and pair unit testing to provide real-time peer reviews. Pair
programming is a fundamental part of XP.

Peer inspections: A form of code review performed by a peer that
occurs after the code is complete to ensure consistency.

Product: A tangible item produced to create specific value to satisfy a
want or requirement.

Product owner: The “voice of the customer,” the person who is
accountable for ensuring business value is delivered by creating
customer-centric items (typically user stories), ordering them, and
maintaining them in the backlog. The product owner defines acceptance
criteria for user stories. In Scrum, the product owner is the sole
person/entity responsible for managing the backlog. The product owner’s
duties typically include clearly expressing the backlog items, prioritizing
the backlog items to reflect goals and missions, keeping the backlog
visible to all, optimizing the value of development work, ensuring that the
developers fully understand the backlog items, and deciding when a
feature is “done.” A product owner should be available to the team within
a reasonable time for both decision making and empowerment.

Program: The result of a development effort. In the context of this guide,
a program can also be called a project or can refer to multiple projects
managed as one program.

Quality attribute: A factor that specifies the degree of an attribute that
affects the quality that the system or software must possess, such as
performance, modifiability, or usability.

Refactoring: Refactoring involves modifying code to improve
performance, efficiency, readability, or simplicity without affecting
functionality. It is done after automated regression tests are written to
ensure that existing functionality has not actually been affected with the

Appendix II: Key Terms

Page 188 GAO-20-590G GAO Agile Assessment Guide

modifications. Generally considered part of the normal development
process, refactoring improves software longevity, adaptability, and
maintainability over time.

Regression testing: A type of software testing that verifies that software
that was previously developed and tested still performs correctly after it
was changed or interfaced with other software. These changes may
include software enhancements, patches, configuration changes, etc.
During regression testing, new software bugs or regressions may be
discovered.

Release: A planning segment of requirements (typically captured as
features or user stories in the backlog) that deploys needed capabilities.
The release is a time boxed event that consists of a set number of
iterations that are determined by the program. The release plan is where
different sets of usable functionality or products are scheduled to be
delivered to the customer.

Requirement: A condition or capability needed by a customer to solve a
problem or achieve an objective.

Requirements scrub: See backlog refinement.

Retrospective: A team meeting that occurs at the end of every iteration
to review lessons learned and to discuss how the team can improve the
process and team dynamics. The retrospective is an integral part of Agile
planning and process and product improvement; typically a retrospective
occurs at the end of every iteration or release. During each retrospective,
the team explores ways to improve how they communicate, collaborate,
problem solve, and resolve conflict in an effort to improve their own
performance.

Road map: A high level plan that outlines a set of releases and the
associated features. The road map is intended to be continuously revised
as the plan evolves. It can also be used in Waterfall development
programs, but typically a different term would be used. (See related terms
in appendix III.)

Scrum: Scrum is a framework for developing and sustaining complex
products. See appendix V for a brief description of Scrum and other Agile
methods.

Appendix II: Key Terms

Page 189 GAO-20-590G GAO Agile Assessment Guide

Should have: Those features that are not critical for a program and do
not need to be delivered as part of the requirements. However, these
features are higher priority than the could have or nice to have features
and could significantly improve the capability of the program.

Solution: Products, systems, or services delivered to the business
sponsor that provide value and achieve goals. A specific way of satisfying
one or more needs in a context.

Sprint: See Iteration.

Stakeholder: Anyone who has an interest in the program. Specifically,
parties that may be effected by a decision made by or about the program,
or that could influence the implementation of the program’s decisions.
Stakeholder engagement is a key part of corporate social responsibility
and for achieving the program’s vision. A group or individual with a
relationship to a program change, a program need, or the solution can be
considered a stakeholder.

Story board: A wall chart (or digital equivalent) with markers (cards,
sticky notes, etc.) used to track user stories’ progress for each iteration.
For example, the board may be divided into “to do”, “in progress”, “done”,
etc. and the movement of the markers across the board indicates a
particular user story’s progress. One goal of the story board may also be
to recognize the order and the dependencies of the user stories in
representing end-to-end functionality for the customer.

Story map: A visual technique to prioritize user stories by creating a
“map” of customers, their activities, and the user stories needed to
implement the required functionality.

Story point: A unit of measure for expressing the overall size of a user
story, feature, or other piece of work in the backlog. The number of story
points associated with a user story represents the complexity of the user
story relative to other user stories in the backlog. There is no set formula
for estimating the size of a user story, rather, a story point estimate is an
amalgamation of the amount of effort involved in developing the feature,
the complexity of developing it, and the risk inherent in it.

Sustainable pace: A management workload philosophy that is a part of
the XP Agile method. (See appendix V for a brief description of the XP
method.) It refers to a manageable, constant workload negotiated
between the team and management so that the team will not be

Appendix II: Key Terms

Page 190 GAO-20-590G GAO Agile Assessment Guide

overextended. Sustainable pace is crucial when using velocity to estimate
how much work a team is able to complete during an iteration.

Team facilitator: A person who has the explicit role of conducting a
meeting and provides indirect or unobtrusive assistance, guidance, and
supervision. Their primary focus is creating a process that helps the
group achieve the intent of the meeting and takes little part in the
discussions on the meeting’s topics.

Technical debt: The obligation that a software organization incurs when
it chooses a design or construction approach that is expedient in the short
term but increases complexity and is more costly in the long term.

Test driven development: A software development process that relies
on the repetition of a very short development cycle with unit testing. For
example, first the developer writes an (initially failing) automated test case
that defines a desired improvement or new function, then produces the
minimum amount of code to pass that test, and finally refactors the new
code to acceptable standards.

Theme: A group of user stories that share a common attribute, and for
convenience they are grouped together and may span programs. A
theme may be broken down into sub-themes, which are more likely to be
product-specific. They can be used to drive strategic alignment and
communicate a direction.

Time box: A time box is a previously agreed-upon period of time during
which a person or a team works steadily towards completing a product.
Rather than allow work to continue until the product is completed and
evaluating the time taken, the time box approach consists of stopping
work when the time limit is reached and evaluating what was
accomplished. For example, in Scrum, the daily scrum is a 15 minute time
boxed event. This means that the daily scrum should take up to, but no
longer than, 15 minutes to complete. Time boxed iterations are typically
associated with Scrum and XP.

Unit testing: Software testing in which individual units of source code,
sets of one or more computer program modules together with associated
control data, usage procedures, and operating procedures are tested to
determine whether they are fit for use. This is the smallest testable
increment in software development.

Appendix II: Key Terms

Page 191 GAO-20-590G GAO Agile Assessment Guide

User story: A high-level requirement definition written in everyday or
business language; it is a communication tool written by or for customers
to guide developers though it can also be written by developers to
express non-functional requirements such as security, performance, or
quality. User stories are not vehicles to capture complex system
requirements on their own. Rather, full system requirements consist of a
body of user stories. User stories are used in all levels of Agile planning
and execution. An individual user story captures the “who”, “what”, and
“why” of a requirement in a simple, concise way, and can be limited in
detail by what can be hand-written on a small paper notecard (also called
“story”).

Velocity: Velocity measures the amount of work a team can deliver each
iteration. Commonly, this is measured as story points accomplished per
iteration. For example, if a team completed 100 story points during an
iteration, the velocity for the team would be 100. Velocity is a team-
specific abstract metric and should not be compared across teams as a
measure of relative productivity.

Verification and validation testing: Independent procedures that are
used together for checking whether the program meets the requirements
and specifications; that is, that it fulfills its intended purpose.

Vision: The highest level of Agile planning, the purpose for the program
that is strategic in nature. The vision represents a shared understanding
of the mission and objectives, capability gaps, expected behavior, and
final outcomes to be addressed. The vision should be consistent over the
life of the program unless business needs change significantly.

Appendix III: Related Terms

Page 192 GAO-20-590G GAO Agile Assessment Guide

Appendix III: Related Terms
Agile terms can be specific to an individual program where they were
used; even within the same organization. Prior to an audit, it is imperative
that auditors understand the terms that each program uses. Table 18
highlights the terms that we have chosen to use in this guide and
synonyms that we found in use in Agile developments. This list is not all
inclusive, but intended to be a starting point to help bridge any
misunderstandings caused by using different terms.

Table 18: Terms Used In This Guide and Related Terms

Term used in this guide Related terms
Backlog Inventory, feature list
Backlog refinement Backlog grooming, backlog pruning
Daily stand up meeting Daily Scrum
Epic High-level requirement, theme
Feature Capability, requirement
Iteration Sprint
Kanban Enterprise services planning
Minimal viable product Minimally Sufficient Product, Minimal Marketable Feature
Must haves Key Performance Parameters
Program Project
Release Product Increment
Retrospective Lessons learned
Road map Project vision, vision statement, Acquisition Program Baseline, Integrated

Master Plan
Story board Task board, Kanban board, progress board, story map
Team facilitator Scrum master
Theme Related user stories
User story Story, product backlog item
Velocity Capacity

Source: GAO. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Appendix IV: Auditor’s Key Questions and
Effects

Page 193 GAO-20-590G GAO Agile Assessment Guide

Appendix IV: Auditor’s Key
Questions and Effects
At the beginning of an audit, auditors should collect documentation and
familiarize themselves with organizational, programmatic, and team
specific Agile practices. Once they are familiar with the data collected, the
following questions can be used as a starting place when reviewing Agile
practices. They are not intended to represent a comprehensive set of
questions that will be appropriate for every organization, program, or
team. Prior to interviewing or discussing these questions within an
organization, program, or team, we recommend that auditors discuss and
come to a consensus on common terminology. For each best practice,
this appendix also describes potential effects if organizations, programs,
or teams are not fully implementing a best practice.

Chapter 3: Agile Adoption Best Practices

Best practice: Team composition supports Agile
methods

Key considerations and questions
1. Agile teams are self-organizing

· How does the organization typically form teams?
· How did the team form (e.g., assigned by a manager, self-

selected by employees)?
· What is the team composition? Expertise mix?
· Do team members have cross-functional skills allowing them to

perform all of the work rather than a single specialty?
· Is the team integrated with the program office, and able to enlist

specialists such as designers, contract specialists, etc., as
needed?

· Are teams stable across iterations?

Appendix IV: Auditor’s Key Questions and
Effects

Page 194 GAO-20-590G GAO Agile Assessment Guide

· Is the team provided the latitude to collectively own the whole
product and decide how work will be accomplished?

· What allowances are made to ensure the team has adequate
resources and time to complete the work effectively?

· Are all team roles defined and filled with the appropriate
expertise?

2. The role of the product owner is defined to support Agile methods
· Has a product owner been identified? Is there one person who

serves as the product owner per team?
· Is the product owner responsible for working with one team or

multiple teams? If multiple, will this impact their availability to each
team?

· Is the product owner empowered with the ability to prioritize work
in the backlog?

· Is the product owner responsible for defining acceptance criteria
and deciding whether those criteria have been met?

· How does the product owner engage stakeholders and the
developers to ensure work priorities align with stakeholder
requirements?

· Is the product owner available to the team when needed? Are
there guidelines about product owner response rates?

· Does the product owner continually interact with the team to
discuss the success of the team throughout the process?

· Is the product owner empowered to approve completed work?

Likely effects if criteria are not fully met
1. If the teams are not self-organizing or self-managing, the teams will

likely be inefficient, causing program cost and schedule slips.
2. If a team does not have the requisite skill sets, it will likely be reliant

on other teams that may have other responsibilities, thus delaying
progress on the product.

3. Frequently shifting resources within a team, or between teams, can
undo learning and shift team dynamics and skills, thereby diminishing
the team’s ability to meet commitments.

Appendix IV: Auditor’s Key Questions and
Effects

Page 195 GAO-20-590G GAO Agile Assessment Guide

4. If there is not a clearly identified product owner who is the
authoritative customer representative, who manages requirements
prioritization, communicates operational concepts, and provides
continual feedback, the developers may not be sure which features
are priorities if they receive conflicting information, resulting in delays
to delivering high priority features and deployment of the overall
system.

5. If the product owner is not a dedicated resource, the developers may
find that person unavailable to answer questions when needed. If
questions are not addressed in a timely manner, the developers may
make assumptions in order to continue with development to meet
commitments. If these assumptions do not match the expectations of
the product owner, significant rework may be necessary. This can
slow the development process.

6. A product owner must be empowered to make decisions about
program development. Without such responsibility, the development
process can slow down due to waiting on others with competing
responsibilities to consider and respond on behalf of the business.

7. Without maintaining contact with both the developers and the
customers, a product owner may not be able to represent what the
customer priorities are and they may misrepresent them to the
developers. This could result in a decreased value from the system if
the wrong features are given priority in the backlog or cause schedule
delays if critical features were not developed.

Best practice: Work is prioritized to maximize
value for the customer

Key considerations and questions
1. Agile teams use user stories to define work

· Is there a standard structure used to write user stories? (e.g.,
elements that should be included in a standard user story?)

· Who writes the user stories and how are they managed? Can
anybody write a user story?

· How does the product owner ensure that user stories are
independent? Negotiable? Valuable? Estimable? Small?
Testable?

Appendix IV: Auditor’s Key Questions and
Effects

Page 196 GAO-20-590G GAO Agile Assessment Guide

· How do the user stories reflect acceptance criteria and do they
define what “done” is?

· How and when are user stories reevaluated based on
organizational needs and return on investment?

2. Agile teams estimate the relative complexity of user stories
· How does the team estimate user story complexity? (For example,

what techniques and metrics are used for estimating?)
· Does the team consider potential factors that can increase the

complexity of the work when sizing the work?
· What techniques does the team use, such as affinity estimation, to

help identify the factors that could affect the complexity of a user
story?

· Who is involved in estimating and at what level does estimating
take place?

· Does the size estimation use prior estimates to inform future
estimates?

· Is the size estimate refined over time?
· Is acceptance criteria well-defined and consistent for user stories?
· Does the team ‘lock’ sizing estimates once an iteration begins so

the team can examine variances between estimated and actual
work accomplished?

· Is there a method in place to evaluate the success of these
estimates?

· Have the teams been meeting their commitments for each
iteration/release?

3. Requirements are prioritized in a backlog based on value
· Is the product owner considering value when prioritizing the

backlog?
· Is there a shared understanding of value among the team,

program, and organization?
· Is the team working from a prioritized backlog to provide frequent

software deliveries?
· What approaches are used to prioritize the backlog: the must-

have, should-have, could-have, would like to have, MoSCoW,
etc.?

Appendix IV: Auditor’s Key Questions and
Effects

Page 197 GAO-20-590G GAO Agile Assessment Guide

· Is the value of the work accomplished tracked and monitored?
· Does the program track feature usage statistics or customer

satisfaction? Is the team assessing value expected versus value
delivered?

· Does the product owner reevaluate requirements frequently to
reprioritize as necessary?

Likely effects if criteria are not fully met
1. Establishing a common structure for the user story helps ensure

consistency across teams and can help prevent delays when product
owners work with multiple teams or teams are reorganized.

2. If teams are not using relative estimation to compare current size and
work estimates to historical completed work, the team may
underestimate, or overestimate the complexity and time necessary to
complete the user story.

3. Well-defined acceptance criteria can help teams estimate a user
story’s complexity. Less well-defined user stories will carry more risk
and uncertainty around size estimates.

4. If teams are not estimating user stories consistently, the teams may
be committing to too much work, leading to user stories lasting more
than one iteration and team burnout.

5. A lack of traceability between different levels of backlogs and program
planning artifacts could lead to overlooking user stories or features
that are critical to the program due to their high value to the customer
or key dependencies that those user stories or features might have
with other aspects of the system.

6. A lack of understanding or insight into the methods used to measure
value for user stories could cause a disconnect between the customer
and developers and allow delivery of features that do not maximize
value.

7. Without clearly prioritizing work, the developers could work on
features that are not “must haves” to the customer, resulting in the
delivery of features that may not be used and might contribute to
schedule and cost overruns.

Appendix IV: Auditor’s Key Questions and
Effects

Page 198 GAO-20-590G GAO Agile Assessment Guide

Best practice: Repeatable processes are in
place

Key considerations and questions
1. Agile program employs continuous integration

· How frequently is the software integrated?
· How does the team ensure that software handoffs between the

various stages of development and testing are performed in a
reliable, dependable manner?

· Are functional and non-functional requirements tested at each
stage of the continuous integration process?

· Is the scope of the automated testing tracked and monitored
based on established expectations?

2. Mechanisms are in place to ensure the quality of code being
developed
· How does the team incorporate manual coding in concert with

automated processes to manage the code base?
· What mechanisms are in place to alleviate factors that contribute

to negative impacts on code quality, such as time constraints and
unsustainable pace of development, or undisciplined coders?

· What processes are in place to manage “technical debt”?
· What assurance methods are incorporated in code development

to ensure the integrity of manual coding, pair programming,
refactoring, peer review?

3. Agile teams meet daily to review progress and discuss impediments
· Is the team holding a standup meeting every day and if so, who

leads it?
· Who attends the standup meetings?
· Are all members of the team present and actively involved in the

standup meetings?
· What are the objectives of the daily standup and how do they help

the team plan and execute work?
4. Agile teams perform end-iteration demonstrations

Appendix IV: Auditor’s Key Questions and
Effects

Page 199 GAO-20-590G GAO Agile Assessment Guide

· Is the team holding a review/demo at the end of every iteration?
· Who attends the end-iteration demos?
· Do all stakeholders attend the demonstration? For example, does

the product owner(s) attend the demos?
· Is the software depicted in a realistic setting?
· How are the demos accepted?
· Is the team demonstrating every completed user story at the

demo?
5. Agile teams perform end-iteration retrospectives

· Is the team holding retrospectives at the end of each iteration?
· Who attends the retrospective? Does the product owner attend

the retrospective with the team? Are all members of the team
present and actively participating in the meeting?

· How are action items from the retrospective implemented?
· How are implemented tasks from the retrospective managed?
· What is the average time to fully implement tasks identified in the

retrospective?

Likely effects if criteria are not fully met
1. Without continuous integration using automation, reliable, dependable

software handoffs may not occur.
2. Without automated build and testing tools, the program may

experience challenges in delivering the product on time and may have
a limited assurance of product quality.

3. The accumulation of deficiencies over time, technical debt, can
present obstacles to an Agile program if not properly managed. For
example, as a code base grows, additional functions will rely on the
deficient code, causing a degradation in overall system performance.
Moreover, as the interest incurred on technical debt continues to rise,
teams will devote more time to cleaning up errors instead of producing
new features.

4. Without the daily standup meetings, team members may not be held
accountable for their work, duplication of work could occur, or work
may not get accomplished because of a lack of communication and
understanding of who is doing what for the program.

Appendix IV: Auditor’s Key Questions and
Effects

Page 200 GAO-20-590G GAO Agile Assessment Guide

5. Without daily standup meetings, the team might also not identify
impediments which may result in rework or schedule delays.

6. If used as a status update by management instead of focusing on
progress and impediments, the meetings could last too long.

7. If end-iteration demonstrations are not performed, the team may not
be able to identify portions of the software that need improvement or
modifications to provide the anticipated functionality.

8. If retrospective meetings are not held at the end of each iteration, the
team may not reflect on or improve the efficiency and effectiveness of
its work processes, thereby impacting the timely delivery of a high-
quality product.

Best practice: Staff are appropriately trained in
Agile methods

Key considerations and questions
1. Program staff are trained in Agile methods

· Has the program developed a strategic approach that establishes
priorities and leverages investments in training and development
to achieve results?
· Does the program have training goals and related

performance measures that are consistent with its overall
goals and culture?

· How does the program determine the skills and competencies
its workforce needs to achieve current, emerging, and future
goals and identify gaps that training and development
strategies can help address?

· How does the program identify the appropriate level of
investment to provide for training and development efforts and
prioritize funding so that the most important training needs are
addressed first?

· What measures does the program use in assessing the
contributions that training and development efforts make
toward individual mastery of learning and achieving program
goals?

· How does the organization incorporate employees’ individual
developmental goals in its planning processes?

Appendix IV: Auditor’s Key Questions and
Effects

Page 201 GAO-20-590G GAO Agile Assessment Guide

· How does the program integrate the need for continuous and
lifelong learning into its planning processes?

· Are all members of the Agile team and all stakeholders in the
program receiving appropriate training?

· Does the training in specific Agile methods include Agile policy
and procedures?

· How does the organization track and monitor training
requirements for all team members?

· Under what circumstances is refresher training conducted, such
as on the use of new programming languages, applications,
compliance requirements, coding, or security standards?

2. Developers and other supporting team members have the appropriate
technical expertise
· How does the program ensure immediate access to specialized

expertise, including contracting, architecture, database
administration, development, quality assurance, operations (if
applicable), information security, risk analysis, and business
systems analysis, that may be required to aid existing teams?

· How did the program identify the technical expertise needed to
successfully meet program goals?

· How did the program assess the existing expertise of Agile team
members?

· How were gaps addressed, if any?
· Does the program define requirements for contractor personnel to

be provided in contractor proposals?
· How is the program evaluating the qualifications of the contractor

to perform the work when evaluating proposals?

Likely effects if criteria are not fully met
1. Without training, there might be a lack of common understanding in

the program about the Agile methods to be used.
2. Without effective training based on a strategic human capital analysis,

the program will be challenged in helping to ensure that the required
capabilities and mission value will be delivered in a timely and cost-
effective manner.

Appendix IV: Auditor’s Key Questions and
Effects

Page 202 GAO-20-590G GAO Agile Assessment Guide

3. An Agile team needs to have all the appropriate technical expertise, or
it could be delayed in completing its work while waiting on input from
an expert outside of the team.

4. If individual team members are not proficient in the skills necessary to
complete the work, then the quality of the product being developed
may suffer, requiring substantial re-work.

Best practice: Technical environment enables
Agile development

Key considerations and questions
1. System design supports iterative delivery

· How has the program established an architecture that allows for
incremental delivery and loose coupling?

· How does the design architecture support delivery of iterations
that can be seamlessly inserted into the operational environment?

· How does the program manage staff assignments distributed
across multiple locations to facilitate iterative delivery and loosely
coupled architecture?

· How does the program manage frequent testing and reviews to
ensure that newly-developed components are properly integrated
with existing components?

2. Technical and program tools support Agile
· What tools are being used to support Agile software

development?
· Are tools used organization-wide, program-specific, team-specific,

or a combination?
· Do both government and contractor personnel, involved in the

Agile development effort, have access to the same data?
· How is the program working to ensure that both government and

contractor personnel have access to the same data?
· How is the program setting up internal controls to restrict access

rights for Agile-support tools to ensure the proper access across
government and contractor personnel?

Appendix IV: Auditor’s Key Questions and
Effects

Page 203 GAO-20-590G GAO Agile Assessment Guide

· How is program management working to align their program
management tools with Agile principles and practices?

· How frequently is software integrated and tested?
· How are automated tools used to support integration and testing

of software?
· Are the tools integrated into the program’s technology

environment (e.g., automated regression testing suites and
continuous integration support tools) and is access available to all
team members and stakeholders?

Likely effects if criteria are not fully met
1. Not allowing time up front to consider system requirements can

increase future complexity, re-work, and unnecessary investment.
2. If the program does not consider the system architecture during its

initial planning and instead relies on building out the architecture as
code is developed, the architecture may not support the needs of the
system when fully operational and may require a complete technical
refresh.

3. If software design and architecture are not loosely coupled, changes
to individual pieces of the system may require a significant amount of
testing of the entire system, slowing the pace of development and
delivery of the product.

4. If technical and program tools are not consistently available to those
members of the team requiring access, then the productivity of
developers may suffer and result in increased costs for development.

5. Without automated tools, the program risks inconsistent
implementation of processes across teams, which may negatively
affect product delivery and understanding of the program’s progress.

6. Large programs not using automated tracking tools could miss key
dependencies between user stories and features.

Appendix IV: Auditor’s Key Questions and
Effects

Page 204 GAO-20-590G GAO Agile Assessment Guide

Best practice: Program controls are compatible
with Agile

Key considerations and questions
1. Critical features are defined and incorporated in development

· Has the program identified mission, architectural, and safety-
critical components and dependencies?

· How often does the program revisit these components to validate
their importance?

· At what point in a program’s life cycle are these components
defined? During an initial iteration before any software
development begins?

· How does the program strategy account for mission and safety
criticality along with dependencies? Is the strategy adequate or is
the program increasing its risk?

· In determining the criticality of software, how does the program
evaluate and prioritize the relative value of work to ensure that
each iteration delivers the most business value?

2. Non-functional requirements are defined and incorporated in
development
· How are non-functional requirements for a program identified?

Where are these requirements defined?
· How does the program consider and implement security

requirements throughout the development?
3. Agile teams maintain a sustainable development pace

· Does management work with teams to prioritize user stories,
establish an agreed upon definition of done, and develop a mutual
commitment on the work to be accomplished for each iteration?

· How does management encourage teams to maintain a consistent
development pace that can be sustained indefinitely?

· Does the program track velocity or other metrics to evaluate
pace?

· How does velocity or sustainable pace factor into iteration and
release planning? Into iteration/release review or retrospective?

Appendix IV: Auditor’s Key Questions and
Effects

Page 205 GAO-20-590G GAO Agile Assessment Guide

· Does the program monitor the teams to ensure a consistent pace
is being achieved on a team by team basis? If so, how and how
often?

Likely effects if criteria are not fully met
1. Without clearly identifying mission and system critical architecture

features, the program risks developing these features after other
software is in place and facing substantial rework and integration
challenges and unnecessarily increasing the cost and time to deliver
all critical features.

2. If critical business requirements are not prioritized appropriately,
software may not provide the required functionality.

3. Lack of communication between the product owners and developers
regarding features’ priorities risks the development of noncritical
software in place of critical software and lower customer satisfaction
with the completed product.

4. Teams overlooking nonfunctional requirements may develop a system
that does not comply with current federal standards (e.g.,
cybersecurity standards for IT programs), causing unnecessary risks
to business operations and resulting in the software not becoming
operational until these components have been addressed.

5. If the teams are not working at a sustainable pace, there is a risk of
burnout, which can cause delays in the program.

6. Without establishing a consistent pace, the program cannot reliably
use historical metrics, such as team velocity, to estimate future efforts
required in product development.

Best practice: Organization activities support
Agile methods

Key considerations and questions
1. Organization has established appropriate life-cycle activities

· Is there a documented process for acquisition?
· Is there a documented process for software development?

Appendix IV: Auditor’s Key Questions and
Effects

Page 206 GAO-20-590G GAO Agile Assessment Guide

· Are programs allowed to deviate from the documented processes
if pursuing Agile software development? If so, under what
conditions?

· Do organization acquisition policy and guidance allow for
changing requirements?

· Do organization acquisition policy and guidance allow for
frequently delivered software in small deployments?

· Do organization activities support technical reviews occurring
throughout development that are tailored to the cadence of Agile
software development?

· Do the program’s structure and support mechanisms foster a
strong relationship between customers and the developers?

· How is success being measured for Agile programs including any
benefits such as shortened timeframes and higher quality software
being delivered?

· How is the organization encouraging more frequent collaboration
between the customer and developers, and more frequent delivery
of incremental software?

· Has the organization developed policies and procedures allowing
requirements to change throughout the program’s life cycle?

· Early in a program’s life cycle, are requirements defined at a high
enough level that the program can modify the requirements as
needed to reflect a better understanding of needs?

· Has the organization specified policy and procedures regarding
the speed with which changes can be approved?

2. Goals and objectives are clearly aligned
· Has the organization and/or component developed a strategic

plan for IT that aligns with the overall objectives of the
organization and/or component strategic plan?
· Is IT consulted by management to identify technology that is

creating opportunities that the business can turn into
enterprise benefits?

· Are members of IT management actively helping to realize the
enterprise goals?

· Is there accountability for achieving enterprise goals to
determine executive commitment to the goals?

· Have the goals for the program been defined?

Appendix IV: Auditor’s Key Questions and
Effects

Page 207 GAO-20-590G GAO Agile Assessment Guide

· Were program goals approved and agreed to by all relevant
stakeholders in accordance with agency and/or component
acquisition policy?

· Do program goals logically trace back to the IT strategic plan and
business strategic plan in turn?

· Do the technical goals of the program (e.g., software and
hardware) align with the organization’s software-related goals?

· Is the organization collecting objective measures and clearly
communicating feature and capability achievements to the entire
organization?

· How does the organization ensure that goals are clear but not
static, and that the Agile implementation allows for rapid response
to changes in either the external or internal environment?

· How does the organization allow for goals that are not clear? How
does the organization effectively and routinely communicate
program goals?

Likely effects if criteria are not fully met
1. If programs are unable to tailor life cycle activities, then the

organization’s oversight process could negatively affect the cadence
established by the Agile team, resulting in less predictable
development efforts.

2. If collaboration is not occurring regularly, then priorities regarding
requirements will not be known and the result may not meet the
program’s vision or customer’s needs.

3. Where changing requirements are not understood or defined at an
organizational level, the adoption and full realization of the benefits
from Agile methods will be hard to achieve.

4. If the organization’s goals are not clear or do not adequately reflect
stakeholder concerns and mission needs, then lower-level decision
making may be misaligned with the organization’s focus. This
misalignment can, in turn, erode trust and often results in overbearing
governance and bureaucracy, leading to delays.

5. If the organization’s software-specific needs are not considered to be
part of the larger program goals, then the implementation of software
applications may not fulfill minimum requirements established by the
organization or by the federal government.

Appendix IV: Auditor’s Key Questions and
Effects

Page 208 GAO-20-590G GAO Agile Assessment Guide

6. If approved program goals do not align with both the IT and business
goals, then lower level decision making runs the risk of being
misaligned with the organization’s focus.

Best practice: Organization culture supports
Agile methods

Key considerations and questions
1. Sponsorship for Agile development cascades throughout the

organization
· Who is/are the sponsor(s) for Agile software development?

· Do sponsors have sufficient authority to manage execution of
the transition within the overall goals established for the
transition group?

· Are the responsibility and accountability defined for each
sponsor and level of management in transitioning to Agile?

· Do all sponsors within the organization and IT agree on and
accept the goals and definition of success for the transition to
Agile?

· Do sponsors adhere to Agile software development commitments
documented in organizational policy?

· How were sponsors selected? Why do sponsors believe in and
support a transition to Agile software development (e.g., flexibility
demonstrated by a team adhering to a Scrum framework)?

· Does sponsorship cascade to the overall life-cycle management
process including those involved in certification and accreditation,
or operational test and evaluation?

· Is there guidance in place at the organization, encouraging
employees and groups to adopt Agile methods?

· What indicators have been considered regarding a program
readiness to adopt Agile? For example, are requirements flexible,
is there an established process in place to further define the
requirements over time, etc.?

· Are laws, policies, and guidance available to facilitate the adoption
of Agile?

Appendix IV: Auditor’s Key Questions and
Effects

Page 209 GAO-20-590G GAO Agile Assessment Guide

2. Sponsors understand Agile development
· How familiar are sponsors with the Agile process in place within

the organization?
· Is each sponsor aware of the roles and responsibilities of other

sponsors?
· How familiar are sponsors with the values and principles of Agile?
· Can sponsors speak to how the values and principles of Agile are

reflected in the adapted organizational processes?
· Do sponsors accept accountability for results?
· Are sponsors committed to applying the organization’s Agile

framework consistently across the organization?
· Are sponsors aware and in touch with Agile methods and

practices applied at the program and team levels of the
organization?

· Do organizational policies require sponsors and senior
stakeholders to be fully educated regarding Agile values and
principles?

3. Organization culture supports Agile
· How are teams physically structured (co-located or split across

geographic areas)?
· Are all members of a team co-located (business

representative/product owner, developers, testers, etc.) or are
only some co-located?

· If not co-located, how are team members communicating?
How often?

· If not co-located, why not?
· Does organizational policy support co-location and promote the

need for face-to-face conversation?
· Are all team members, including the product owner, immediately

accessible to answer questions, as required?
· How does the organization promote trust between the enterprise

and the customer organization? Examples include conducting a
joint workshop that focuses on the effort, but provides
opportunities for working together across organizational
boundaries.

Appendix IV: Auditor’s Key Questions and
Effects

Page 210 GAO-20-590G GAO Agile Assessment Guide

· How is the organization promoting awareness of long-term goals
of the system to ensure that Agile teams can operate effectively
with greater autonomy?

· Does the organization have a process and terminology in place to
facilitate communication practices and encourage transparency,
availability of team message boards, collaborative workspaces,
etc.?

· Does the organization encourage communities of practice to
promote strong interactions in a healthy climate of trust?

· How does the organization implement inspection and adaption to
continue to learn and adapt from feedback? Inspection and
adaption might take the form of a more formal meeting, such as a
retrospective, or may only require an informal set of discussions
among sponsors.

· What data are collected during the transition to Agile to facilitate
and support senior stakeholder adaptation and decision-making?

· What modifications to policies and processes have been adopted
to reflect Agile practices and policies? For example, how are
modifications made to policies and processes, such as systems
engineering life cycle documentation, to address Agile
development methods?

4. Incentives and rewards aligned to Agile methods
· How does the organization evaluate employees for traditional

programs? Is the evaluation process for an Agile program
different?

· Are appropriate organizational entities, such as human resources
or employee unions, involved to establish an organizational goal
to align incentives and rewards with their Agile values and
principles?

· Are rewards tied to results (e.g., working software) and not the
outputs (e.g., ancillary documents) of an Agile process?

· Has the organization developed specific criteria or refined the
process for evaluation of employees associated with an Agile
program?
· What metrics does the organization collect and measure when

evaluating individual or team performance for an Agile
program?

Appendix IV: Auditor’s Key Questions and
Effects

Page 211 GAO-20-590G GAO Agile Assessment Guide

· Who participates in performance reviews and how actively are
they involved in the day-to-day operations of an Agile program?

· Do organizational incentives and rewards promote and recognize
teams or individuals?

· What are some examples of incentives and rewards available to
teams?

Likely effects if criteria are not fully met
1. Without high-level encouragement, Agile implementation might

become a paperwork exercise, leading to a failure to complete
software development.

2. Without encouragement and commitment from upper-level
management, Agile teams may not appropriately collaborate with
business owners when they are unsure about the importance of
certain functionality, causing confusion that ultimately can result in a
poor product. Thus, functionality developed using a process that does
not embrace an Agile mindset might require heavy investment in the
post deployment correction of errors or functionality enhancements to
meet customer needs.

3. Without sponsorship from senior stakeholders and the presence of an
Agile champion, or multiple champions, the organization may not
embrace the transition to Agile, which can lead to inconsistent Agile
practices and lackluster results.

4. While having a clearly defined policy for Agile programs can be
effective in many cases, using a policy or mandate to force adherence
to Agile principles does not produce the healthy adoption of new
practices. For example, putting policies in place too early, before the
appropriate transition mechanisms are solidified, may lead to basic
compliance but without consideration for the organization’s culture
and mindset that should occur during a successful Agile transition.

5. If sponsors are unable to effectively differentiate between a Waterfall
and an Agile implementation, they may hamper or impede the
effective adoption of Agile principles, leading to a breakdown in
processes.

6. If all team members, including the product owner, are not immediately
accessible to answer questions, team work may be delayed.

7. If appropriate organizational entities, such as human resources, are
not considered, changes to incentive and reward systems might be

Appendix IV: Auditor’s Key Questions and
Effects

Page 212 GAO-20-590G GAO Agile Assessment Guide

slow and ineffective, preventing team cohesion and unity, and
restricting productivity.

8. Since the federal acquisition environment is built on strong oversight,
traditional acquisition can often result in adversarial relationships
between the acquirers and the developers. In an Agile environment, a
climate of trust, built by shared experiences in which all parties feel
respected and accepted, is needed so that the program team can
achieve its fullest potential.

9. If an Agile supportive environment is not in place, then team and
program operations might not have the resources necessary to be
successful, thus impeding delivery of the product and not meeting
agreed-upon goals for cost, schedule, and performance.

10. Changes to incentive and reward systems might be slow and
ineffective, preventing team cohesion and unity, and restricting
productivity unless there is active involvement from the appropriate
organization entities, such as human resources and employee unions.

11. If organizational incentives are not structured to promote improved
team performance, competiveness or a lack of respect among team
members might increase, impacting team behavior, productivity, and
output.

Best practice: Organization acquisition policies
and procedures support Agile methods

Key considerations and questions
1. Guidance is appropriate for Agile acquisition strategies

· Does the organizational acquisition policy and guidance require
the contract structure and acquisition strategy to be aligned to
support Agile methods of software development?

· What policy and guidance does the program use to analyze the
risks, benefits, and costs before entering into any contract?

· Are contracts structured to allow for the implementation of Agile
principles, frequent interim deliverables, product demonstrations,
changing requirements, etc.?

· Do the contract structure and acquisition strategy allow for interim
demonstration and delivery between official releases?

Appendix IV: Auditor’s Key Questions and
Effects

Page 213 GAO-20-590G GAO Agile Assessment Guide

· Does the contract specify delivery cadence and how product
demonstrations will be used to solicit customer feedback?

· Does the contract structure allow the government team, in
coordination with the product owner, enough flexibility to adjust
feature priority and delivery schedule as the program evolves?

· What mechanisms are in place in the contract and acquisition
strategy to allow for close collaboration between the developers
and stakeholders in order for everyone to agree on what features
have the highest priority?

· Does the contract language reflect Agile principles such as
enabling incremental and frequent progress reviews at key points?

· Do contract oversight mechanisms align with Agile practices?
· From a contract oversight perspective, are the expectations of

reviewers and oversight personnel set appropriately to ensure
Agile principles can be effectively employed?

Likely effects if criteria are not fully met
1. If an acquisition strategy and contract structure do not allow for interim

delivery and product demonstrations, then the organization may lose
opportunities to obtain information and face challenges in adjusting
requirements to meet changing customer needs. This may negatively
impact continuous delivery of software.

2. If the organization does not adjust its oversight process to account for
Agile methods, then the contractors’ productivity may decrease.

Chapter 5: Agile Requirements Management
Best Practices

Best practice: Elicit and prioritize requirements

Key considerations and questions
1. How does the process to elicit customer needs, expectations, and

constraints incorporate customer feedback? Does the process use
incorporate surveys, forums, and other mediums to brainstorm the
needs of the organization?

Appendix IV: Auditor’s Key Questions and
Effects

Page 214 GAO-20-590G GAO Agile Assessment Guide

2. Does the process to elicit requirements reflect an iterative process?
3. Are requirements defined at various levels? If so, is there a different

approach to eliciting customer needs, expectations, and constraints
and a different process for prioritization decisions for each level?

4. Does the review cycle allow a customer to observe the system and
communicate additional functionality or modifications to existing
functionality?

5. Does the program have a process in place to field customer
suggestions, via testing, demonstrations, or other means?

6. Does the product owner proactively solicit and prioritize input from
customers to inform future requirements?

7. How does the program identify non-functional requirements? Is the
process to identify non-functional requirements iterative and on-
going?

8. How does the program capture non-functional requirements? For
example, one option is to define each discrete requirement as a
separate user story that traces to a non-functional feature such as
architecture.

9. How does the team test non-functional requirements?

Likely effects if criteria are not fully met
1. If there is not a strong commitment to ongoing elicitation and

refinement of requirements, the delivered software may not meet the
changing needs of the customer or address the evolving technical
landscape.

2. If the product owner does not capture feedback from reviews for
consideration, there is no historical record of proposed requirements
or modifications for reference. The lack of a documented change
control process could hinder the decision maker’s insight into the true
value of delivered features.

3. Agile tends to emphasize customer-facing requirements. However,
when the focus on customer functionality becomes exclusive, the
underlying system (or non-functional) requirements can go unnoticed.

Appendix IV: Auditor’s Key Questions and
Effects

Page 215 GAO-20-590G GAO Agile Assessment Guide

Best practice: Refine and discover
requirements

Key considerations and questions
1. How does the program discover and refine requirements?
2. Does the program use visualization tools to discover and refine

requirements?
3. What process does the program use to incorporate lessons learned

into requirements and their prioritization?

Likely effects if criteria are not fully met
1. If Agile programs do not learn to discover and refine requirements

throughout the development process, a program may miss an
opportunity to incorporate newly discovered requirements or eliminate
requirements previously thought to be essential, which could create a
disconnect between deployed software and the customer’s needs.

2. Without ensuring full prioritization of current and future features and
user stories, a program could be at risk of delivering functionality that
is not aligned with the greatest needs of the customers.

Best practice: Ensure requirements are
complete, feasible, and verifiable

Key considerations and questions
1. How do the team(s) and the product owner develop a shared

understanding of the definition of done?
2. How does the team establish acceptance criteria?
3. How does the team determine when a requirement is adequately

defined or ready for work to begin?

Appendix IV: Auditor’s Key Questions and
Effects

Page 216 GAO-20-590G GAO Agile Assessment Guide

Likely effects if criteria are not fully met
1. Without having clear criteria and an established definition of done

allows uncertainty into the development process.
2. Without clear definitions for ready, acceptance, and done, the team

may be working inefficiently and on requirements that are not high
priority.

Best practice: Balance customer needs and
constraints

Key considerations and questions
1. What process does the product owner use to calculate the value of

work and ensure user stories are being developed based on relative
value? For instance, does the product owner value high-risk work
early in a release to mitigate risk, or determine value based on
resource availability, etc.?

2. How does the product owner balance customer needs and constraints
when determining the value of work?

3. What additional information is collected in the backlog documentation
to articulate relative value, details about the work, estimates for time,
and priority ranking?

4. How do the product owner and team work together to refine the
backlog priority?

5. How are customer suggestions considered in the backlog review and
refinement?

Likely effects if criteria are not fully met
1. If the product owner does not consider the relative value of the work,

all of the user stories can end up being developed just prior to
deployment. Often this is a sign that the product owner is not
prioritizing the requirements and is developing functionality that is not
immediately necessary.

2. The practice of developing each and every user story can lead to
problems if funding is reduced mid-iteration, mid-release, or mid-

Appendix IV: Auditor’s Key Questions and
Effects

Page 217 GAO-20-590G GAO Agile Assessment Guide

program, or other external factors impede the progress of the
development work.

3. If the product owner does not consider the relative value of work, the
team may develop functionality that is not immediately necessary to
meet customer needs.

4. If the highest value requirements are not completed first, the customer
may be left without necessary functionality.

Best practice: Test and validate the system as it
is being developed

Key considerations and questions
1. How are continuous integration and automated testing incorporated in

the Agile environment?
2. What process is used to validate the user story: a user story

demonstration or a review at the end of each iteration?
3. How do customers participate in the review process to observe

functionality and whether it meets the intended purpose or requires
further refinement?

Likely effects if criteria are not fully met
1. If customers are not involved in the review and acceptance process

for software functionality, the software may not meet the intended
purpose required by the customer.

Appendix IV: Auditor’s Key Questions and
Effects

Page 218 GAO-20-590G GAO Agile Assessment Guide

Best practice: Manage and refine requirements

Key considerations and questions
1. How does the Agile program manage refining requirements?
2. What process does the product owner use to manage requirements

and maximize the value of software delivered?

Likely effects if criteria are not fully met
1. If the requirements refinement process is too inflexible, it becomes a

change prevention process and user needs will not be adequately
incorporated into the program, making it less useful to customers than
intended.

2. If the refinement process is too flexible, then boundless development
can occur and the organization may not receive the full value that it
requires.

Best practice: Maintain traceability in
requirements decomposition

Key considerations and questions
1. How does the program maintain traceability from source requirements

to lower level requirements and then from those lower level
requirements back to the source requirements?

2. Is a traceability matrix or road map used to trace requirements?
3. If automated tools are used, are discrete fields included to trace high

level requirements to user stories?

Likely effects if criteria are not fully met
1. Without tracing a user story back to high level requirements, a

program cannot justify whether it is meeting the commitments made to
various oversight bodies, and in turn, cannot establish that the work is
contributing to the goals of the program and thereby providing value.

Appendix IV: Auditor’s Key Questions and
Effects

Page 219 GAO-20-590G GAO Agile Assessment Guide

Best practice: Ensure work is contributing to the
completion of requirements

Key considerations and questions
1. How does the team assure they are working on tasks that directly

contribute to the completion of user stories committed for the current
iteration?

2. Is the product owner ensuring that user stories contribute to the
commitments made to oversight bodies?

3. What mechanism, such as a management plan or program road map,
etc., is used to lay out capabilities or features for development in a
timeline?

Likely effects if criteria are not fully met
1. If work performed is not associated with the user story commitments

for an iteration, there may be a misalignment between the
requirements and work, and it can present a risk for the program.

2. If the schedule of programs and phases and the scope of each
program are defined and committed to in advance, there should be
alignment between the user stories being developed and the scope of
a specific program.

Chapter 6: Agile and Contracting Best Practices

Best practice: Tailor contract structure and
inputs to align with Agile practices

Key considerations and questions
1. Modular contracting

· Does the contract structure support small, frequent releases?
· Does the acquisition strategy avoid any potential lags between

when the government defines its requirements and when the
contractor delivers a workable solution?

Appendix IV: Auditor’s Key Questions and
Effects

Page 220 GAO-20-590G GAO Agile Assessment Guide

· Does each program acquisition reflect individual increments with a
life cycle and scope such that they can be delivered
independently?

2. Enable flexibility in the contract’s requirements
· Does the contract structure provide sufficient structure to achieve

desired mission outcomes?
· Does the contract structure offer flexibility for refinement of

software requirements within the agreed-on scope of the system?
· Do the contracting strategies support the short development and

delivery timelines that Agile requires?
· Does the statement of objectives/statement of work (SOO/SOW)

include a purpose, scope, period of performance, location for
conducting the work, background, performance standards (the
required results), and any identified operating constraints?

· Does the SOO/SOW include the product vision, strategic themes,
an initial road map, and an initial backlog of features and
capabilities?

· Does the SOO/SOW establish performance standards for the
expected accomplishment level required by the government to
meet contract requirements?

· Are the performance standards measurable and structured to
enable performance assessments?

3. Contract structure and type
· Has the program office clearly delineated to the contracting officer

whether the contract intends to procure goods or services?
· Do the solicitation and resulting contract clearly delineate the

responsibilities of the contractor to ensure that federal employees
oversee and make the final decisions regarding the disposition of
the requirements?

Likely effects if criteria are not fully met
1. If each program is not separable, then the government may need to

acquire future programs, which could be costly and burdensome.
2. If performance standards are not measurable and structured to enable

performance assessments, the government may not be able to
assess the expected accomplishments.

Appendix IV: Auditor’s Key Questions and
Effects

Page 221 GAO-20-590G GAO Agile Assessment Guide

3. To follow the FAR and ensure that the contractor doesn’t perform
inherently governmental functions, the organization should carefully
delineate responsibilities in the contract to ensure that the government
clearly has decision making authority regarding the final product.

4. If the contract does not provide sufficient structure to achieve the
desired mission outcomes, while offering flexibility for adaption of
software requirements within the agreed-on scope of the system, it
may not support an Agile development approach. A lack of structure
and flexibility increases the likelihood of disruption and delays.

Best practice: Incorporate Agile metrics, tools,
and lessons learned from retrospectives during
the contract oversight process

Key considerations and questions
1. Contract data requirements rely on Agile metrics

· Do the contract data requirements list align with Agile metrics to
reflect the different processes and artifacts used in Agile?

· Do the quantity and type of contract data requirements
established in the contract account for the program environment?

2. Data from Agile artifacts enables contract oversight
· Does the program collect data from the program’s releases,

features, and capabilities to enable contract oversight to hold
contractors accountable for producing quality deliverables?

· Do the work elements collected allow the program to measure
whether a user story is “done”?

· Does the program collect metrics throughout the Agile
development life cycle to monitor the contracted development
effort?

3. Conduct retrospectives to continually improve based on lessons
learned
· Does the program require retrospective reviews where

stakeholders to interact with the developers?
4. Contract oversight reviews align with the program’s Agile cadence

Appendix IV: Auditor’s Key Questions and
Effects

Page 222 GAO-20-590G GAO Agile Assessment Guide

· Do contract oversight reviews align with the program’s Agile
methods and cadence?

· Does the contract allow for contractual gate reviews to be tailored
in order to successfully align the contract requirements with the
functional requirements?

· Are reviews tied to the program’s Agile cadence for completing
releases?

Likely effects if criteria are not fully met
1. If the contract data requirements list does not account for the Agile

development program environment, the program may miss the
opportunity to collect data about the quality of its software products.

2. If the program does not collect Agile metrics for technical
management, program management, and Agile methods, the
government may not have the right information for effective contract
oversight and will not be able to hold contractors accountable for
producing high quality deliverables.

3. If reviews for the program are not tailored to align with the program’s
Agile cadence, the review structure could impede progress and cause
delays.

Best practice: Integrate the program office and
the developers

Key considerations and questions
1. Train program office, acquisition, and contracting personnel

· Do the acquisition team and developers have a common
understanding of Agile techniques so that an acquisition strategy
can be properly structured to establish a development cadence?

· Is there a close partnership between the developers, program
managers, customers, and contractors?

· Does the program have a dedicated onsite contracting team
trained in Agile implementation?

· Have contracting personnel been trained to enable an Agile
mindset?

Appendix IV: Auditor’s Key Questions and
Effects

Page 223 GAO-20-590G GAO Agile Assessment Guide

· Have clear roles been established for contract oversight and
management?

· Has management adopted a role of mentor, fostering an
environment of trust and open communication?

2. Identify clear roles
· Are the product owner and contracting officer’s representative

(COR) working closely to align the program’s business and
technical requirements?

· Are the COR and the product owner both government employees?
· Has a designated product owner been identified and are they

empowered to make decisions quickly and to prioritize
requirements within the scope of the road map?

· Are all personnel familiar with the distinction between contract and
functional requirements that are part of the Agile development
process?

· Does the contract have a dedicated contracting officer who works
closely with the product owner to align roles and responsibilities?

· Are the contracting officer, the product owner, and any
government developers working closely to develop an effective
acquisition strategy?

3. Awareness of the contract’s scope
· If additional requirements are identified after contract award, is

there enough time on the contract to complete the additional work
or can these requirements be substituted for currently-identified
features?

· Is the contract structure such that it can be modified should new
work be identified as higher priority to accomplish goals outside
the scope of the current contract?

· Is the product owner empowered to prioritize among system
requirements within the scope of the product vision, and is this
documented in the contract?

· Do persons in all roles understand the Agile process for the
program?

Appendix IV: Auditor’s Key Questions and
Effects

Page 224 GAO-20-590G GAO Agile Assessment Guide

Likely effects if criteria are not fully met
1. Without properly trained program office personnel, including

contracting personnel, staff may not have the skills to assist the
program in making business decisions and trade-offs that come with
the implementation of an Agile effort.

2. Without a dedicated onsite contracting team, who are trained in Agile
implementation and are able to assess the impact Agile cadences
have on the program’s acquisition strategy, the program may suffer
delays due to a lack of close partnership between the program and
the developers.

3. If management does not foster an environment of trust, the product
owner may not feel empowered to make decisions.

4. Roles must be clearly defined and carried out in order to prevent
bottlenecks and ensure that rapid feedback channels are clearly
established from the start of development.

5. Typically, both the COR and product owner should be government
employees so that they can be empowered to make day-to-day
decisions for the development effort. If the product owner is not a
government employee, the product owner may not be empowered to
make day-to-day decisions for the development effort, causing
development delays.

6. If the contracting officer and the program office do not understand the
distinction between contract and functional requirements, then all
compliance and security requirements may not be included.

7. Lack of authority and involvement by the product owner can result in
bottlenecks in the contracting process.

Chapter 7: Agile and Program Controls
Detailed best practice checklists are found in the companion guides; the
GAO Cost Guide (GAO-20-195G) and the GAO Schedule Guide
(GAO-16-89G).

https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-16-89G

Appendix IV: Auditor’s Key Questions and
Effects

Page 225 GAO-20-590G GAO Agile Assessment Guide

Chapter 8: Agile Metrics Best Practices

Best practice: Identify key metrics based on the
program’s Agile framework

Key considerations and questions
1. How does the organization consider metrics and determine which

metrics are appropriate for the chosen software approach?
2. Do the metrics address technical management, program

management, and Agile methods?
3. How does the organization identify and delineate metrics for each

level, organization, program, and team?
4. How does the organization ensure that metrics are quantifiable,

meaningful, repeatable and consistent, and actionable?
5. Are Agile developers and managers conveying meaningful information

to address customer concerns?
6. How does the program delineate between metrics needed for the

team to measure performance, and metrics needed for the customer?
7. With what frequency does the program collect metrics?
8. How does the program measure the value of a specific metric?

Likely effects if criteria are not fully met
1. Without meaningful, clear, and actionable metrics, management may

not have the information needed to evaluate program performance.
2. If a program is not aligning metrics with customer questions, it may

not have the data needed to evaluate program performance.
3. Not establishing metrics to obtain user feedback limits a program’s

understanding of the value delivered with each software release.

Appendix IV: Auditor’s Key Questions and
Effects

Page 226 GAO-20-590G GAO Agile Assessment Guide

Best practice: Ensure metrics align with
and prioritize organizationwide goals and
objectives

Key considerations and questions
1. Are metrics tied to program goals? Is the program able to measure

the success of the program goals from the collected metrics?
2. Are metrics identified and tracked that are used to impact decision

making?
3. Do the metrics allow traceability from the road map through releases

and items in the product backlog?
4. Has the organization defined the goals, objectives, and performance

information appropriate to managerial responsibilities and controls at
each level of the organization?

5. Have Agile metrics been tailored to allow the organization to convey
progress and achievements to internal and external customers?

Likely effects if criteria are not fully met
1. If the metrics do not allow traceability from the road map through the

releases and backlog, the organization may not have the right
information to make decisions about prioritization and potential re-
planning.

2. If the organization does not adopt an organized structure to collect
performance information at each level of the organization, the metrics
may not align with management goals.

3. If Agile metrics are tailored to reflect developers’ progress and
achievements to internal and external customers, it can facilitate
feedback and communication between both entities.

Appendix IV: Auditor’s Key Questions and
Effects

Page 227 GAO-20-590G GAO Agile Assessment Guide

Best practice: Establish and validate metrics
early and align with incentives

Key considerations and questions
1. Are metrics established at the start of the program?
2. Are metrics aligned with incentives?
3. Are metrics monitored at the organization, program, and team levels?
4. Are reward and incentive structures based on team

accomplishments?
5. How is the Agile team determining the value of each metric in

relationship to the cost of collecting the supporting data?
6. Are metrics collected to measure the flow of work over time, such as

features delivered in each iteration?
7. Is the team collecting metrics associated with product quality, such as

the number of defects identified after a product deploys?
8. Is the team capturing metrics that measure adherence to Agile

software development best practices?

Likely effects if criteria are not fully met
1. If metrics are not aligned with incentives, then the teams may not feel

appropriately rewarded for achieving program goals.
2. If the effort to collect data to support a metric is too extensive, the

metric may not deliver enough value to justify its collection.

Best practice: Establish management
commitment

Key considerations and questions
1. Has management established procedures to collect metrics

consistently over time?

Appendix IV: Auditor’s Key Questions and
Effects

Page 228 GAO-20-590G GAO Agile Assessment Guide

2. Is management monitoring the performance metrics, and using them
to inform corrective actions?

3. Is management working to ensure that metrics are in place to support
automation and Agile program management and reporting?

4. How is management supporting programs’ abilities to tailor metrics to
ensure that they meet organization needs while also limiting
unnecessary work on the part of the program?

5. How is management balancing periodic program-wide health
assessments with monitoring the progress made in deploying
capabilities during each release?

6. During performance review meetings, are staff from different levels of
the organization involved?

Likely effects if criteria are not fully met
1. If management does not demonstrate a commitment to use

performance metrics, others may not embrace metrics as useful.
2. If forced to report Waterfall development-based metrics, such

reporting will not only impede Agile adoption and execution, but also
will not provide accurate insight into the software development
process.

3. If program officials do not establish performance thresholds and
targets, oversight bodies may lack information to ensure the program
is meeting acceptable performance levels.

Best practice: Commit to datadriven decision
making

Key considerations and questions
1. Are metrics designed to support specific decisions that need to be

made at different levels of the organization?
2. Does the contract structure achieve desired mission outcomes?
3. Is the program collecting technical, performance measurement, and

process improvement metrics?

Appendix IV: Auditor’s Key Questions and
Effects

Page 229 GAO-20-590G GAO Agile Assessment Guide

4. Does the organization capture metrics that allow it to determine
whether Agile development activities contribute to organization goals
as planned?

5. Do metric reviews match the cadence of the program?
6. Are target values established for critical metrics?
7. Are contracts formulated in such a way that they allow flexibility for

implementation and provide meaningful information to decision
makers? For example, are metrics such as software size,
development effort, schedule, staffing, progress, etc. collected?

8. How are product quality and customer satisfaction monitored
throughout the development cycle?

9. How are changing priorities monitored throughout the development
cycle?

10. How are metrics considered in the requirements when formulating the
contract?

11. How does the program collect metrics to gain insight into the costs
associated with delaying work or missing a milestone?

12. How does the program estimate the cost of technical debt and the
time and effort necessary to repay the debt?

13. How does the program measure and monitor the frequency of
releases, the product delivery, and program progress? For instance,
burn-up, and burn-down charts may be used to communicate
progress.

14. Does the program use automated tools to capture metrics?
15. How does the program evaluate data for its completeness,

comprehensiveness, and correctness to ensure that it is suitable for
its intended purpose?

16. Does the program use automated tools for testing?
17. Is the program collecting necessary data that cannot be captured

using automated tools, such as data related to team dynamics or
other organizational behaviors?

Appendix IV: Auditor’s Key Questions and
Effects

Page 230 GAO-20-590G GAO Agile Assessment Guide

Likely effects if criteria are not fully met
1. If the metric review schedule does not match the cadence of the

development process, then management may not be able to provide
timely feedback to take necessary corrective actions in order to
maximize the value of delivered software.

2. If contracts are not formulated to capture the requirements to align
with Agile processes, the decision makers may not have the
meaningful information they need to manage development.

3. Without collecting metrics for overall program performance,
organizations will not have a good understanding of the cost and time
required to achieve a valuable product.

4. The data collected should be evaluated for its completeness,
comprehensiveness, and correctness to ensure that it is suitable for
its intended purpose. Otherwise data can mislead decision makers
instead of accurately informing them about the program’s status.

5. Without data collected using both automated tools and other data
collection processes decision makers may not be able to determine if
the program is delivering its desired value and outcomes.

Best practice: Communicate performance
information frequently and efficiently

Key considerations and questions
1. How are metrics used to track Agile programs daily?
2. How is performance information communicated frequently and

efficiently?
3. What tools are used to facilitate access to and dissemination of

performance metrics?
4. Does the program have access to automated tools and dashboards to

provide real-time input into oversight and decision making?
5. Does management have tools that allows it to view data consistently

across programs?

Appendix IV: Auditor’s Key Questions and
Effects

Page 231 GAO-20-590G GAO Agile Assessment Guide

Likely effects if criteria are not fully met
1. If metrics are not relevant, reliable, and timely, they cannot help

mitigate Agile adoption and program execution risks.
2. Without tools to facilitate frequent information dissemination, decision

makers may not have access to performance information and may not
be able to take action in a timely manner to make improvements or
corrective actions.

3. Miscommunicating performance information prevents staff and
stakeholders from making necessary improvements or corrective
actions in a timely manner can, contribute to program execution risks.

4. Without automated tools, management may not have access to data
that allows it to assess all programs consistently and quickly.

Appendix V: Common Agile Frameworks

Page 232 GAO-20-590G GAO Agile Assessment Guide

Appendix V: Common Agile
Frameworks
This appendix provides details on the most common Agile development
frameworks that are mentioned in chapter 1. Each highlighted framework
includes an overview, a brief discussion of the typical structure, and
unique principles of the framework.

The Agile Manifesto was published in 2001; however, several frameworks
that preceded it may have influenced the manifesto. Figure 19 provides a
timeline showing the evolution of Agile development in the United States.
For example, prior to 2001, some versions of incremental software
development were being used, and in the 1990s, several Agile
frameworks were published, most notably the presentation of Scrum in
1995. After the issuance of the Agile Manifesto, frameworks such as
Kanban began incorporating the principles from lean manufacturing,
which further supplemented Agile principles. Agile frameworks continue to
evolve, giving developers a wide array of options for tailoring their
development approach. Frameworks included in this appendix are: those
commonly used according to literature;1 frameworks used on federal
programs GAO previously reported on; and those recommended to be
included by experts. Although we are referring to these frameworks as
“Agile frameworks,” this is a loose term encompassing Agile-related
frameworks, some which may not adhere to all Agile principles. The
frameworks in figure 17 are discussed in this appendix.

1CollabNet VERSIONONE, COLLAB.NET, VERSIONONE.COM, 14th Annual State of
Agile Report, (Atlanta, GA: May 26, 2020).

Appendix V: Common Agile Frameworks

Page 233 GAO-20-590G GAO Agile Assessment Guide

Figure 17: Timeline of Agile Development

DevOps

Overview
DevOps methods combine both development and operations. Prior to
DevOps, a typical Agile team would have been responsible for the
software from requirement to deployment, with an operations team being
responsible for the support of the software after the deployment. DevOps
reduces the barrier between development and operations by combining
them, thus delivering software quickly and ensuring its high quality by
using the same team. The rationale is that, if the developers are also
responsible for support, they may have more of an incentive to create
reliable code.

Structure
In DevOps, the development and operations teams collaborate: the
developers may also be responsible for operation, or there could be two
separate teams that have open communication. Regardless of the
particular configuration, teams should be made to feel ownership of the
entire software life cycle.

Appendix V: Common Agile Frameworks

Page 234 GAO-20-590G GAO Agile Assessment Guide

Principles
The driving force of DevOps is to create frequent, small releases.2 In
order to do this, DevOps teams frequently adopt several of the principles
listed in table 19.

Table 19: DevOps Principles

Principle Description
Automation of processes DevOps teams try to release software as frequently as possible, which requires automated

testing and development (continuous integration and continuous delivery).
Standardized environment Many issues of interoperability arise when new code does not work in the operations

environment. Since the DevOps team develops the software and troubleshoots bugs in the
operations environment, the developers become more familiar with this environment.
Standardizing the environment helps with these interoperability issues.

Microservices In order to push frequent releases, the DevOps team uses an architecture comprised of
microservices: small, decoupled components that ideally work independently of the other
software components.

Monitoring Since DevOps teams are responsible for support and operations, the teams should be
monitoring the operational software. The frequent releases can help the team isolate and
pinpoint which software update has an issue.

Source: GAO analysis of Booz Allen Hamilton information. | GAO-20-590G

Disciplined Agile

Overview
The Disciplined Agile (DA) framework scales Agile methods with the
intent of addressing the full IT product delivery process from program
initiation to deployment into production. DA is a hybrid process that
adopts and tailors strategies from a number of frameworks. Specifically,
DA adopts strategies from Scrum, Extreme Programming (XP), Agile
Modeling (AM), Agile Unified Process (AUP), and Kanban. DAD is goal-
driven, emphasizing the delivery life cycle and how a product can provide
a solution (rather than being simply an independent product).

2This is in accordance with the third principle in the Agile Manifesto, “Deliver working
software frequently, from a couple of weeks to a couple of months, with a preference to
the shorter timescale.” © 2001-2020 Agile Manifesto authors https://agilemanifesto.org.

https://www.gao.gov/products/GAO-20-590G
https://agilemanifesto.org/

Appendix V: Common Agile Frameworks

Page 235 GAO-20-590G GAO Agile Assessment Guide

Structure
The primary roles of a DA team are described in table 20.

Table 20: Disciplined Agile Roles and Responsibilities

Role Responsibilities
Stakeholder Provides requirements, either as part of the team or through a team representative, in order to inform user

stories. Also responsible for ensuring that developed products satisfy all appropriate requirements following
iterations and tests, thus preparing the products for release. Stakeholders include four distinct sub-groups:
customers (who actually use the system), principals (decision makers who pay for the system), partners
(who make the system work in the environment with other existing systems), and insiders (developers).

Product owner Clarifies details and maintains list of work items that the team needs to implement. Represents work of Agile
team to stakeholder community.

Team member Performs analysis, testing, evaluation, design, programming, planning, estimation, and many more activities
throughout the program.

Team lead Facilitates communication and empowers team members to self-optimize their processes. Ensures that the
team has the resources needed.

Architecture owner Makes system architecture decisions for the team and ensures that the solution is integrated and tested on
a regular basis. The individual in the team lead role on smaller Agile teams may also fill the role of
architecture owner.

Source: GAO analysis of DOJ and FAA information. | GAO-20-590G

In addition to these primary roles, DA identifies secondary roles for
specialist, independent tester, domain expert, technical expert, and
integrator. These secondary roles are not required for every team and are
often used when a program scales larger and may only be needed for a
short period of time.

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 236 GAO-20-590G GAO Agile Assessment Guide

Principles
Key principles for DA are shown in table 21.

Table 21: Disciplined Agile Principles

Principle Description
People first DA defines primary roles for a specific team, as described in table 20
A hybrid framework DA uses strategies and principles from many different methods, such as Scrum, XP, Kanban,

and more.
A full delivery life cycle The process supports the full life cycle, from planning to release. A DA program can choose from

four different life cycles and tailor each to support their program.
Goal driven DA emphasizes that a program is flexible, easy to scale, and lays out general goals and various

solutions including any pros/cons. The program uses this information to pick the solution that
works best.

Enterprise aware A DA team works within an organization, follows the organization’s guidance, and leverages
existing assets.

Source: GAO analysis of DOJ and FAA information. | GAO-20-590G

Dynamic Systems Development Method

Overview
Created in 1994, the Dynamic Systems Development Method (DSDM)
brings control and quality to software development by focusing on
transparency and communication. The framework, which can be used to
scale Agile for larger programs with multiple teams, is intended to be
used for management of the full life cycle of a program.

Structure
DSDM has a defined 4-phase process that covers the entire life cycle of a
program: feasibility, foundations, evolutionary development, and
deployment. The team is sorted by areas of interest: business, technical,
and management. The roles to support these areas of interest are
categorized into program, development, and supporting roles. Each
specific role has defined responsibilities within the DSDM process. For
example, the technical coordinator provides technical leadership at the
program level.

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 237 GAO-20-590G GAO Agile Assessment Guide

DSDM promotes certain practices—such as facilitated workshops,
prioritizing work, and modelling, among others—to facilitate the program
process and align with DSDM principles. Specifically, facilitated
workshops are used to help a team reach consensus on the requirements
for a deliverable. In addition to prioritizing the work, DSDM uses the
MoSCoW technique, in which work is categorized as must have, should
have, could have, or won’t have this time. This triage allows the team to
focus on the highest priority work. Finally, DSDM promotes modelling
(visual representation of a program) as a way to increase communication
within the team.

Principles
There are eight principles in DSDM, described in table 22.

Table 22: Dynamic Systems Development Method Principles

Principle Description
Focus on the business need The team understands the business needs and priorities. There is continuous business

commitment throughout development.
Deliver on time Teams time box their work in iterations, allowing them to always deliver on time while flexing

the scope of features. With iterations, the team should be able to have a predictable
delivery.

Collaborate The entire team—including stakeholders and business representatives—collaborate for
better understanding and shared ownership of a program. This is supported by empowering
team members to make decisions in areas they represent.

Never compromise quality The level of quality is agreed on before development starts with acceptance criteria. Testing
is integrated throughout development, done early and continuously.

Build incrementally from firm
foundations

Understand the business problem and plan the proposed solution. Teams should design an
overarching solution first in order to lay a firm foundation and build the solution from this
foundation, with increments providing for feedback and routine re-assessment of the
program.

Develop iteratively Iterative development allows for timely feedback through frequent demonstrations and
reviews.

Communicate continuously and clearly DSDM encourages informal, face-to-face communication and daily standups. Additional
modelling, prototyping, and workshops can increase communication throughout the team.

Demonstrate control In order to demonstrate control, the program manager should measure and report plans and
progress. The program manager should be assessing the program according to the
business needs.

Source: GAO analysis of DSDM Consortium information. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 238 GAO-20-590G GAO Agile Assessment Guide

eXtreme Programming

Overview
eXtreme Programming (XP) advocates frequent releases in short,
iterative development cycles. This approach promotes team productivity
and introduces checkpoints where various customer/stakeholder
requirements can be introduced, refined, and adopted. Kent Beck
originally developed XP while working for Chrysler Corporation in 1996;
he published and expanded on the method in eXtreme Programming
Explained.3

Structure
XP does not prescribe formal roles and responsibilities to teams; instead,
it relies on teams that are self-organized, cross-functional, and include the
customer. XP has several best practices, including: small releases,
simple design, and pair programming, among others.

Like other Agile frameworks, XP attempts to reduce the cost of changes
in requirements by having multiple short development iterations with
feedback loops to continually refine customer requirements, rather than
one single long cycle. This approach focuses on coding and helps to
ensure that team members have a complete understanding of business
requirements early in the process.

Activities performed during every XP software development cycle include
planning, managing, designing, coding, and testing, which are further
described in table 23.

3Kent Beck and Cynthia Andres, eXtreme Programming Explained: Embrace Change
(Boston: Addison‐Wesley Professional, 2004).

Appendix V: Common Agile Frameworks

Page 239 GAO-20-590G GAO Agile Assessment Guide

Table 23: eXtreme Programming Activities

Activity Description
Planning Involves writing user stories, release planning, and dividing programs into small iterations.
Managing Teams operate in an open work space at a sustainable pace, participate in standup meetings, and continually

measure their velocity.
Designing Teams focus on keeping the design simple, only adding functionality when needed, and refactoring, among

other things.
Coding In XP, all code is produced using pair programming, meaning two developers create the code together, with

the intent to increase the quality of the code. In addition, unit tests are written first, standards are used for all
code, and new code is integrated often. XP also practices the idea of collective ownership, meaning all team
members have a responsibility for the code base and can make changes to improve it.

Testing All code should have a unit test, and the code must pass all unit tests before it is released. Acceptance tests
are run frequently and all test results are published.

Source: GAO analysis of DOJ and Agile Alliance information. | GAO-20-590G

Principles
Table 24 shows the five key values embraced by XP to guide how team
members, program managers, and stakeholders interact and collaborate
to ensure product quality. When employed by teams, these values
(communication, simplicity, feedback, courage, and respect) can help
them to achieve clear coordination and feedback throughout the
development process.

Table 24: eXtreme Programming Values

Value Explanation
Communication System requirements are effectively communicated from the customer to the team. XP builds rapidly and

passes along institutional knowledge among members of the development team in an effort to give one
another consistent information. XP advocates sharing among customers and designers to improve the design
and construct the system.

Simplicity XP emphasizes starting with the simplest possible solution and building functionality on it later. To achieve
this goal, XP strives to do only what is asked for, and nothing more, in order to maximize value. Simplicity in
code also contributes to reduced maintenance, as the code can be easily understood by the maintainers.

Feedback Teams obtain system feedback through periodic integration and unit testing that is intended to catch
problems before the product is released. Teams help ensure that the software meets customer needs by
conducting acceptance testing and incorporating feedback.

Courage Programmers are encouraged to throw away portions of low quality code they have worked on to ensure what
they deliver high quality. Improved code can lead to better results and remove impediments to effective
development. XP programmers are also urged to accurately report progress, develop reasonable estimates,
and adapt to changes when they happen.

Respect Team members are expected to be respectful to one another and to value the expertise of their customers,
who participate in the development effort. Program managers and executives respect team members’
responsibility and appropriate authority over their own work.

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 240 GAO-20-590G GAO Agile Assessment Guide

Source: GAO analysis of DOJ and Agile Alliance information. | GAO-20-590G

Kanban

Overview
Kanban seeks to alleviate the bottlenecks in Waterfall development by
limiting “in-progress” work in order to efficiently and effectively design and
deliver products to customers. Limiting work-in-progress prevents a team
from committing to too much work. Since new work should not be started
until the current work has been completed, bottlenecks blocking the
completion of work should become more visible in the process. This
framework focuses on the flow of work and was inspired by lean
manufacturing. Kanban is still used in manufacturing, as well as other
applications; this section focuses on Kanban for software development.

Structure
There are no prescribed roles in Kanban, allowing for maximum team
flexibility so that members can work on each other’s artifacts easily.
Teams use a Kanban board to keep track of their work, which can be
either physical or virtual. A Kanban board maintains a clear, visual
representation of the work through various stages of development. An
example of a typical board is shown in figure 18.

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 241 GAO-20-590G GAO Agile Assessment Guide

Figure 18: Kanban Board

A Kanban board displays work using sticky notes. The numbers at the top
of each column are the limits on the number of work items allowed per
column. As a task is completed, the related notes are physically moved to
the next stage so that completed and remaining work can be seen.
Having a board to review provides a summary of where the team needs
to focus its efforts.

Principles
Kanban is based on three basic principles: visualize what you do today
(workflows), limit the amount of work-in-progress, and focus on flow
(backlog prioritization). These Kanban principles are intended to be
responsive to changes that often occur during a demonstration. Having a
short cycle time helps ensure that customers provide feedback to the
team on a regular basis, resulting in delivery of desired software features
faster than traditional methods. In addition, Kanban promotes having user
stories that are all similar in size in order to limit in-process work so that it
is both manageable and predictable.

Appendix V: Common Agile Frameworks

Page 242 GAO-20-590G GAO Agile Assessment Guide

Lean Software Development

Overview
Lean software development combines lean manufacturing and IT
principles to streamline software development. Although there is no single
lean software development process, the structure, principles, and
practices further explained in table 25 stem from the book Lean Software
Development by Mary and Tom Poppendieck.4

Lean and Agile are related philosophies. More specifically, Lean can be
characterized as related to, but not a subset of, Agile. Many of the lean
practices and principles can be mapped to Agile methods, such as speed
and customer engagement.

Structure
There is no formal team structure according to Lean principles.

Principles
Lean software development is organized around seven key principles that
are aligned closely with those found in Lean manufacturing, as shown in
table 25.

Table 25: Lean Software Development Principles

Principle Description
Eliminate waste Recognize waste, create nothing but value, and keep the code simple.
Amplify learning Try different ideas, maintain a culture of constant improvement, and teach problem-solving

methods.
Deliver fast Deliver solutions in small iterations, focus on cycle time, release early and often, and follow the

just-in-time ideology.
Defer commitment Make irreversible decisions at the last responsible moment (when the customer better realizes

their need), break dependencies between components, and maintain options for as long as
possible.

4Mary and Tom Poppendieck, Lean Software Development: An Agile Toolkit (Boston,
Massachusetts: Addison-Wesley Professional, 2003).

Appendix V: Common Agile Frameworks

Page 243 GAO-20-590G GAO Agile Assessment Guide

Principle Description
Empower the team Train team leaders and supervisors, move responsibility and decision making to the lowest

possible level, and instill a “find good people and let them do their own job” approach.
Build integrity in Synchronize effort, automate testing and routines, and refactor to avoid code duplication.
Optimize the whole Focus on value to the customer, deliver a complete product with input from all stakeholders, and

find and eliminate all defects.

Source: GAO analysis of DOJ and Addison-Wesley Professional information. | GAO-20-590G

These principles guide lean software development by emphasizing
limiting any “waste” that teams create (e.g., duplicate code, re-iteration of
working components, and extensive documentation of activities beyond
what is required) to achieve a streamlined, efficient program outcome.

There are also 22 practices or tools to implement lean software
development practices. Among them are eliminating waste and focusing
on value by using value stream mapping, amplify learning via feedback
from iterations, and deliver as fast as possible with pull systems and
queuing theory.

Scaled Agile Framework

Overview
The Scaled Agile Framework (SAFe) is a governance model used to align
and collaborate product delivery for modest-to-large numbers of Agile
software development teams. The framework provides guidance for roles,
inputs, and processes for teams, programs, large solutions, and
portfolios. It is also intended to provide a scalable and flexible governance
framework that defines roles, artifacts, and processes for Agile software
development across all levels of an organization.

Structure
There are four different configurations of SAFe: essential, large solution,
portfolio, and full. These configurations allow for different scales of teams
to adopt SAFe, depending on the size and complexity of the product.
These levels allow teams to perform iterative processes using Agile
frameworks such as Scrum, XP, Lean, or others to develop features to be
used by a larger program that conforms to the overarching portfolio vision
within an enterprise. SAFe uses many of the same tools as other Agile

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 244 GAO-20-590G GAO Agile Assessment Guide

methods, such as backlogs, development teams, and time boxed
iterations.

Depending on the scale, the framework is divided into different levels,
each with its own responsibilities and processes that connect the different
levels. Development teams in SAFe align with the selected framework
and are advised to embrace the traditional “cross-functional team”
mentality. At the program level, these Agile teams come together to
create a “release train” that reflects specific roles and responsibilities, as
shown in table 26.

Table 26: Scaled Agile Framework Roles and Responsibilities

Role Responsibilities
Scrum master Facilitates meetings, removes impediments, and maintains the team’s focus.
Product owner Owns the team backlog and prioritizes work. Also acts as the customer for developer questions and

collaborates with Product Management to plan and deliver solutions.
Development team Has three to nine individual contributors, covering all the roles needed to build an increment of value for

an iteration.
Release Train Engineer Facilitates program-level execution, removes impediments, performs risk and dependency management,

and fosters continuous improvement.
Product management Responsible for identifying items to be added to the program backlog, prioritizing the backlog, and

interfacing with product owners to confirm alignment between the software components and enterprise
goals. Also responsible for the vision, road map, and new features in the program backlog.

System architect/engineer Focuses on stakeholder needs and ensuring that the solution is designed to cater to these needs while
delivering functionality across various features, components, and the larger solution.

Business owners Responsible for the business outcomes of the product.

Source: GAO analysis of DOJ, FAA, and Scaled Agile Inc. information. | GAO-20-590G

Principles
SAFe5 has ten framework principles, outlined in table 27, that can be
tailored to suit a program’s requirements.

5As of May 2020, this guide refers to SAFe v5.0.

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 245 GAO-20-590G GAO Agile Assessment Guide

Table 27: Scaled Agile Framework Principles

Principle Description
Take an economic view Decisions are made within the proper economic context. Strategies for incremental delivery are

developed and communicated. A framework is created that takes into account risk, different types
of cost, and decentralized decision making.

Apply systems thinking Systems thinking solutions development takes a holistic view, incorporating both the system and
the environment, taking into account people, management, and processes.

Assume variability; preserve
options

Variability is neither good nor bad in SAFe. Multiple options should be considered, and these
options should be maintained for as long as possible. Learning should be encouraged, even if it
results in mistakes.

Build incrementally with fast,
integrated learning cycles

Develop the system incrementally in order to determine technical feasibility, establish usability,
and gain customer feedback, among other benefits. Value is delivered at each increment, and
uncertainty is reduced as more is learned.

Base milestones on objective
evaluation of working systems

Milestones with SAFe are based on demonstrating working software. These milestones allow
stakeholders to frequently evaluate the software.

Visualize and limit work in
progress, reduce batch size, and
manage queue length

Limiting work-in-progress helps ensure that teams are not overloaded with work, while visualizing
work-in-progress allows for easy identification of bottlenecks. Another way to limit work-in-
progress is to decrease batch size (batch being the requirements, design, code, tests, etc.), so
more work can flow through the process. This is typically accomplished by increasing automation
and infrastructure.

Apply cadence, synchronize with
cross-domain planning

Cadence provides a rhythmic pattern and a consistent routine to development. Synchronization
allows the teams to align with a common goal and is enabled by events like release planning,
where all stakeholders participate in planning the next increment.

Unlock the intrinsic motivation of
knowledge workers

Since knowledge workers understand more about the technical aspects of their work than their
manager, the manager’s role is to motivate teams rather than direct their work. Motivation should
stem from innovation and engagement rather than threats, intimidation, or fear. Managers provide
workers with a larger vision, which guides them to autonomously perform daily tasks. Managers
support teams during disagreements (where appropriate) by helping them to negotiate and
problem solve, among other things.

Decentralize decision-making Strategy decisions that are infrequent, long lasting, and provide significant economies of scale can
be centralized while all other decisions can be decentralized in order to reduce delays.

Organize around value The organization’s structure with SAFe should be driven by value flow instead of traditional silos.
This allows the organization to more quickly adapt to changes in the value flow.

Source: GAO analysis of DOJ, FAA, and Scaled Agile Inc. information. | GAO-20-590G

Scrum

Overview
Scrum, the most widely used framework for Agile software development,
seeks to address complex problems while delivering high-value products
frequently and effectively. Originating from a 1986 text by Hirotaka
Takeuchi and Ikujiro Nonaka titled, “The New New Product Development
Game,” the method was first referred to as “Scrum” by Ken Schwaber and

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 246 GAO-20-590G GAO Agile Assessment Guide

Jeff Sutherland in the early 1990s to emphasize a holistic approach using
multiple, overlapping phases.6 Schwaber and Sutherland authored the
Scrum Guide, which details the methodology.7 Scrum relies heavily on the
concept of “Scrum teams” that are responsible for producing working
software in increments often referred to as a “sprint.” Each sprint is a
short, time boxed iteration that is intended to provide distinct, consistent,
and incremental progress of prioritized software features.

Structure
The Scrum framework is centered on Scrum teams where members fill
specific roles and responsibilities. These members are responsible for
various tasks, including developing Agile artifacts. Each team contains
members that fit into one of these three main roles, as shown in table 28.

Table 28: Scrum Team Structure

Role Responsibility
Product owner Represents stakeholders.
Development team The group that carries out software coding, implementation, testing, and development.
Scrum master Responsible for making sure Scrum theory, practices, and rules are adhered to by the

development team.

Source: GAO analysis of DOJ, Booz Allen Hamilton, and The Scrum Guide information. | GAO-20-590G

With Scrum, teams are self-organizing and choose how best to
accomplish their work, rather than being directed by management. Teams
are also cross-functional, meaning they include members who have the
capabilities to achieve the work without depending on someone outside
the team. This model optimizes flexibility, creativity, and productivity and
seeks to eliminate the need for a traditional program manager since each
team supervises itself.

During sprint planning meetings, the team determines the type of work to
be done, prepares the sprint backlog (ordered list of tasks to be
accomplished during the sprint), and communicates expected
responsibilities between team members. Teams meet daily during each
sprint for a brief status update. Each sprint is intended to produce, among

6Takeuchi, Hirotaka and Ikujiro Nonaka. “The New New Product Development Game.”
Harvard Business Review 64, no. 1 (January–February 1986).

7Ken Schwaber and Jeff Sutherland, The Scrum Guide:™ The Definitive Guide to Scrum:
The Rules of the Game (Creative Commons, 2017).

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 247 GAO-20-590G GAO Agile Assessment Guide

other things, completed increments of software features that are
ultimately built into the final product solution.

The sprint backlog is a subset of the most important features from the
overall product backlog. Teams decompose these requirements into user
stories that describe what the customer wants. The software developed
during the sprint should satisfy those needs in order for a user story to be
considered complete.

A burn-down chart is a public display of the remaining work in the sprint
backlog. The team updates the burn-down chart daily to keep everyone
informed of the status of tasks.

Principles
Scrum is founded on three pillars that uphold the process. Table 29
outlines the three pillars.

Table 29: Scrum Principles

Principle Description
Transparency A common standard and understanding must be shared in order for the process to be visible. For

example, the definition of done documents a common definition between developers and product owners.
Inspection Artifacts are frequently inspected to detect any issues, but this inspection should not get in the way of

work.
Adaptation Adjustments should be made as soon as possible. Recurring events like sprint planning meetings and

retrospectives provide additional refinements and updates.

Source: GAO analysis of DOJ, Booz Allen Hamilton, and The Scrum Guide information. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Appendix V: Common Agile Frameworks

Page 248 GAO-20-590G GAO Agile Assessment Guide

Scrumban

Overview
Scrumban combines both Scrum and Kanban, typically by using the
Scrum team structure with Kanban process principles. Scrumban is seen
as being more flexible than Scrum, but more structured than Kanban.

Structure
Similar to Scrum, Scrumban uses iterative planning, requirements
prioritization, and structured teams. From Kanban, Scrumban uses the
pull system, work-in-progress limits, and work visualization (Kanban
board).

Principles
Scrumban relies on the principles of Scrum and Kanban, as discussed in
the previous sections.

Appendix VI: Debunking Agile Myths

Page 249 GAO-20-590G GAO Agile Assessment Guide

Appendix VI: Debunking Agile
Myths
Myth 1: Agile does not require any
documentation
The adaptive and iterative nature of Agile places less emphasis on the
need for documentation when compared to Waterfall development
methods, but that does not mean that no documentation is required. A
Waterfall development results in detailed documentation at the end of
each phase and the program requirements are not expected to change
much over time. However, elements of the program continuously evolve
as additional information becomes available and customer needs are
further defined. As a result, Agile programs use an appropriate level of
documentation at the end of pre-defined time boxed periods in the Agile
development cadence (e.g., the iteration, release, or other major
milestone as defined by the program). In addition, in some cases, an
Agile approach might replace more formal documentation with information
embedded in program tools.

Myth 2: Agile does not require planning
As with any approach, planning is a vital aspect that will greatly diminish
the effectiveness of a successful implementation if not done
appropriately. Waterfall development conducts extensive planning
upfront, while Agile spreads planning activities (e.g., what specific
functionality will be delivered when) more evenly throughout the program
life cycle. High-level planning is completed at the beginning of an Agile
program and is continuously elaborated on throughout the program as
new information becomes available. Continuous planning allows a
program to start much more quickly and make adjustment to the
customers’ needs as new information becomes available.

Appendix VI: Debunking Agile Myths

Page 250 GAO-20-590G GAO Agile Assessment Guide

Myth 3: Agile does not require any oversight
Within an Agile approach, the team members working on the program
have autonomy over decisions about how to meet the needs of the
customer. However, most government organizations will find it
challenging to allow teams complete autonomy due to reporting and
accountability requirements. As a result, organizations transitioning to
Agile may need to modify their governance practices. This includes
incorporating clearly defined parameters (also called guard rails) within
which the team is free to make decisions and a clearly defined, fast-
moving governance process to make decisions that are outside the
team’s control.

Myth 4: Agile works only in colocated
environments
For any program, it is almost always better off if its participants are co-
located. Frequent human interaction is a necessary element of Agile, but
it is also necessary when employing Waterfall development methods.
Furthermore, a lack of co-location can be a serious impediment if a
program is poorly managed. However, distributed programs can still
succeed. As is true for any program type, distribution calls for careful
management and awareness what needs to be executed differently when
some team members are not in the same location. For example, there are
many tools available that allow for close communication between team
members who are distributed throughout various locations.

Myth 5: Agile only works for small programs
with a single team
An Agile development team consists of small, cross-functional groups that
collaborate throughout the development process. This approach can be
equally effective on small programs and larger efforts working to develop
complex systems, since Agile teams typically “divide and conquer.” For
larger programs, this means that teams can be organized and focus on
separate components of system functionality and/or technical
architecture.

Appendix VI: Debunking Agile Myths

Page 251 GAO-20-590G GAO Agile Assessment Guide

For Agile programs of all sizes, but especially for the large and complex
programs, continuous integration of developed components on a daily, if
not more frequent, basis is a critical success factor. More specifically,
teams need to check in and test newly-developed code against the larger
solution within a production-like environment. In an Agile program with
typically short development iterations, parallel development efforts, and
frequent delivery of functionality, teams must integrate their work often to
detect and resolve errors as quickly as possible, with the ultimate goal of
being able to deploy at any time. If teams delay integration to just-prior-to-
release, they will likely run out of time to adequately perform testing,
address defects, and prepare the infrastructure. Teams should ensure
that they have the right automated build and test tools, and the
appropriate processes in place to support continuous integration.

Myth 6: Using any Agile framework will
automatically result in program success
Deciding to use an Agile framework should occur on a program-by-
program basis. Agile is not necessarily the solution for all programs. For
example, not all programs will have flexible requirements, allowing trade-
offs to occur between scope with schedule and costs. With every software
development effort, learning to deal with issues as they arise is the key to
reducing the risks of failure.

Myth 7: Agile requires a lot of rework
While Agile emphasizes that only near-term work is planned in detail
(such as just the next iteration), programs still define their overall goal in a
vision and typically plan the releases needed to satisfy the vision. This
plan could change or end early, but still provides a high-level view of the
work to be accomplished for the entire duration of the program.
Additionally, while the team self-organizes its own work, it must still be
aware of any dependencies with other teams or resources.

Myth 8: Agile does not require an architecture
Agile does not mean cobbling together an IT system with little or no
design or architectural thinking. Agile stresses simplifying upfront design,
not eliminating upfront design. The Agile Manifesto states that

Appendix VI: Debunking Agile Myths

Page 252 GAO-20-590G GAO Agile Assessment Guide

“Continuous attention to technical excellence and good design enables
agility.”1 Furthermore, many Agile frameworks provide the tools and
techniques for the team to produce high-quality code. Many of the best
practices discussed in previous chapters are aimed specifically at
ensuring that the quality of the product being delivered is fit for the
purpose. Agile stresses simple, upfront design to focus on the foundation
and general structure of the software. For example, Agile developers
avoid building software features that may or may not be needed and
instead build for the current need and receive feedback in the iterative
delivery of software to the client. However, that does not mean that Agile
teams do not need high-level architecture to succeed. Rather, Agile
systems strive to keep their architecture simple and only add complexity
when it is needed.

Myth 9: Agile does not require risk analysis
As Agile teams are self-organizing and its iterative process is viewed as a
way to mitigate the inherent risk in developing complex software
programs, a perception can develop that explicit risk management
practices are unnecessary. All programs face risk and uncertainty, whose
likelihood and potential impact should be examined. For example,
effective practices for Agile include developing initial plans at a high level
and updating these frequently as more is learned about the program.
While Agile emphasizes that teams will uncover risk via early and
frequent delivery of software, the potential impact of some issues, such
as technical debt or team size, should be considered earlier rather than
later.

Myth 10: A schedule baseline cannot be reliably
developed or used for an Agile software
development effort
A central tenet of Agile is to welcome change. As part of this, teams
practice rolling wave planning, a technique where only near-term work is
planned in detail. This helps to minimize the cost of changing plans, but
frequent changes can appear to be in conflict with the concept of
adhering to a baseline. Another key principle is that working software
should be the primary measure of progress, so schedule trends displayed

1©2001-2020 Agile Manifesto authors https://agilemanifesto.org.

https://agilemanifesto.org/

Appendix VI: Debunking Agile Myths

Page 253 GAO-20-590G GAO Agile Assessment Guide

in burn-down/burn-up charts are seen as lagging indicators. However,
welcoming change does not mean that software is developed and
delivered in an undisciplined or ad hoc manner. A key principle of Agile is
that the highest priority is to satisfy the customer through early and
continuous delivery of usable software, and teams typically develop and
deliver working software to the customer in time boxed iterations. These
iterations are guided by the vision, which establishes a high-level
definition of the cost, schedule, and scope goals for the program and
provides a basis for specifying expected outcomes for iterations. These
must have features identify the program’s schedule baseline and, as a
result, developers have the ability to demonstrate the value provided by
features developed at the end of releases and how those features tie to
the program vision. A baseline should be created and approved in concert
with a rolling wave planning process, and it should contain enough detail
to enable a collaborative agreement between product owners and
developers without making schedule updates overly frequent or
cumbersome. As the schedule is updated with actual data and revisions
are made, updates can be documented in progress records through
various Agile metrics and a schedule narrative. Schedule trends showing
deviations from the baseline can be used to understand the need for
changes, whether to program execution or to the baseline itself, which
can be updated only if it is no longer a realistic portrayal of program
execution. This helps ensure that the baseline provides a good basis for
measuring and understanding progress and maintaining accountability.

Myth 11: Earned value management is not
compatible with Agile Programs
Since Agile development is dynamic, developers claimed that earned
value management (EVM) is not well suited as a measurement tool in an
Agile environment. However, EVM is an important management tool that
provides performance measurement information for a program. In the
past, recommendations were made to eliminate EVM for Agile programs
because it was not fluid enough to implement effectively. While EVM
tracks program performance to a fixed point in time, using an Agile
approach does not preclude the need for a disciplined approach for
performance measurement processes. This is especially true for
government Agile programs. While scope is flexible for an iteration, often
scope is not flexible for the overall program. When the scope is not
flexible, as assumed for Agile programs, then additional expenditures and
time may be needed to meet all requirements. A tailored EVM approach,

Appendix VI: Debunking Agile Myths

Page 254 GAO-20-590G GAO Agile Assessment Guide

as discussed in chapter 7, can leverage EVM’s benefits for Agile
programs. Additionally, EVM is not tied to any specific development
methodology and does not prevent the use of other risk management
techniques like those used in Agile development. Furthermore, Agile
development can be used to incrementally deliver functionality to the
customer, while EVM provides a standard method for measuring
progress.

Appendix VII: Background for Case Studies
and Agile in Actions

Page 255 GAO-20-590G GAO Agile Assessment Guide

Appendix VII: Background for
Case Studies and Agile in
Actions
Case studies
Case studies used in this guide were taken from GAO reports and
highlight problems and successes typically associated with Agile
practices. These particular examples were chosen to augment key points
and lessons learned that are discussed in the guide. Agile in action
examples feature practices adopted by programs and organizations we
interviewed that we believe illustrate Agile key practices executed in an
exemplary or innovative way. The difference between a case study and
an Agile in action example is that the Agile in action examples are not
based on published GAO reports, but rather on our research, interviews,
and by self-reporting entities.

The material in the guide’s 15 case studies was drawn from the eight
GAO reports described in this appendix. The material in the guide’s five
Agile in action examples were drawn from six site visits GAO made to
various organizations. Table 30 shows the relationship between published
GAO reports and case studies and the chapters in which the reports are
cited. The table is arranged by the order in which the case study appears
in the guide. Following the table, paragraphs describe the reports used
(listed in the same order as listed in the table).

Table 30 shows the relationship between the case studies, GAO report,
and the chapters in which the organizations are cited. The table is
arranged by the order in which the case studies appear in the guide.
Following the table, paragraphs describe the organizations visited.

Appendix VII: Background for Case Studies
and Agile in Actions

Page 256 GAO-20-590G GAO Agile Assessment Guide

Table 30: Case Studies Drawn from GAO Reports Used In this Guide

Case Study GAO report # Chapter
1 GAO-20-146: Space Command and Control 2
2 GAO-18-184: Defense Management 3
3, 13, 15 GAO-16-467: Immigration Benefits System 3, 8
4, 5, 6, 10, 12 GAO-20-213: Agile Software Development 3, 5
7 GAO-19-136: DOD Space Acquisitions 3
8 GAO-19-164: FEMA Grants Modernization 4
9, 14 GAO-18-46: TSA Modernization 5, 8
11 GAO-20-170SP: Homeland Security Acquisitions 5

Source: GAO. | GAO-20-590G

Case Study 1: From Space Command and Control: Comprehensive
Planning and Oversight Could Help DOD Acquire Critical Capabilities and
Address Challenges, GAO-20-146, October 30, 2019.

Since the early 1980s, the Air Force has been working to modernize and
consolidate its space command and control systems. The past three
programs to attempt this have ended up significantly behind schedule and
over budget. They also left key capabilities undelivered.

This report describes the status of DOD’s newest efforts to develop space
command and control capabilities and identifies challenges the Air Force
faces in bringing them to fruition.

We found the Space C2 program is facing a number of challenges and
unknowns, from management issues to technical complexity. Additionally,
DOD officials have not yet determined what level of detail is appropriate
for acquisition planning documentation for Agile software programs. They
are also not certain about the best way to provide oversight of these
programs but are considering using assessments by external experts.
These knowledge gaps run counter to DOD and industry best practices
for acquisition and put the program at risk of not meeting mission
objectives. Additionally, software integration and cybersecurity challenges
exist, further complicating program development. The Air Force has
efforts underway to mitigate some of these challenges in the near term,
but, until the program develops a comprehensive acquisition strategy to
more formally plan the program, it is too early to determine whether these
efforts will help to ensure long-term program success.

https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-18-184
https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-590G
https://www.gao.gov/products/GAO-20-146

Appendix VII: Background for Case Studies
and Agile in Actions

Page 257 GAO-20-590G GAO Agile Assessment Guide

GAO reported its findings on October 30, 2019 in Space Command and
Control: Comprehensive Planning and Oversight Could Help DOD
Acquire Critical Capabilities and Address Challenges, GAO-20-146.

Case Study 2: From Defense Management: DOD Needs to Take
Additional Actions to Promote Department-Wide Collaboration,
GAO-18-194, February 28, 2018.

Although the Department of Defense (DOD) maintains military forces with
unparalleled capabilities, it continues to confront organizational and
management challenges that hinder collaboration and integration across
the department. To address these challenges, section 911 of the National
Defense Authorization Act (NDAA) for Fiscal Year 2017 directed the
Secretary of Defense to issue an organizational strategy that identifies
critical objective which span multiple functional boundaries and that would
benefit from the use of cross-functional teams.

This report evaluates the extent to which DOD, in accordance with
statutory requirements and leading practices, has developed and issued
an organizational strategy, established Secretary of Defense-empowered
cross-functional teams, and provided associated training for Office of the
Secretary of Defense leaders. We found that DOD has implemented
some of the statutory requirements outlined in section 911 of the NDAA to
address organizational challenges but could do more to promote
department-wide collaboration. Specifically, DOD established one cross-
functional team to address the backlog on security clearances and
developed draft guidance for cross-functional teams that addresses six of
seven required statutory elements and incorporates five of eight leading
practices that GAO has identified for effective cross-functional teams.
Fully incorporating all statutory elements and leading practices will help
the teams consistently and effectively address DOD’s strategic objectives.

GAO reported its findings on February 28, 2018 in Defense Management:
DOD Needs to Take Additional Actions to Promote Department-Wide
Collaboration, GAO-18-194.

Case Studies 3, 13, 15 From Immigration Benefits System: U.S.
Citizenship and Immigration Services Can Improve Program
Management, GAO-16-467, July 7, 2016.

Each year, the U.S. Citizenship and Immigration Service (USCIS)
processes millions of applications for persons seeking to study, work,
visit, or live in the United States, and for persons seeking to become a

https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-16-467

Appendix VII: Background for Case Studies
and Agile in Actions

Page 258 GAO-20-590G GAO Agile Assessment Guide

U.S. citizen. In 2006, USCIS began the Transformation Program to
enable electronic adjudication and case management tools that would
allow users to apply and track their applications online. In 2012, to
address performance concerns, USCIS changed its acquisition strategy
to improve system development.

In May 2015, GAO reported that USCIS expected the program to cost up
to $3.1 billion and be fully operational by March 2019. This includes more
than $475 million that was invested in the initial version of the program’s
key case management component, USCIS’s Electronic Immigration
System (USCIS ELIS), which has since been decommissioned. This
report evaluates the extent to which the program is using information
technology program management leading practices.

We found software development and systems integration and testing for
USCIS ELIS have not consistently been managed in line with the
program’s policies and guidance or with leading practices. Regarding
software development, the Transformation Program has produced some
software increments, but is not consistently following its own guidance
and leading practices. The software development model (Agile) adopted
by the USCIS Transformation Program in 2012 includes practices aimed
at continuous, incremental release of segments of software. Important
practices for Agile defined in program policies, guidance, and leading
practices include ensuring that the software meets expectations prior to
being deployed, teams adhere to development principles, and
development outcomes are defined.

We also found the Transformation Program has established an
environment that allows for effective systems integration and testing and
has planned for and performed some system testing. However, the
program needs to improve its approach to system testing to help ensure
that USCIS ELIS meets its intended goals and is consistent with agency
guidance and leading practices. Among other things, the program needs
to improve testing of the software code that comprises USCIS ELIS and
ensure its approaches to interoperability and end user testing,
respectively, meet leading practices. Collectively, these limitations have
contributed to issues with USCIS ELIS after new software is released into
production.

GAO reported its findings on July 7, 2016 in Immigration Benefits System:
U.S. Citizenship and Immigration Services Can Improve Program
Management, GAO-16-467.

https://www.gao.gov/products/GAO-16-467

Appendix VII: Background for Case Studies
and Agile in Actions

Page 259 GAO-20-590G GAO Agile Assessment Guide

Case Study 4, 5, 6, 10, 12: From Agile Software Development: DHS Has
Made Progress in Implementing Leading Practices, but Needs to take
Additional Actions, GAO-20-213, June 1, 2020.

Many of the Department of Homeland Security’s (DHS) major acquisition
programs have taken longer than expected to develop or failed to deliver
the desired value. In April 2016, to help improve the department’s IT
acquisition, and management, DHS identified Agile software development
as the preferred approach for all of its IT programs and projects. This
resulted in five Agile pilot programs. Each pilot program was overseen by
a component integrated program team. Collectively, the first pilot
programs were also overseen and supported by a DHS integrated
program team. In April 2016, the department issued an Agile instruction,
which identified Agile software development as the preferred approach for
all DHS programs and projects that are to deliver an IT, or embedded-IT
capability. The department also set an expectation for its component
Chief Information Officers (CIO) to develop plans to increase the use of
Agile development and justify any major IT programs that did not intend to
use Agile development practices. Many DHS programs were already
using Agile or similar incremental development methods before the
department identified it as the preferred approach.

GAO found that DHS has addressed four of nine leading practices for
adoption Agile software development. For example, the department has
modified its acquisition policies to support Agile development methods.
However, it needs to take additional steps to, among other things, ensure
all staff are appropriately trained and establish expectations for tracking
software code quality. By fully addressing leading practices, DHS can
reduce the risk of continued problems in developing and acquiring
current, as well as, future IT systems.

GAO reported its findings on June 1, 2020 in Agile Software
Development: DHS Has Made Progress in Implementing Leading
Practices, but Needs to take Additional Actions, GAO-20-213.

Case Studies 9, 14: From TSA Modernization: Use of Sound Program
Management and Oversight Practices Is Needed to Avoid Repeating Past
Problems, GAO-18-46, October 17, 2017.

TSA conducts security threat assessment screening and credentialing
activities for millions of workers and travelers in the maritime, surface,
and aviation transportation industries that are seeking access to
transportation systems. In 2008, TSA initiated the TIM program to

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-18-46

Appendix VII: Background for Case Studies
and Agile in Actions

Page 260 GAO-20-590G GAO Agile Assessment Guide

enhance the sophistication of its security threat assessments and to
improve the capacity of its supporting systems. However, the program
experienced significant cost and schedule overruns, and performance
issues, and was suspended in January 2015 while TSA established a
new strategy. The program was rebaselined in September 2016 and is
estimated to cost approximately $1.27 billion and be fully operational by
2021 (about $639 million more and 6 years later than originally planned).

We were asked to review the TIM program’s new strategy. This report
determined, among other things, the extent to which TSA implemented
selected key practices for transitioning to Agile software development for
the program. We found the program only fully implemented two of six
leading practices necessary to ensure successful Agile adoption.
Specifically, the Department of Homeland Security (DHS) and TSA
leadership fully committed to adopt Agile and TSA provided Agile training.
Nonetheless, the program had not defined key roles and responsibilities,
prioritized system requirements, or implemented automated capabilities
that are essential to ensuring effective adoption of Agile.

GAO reported its findings on October 17, 2017 in TSA Modernization:
Use of Sound Program Management and Oversight Practices is Needed
to Avoid Repeating Past Problems, GAO-18-46.

Case Study 7: From DOD Space Acquisitions: Including Users Early and
Often in Software Development Could Benefit Programs, GAO-19-136,
March 18, 2019.

Over the next 5 years, DOD plans to spend over $65 billion on its space
system acquisitions portfolio, including many systems that rely on
software for key capabilities. However, software-intensive space systems
have had a history of significant schedule delays and billions of dollars in
cost growth.

Senate and House reports accompanying the National Defense
Authorization Act for Fiscal Year 2017 contained provisions for GAO to
review challenges in software-intensive DOD space programs. This report
addresses, among other things, (1) the extent to which these programs
have involved users; and (2) what software-specific management
challenges, if any, programs faced.

We found actual program efforts to involve users and obtain and
incorporate feedback were often unsuccessful. This was due, in part, to
the lack of specific guidance on user involvement and feedback. Although

https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-19-136

Appendix VII: Background for Case Studies
and Agile in Actions

Page 261 GAO-20-590G GAO Agile Assessment Guide

DOD policies state that users should be involved and provide feedback
on software development projects, they do not provide specific guidance
on the timing, frequency, and documentation of such efforts. In selected
instances, the lack of user involvement has contributed to systems that
were later found to be operationally unsuitable.

The programs we reviewed also faced software-specific challenges in
using commercial software, applying outdated software tools, having
limited knowledge, and training in newer software development
techniques. For example, programs using commercial software often
underestimated the effort required to integrate such software into an
overall system. Secondly, selected programs relied on obsolete software
tools that they were accustomed to using but which industry had since
replaced. Finally, we found that two of the reviewed programs lacked
knowledge of more modern software development approaches. DOD has
acknowledged these challenges and has efforts underway to address
each of them.

GAO reported its findings on March 18, 2019 in DOD Space Acquisitions:
Including Users Early and Often in Software Development Could Benefit
Programs, GAO-19-136.

Case Study 8: From FEMA Grants Modernization: Improvements
Needed to Strengthen Program Management and Cybersecurity,
GAO-19-164, April 9, 2019.

The Federal Emergency Management Agency (FEMA), a component of
DHS, annually awards billions of dollars in grants to help communities
prepare for, mitigate the effects of, and recover from major disasters.
However, FEMA’s complex IT environment supporting grants
management consists of many disparate systems. In 2008, the agency
attempted to modernize these systems but experienced significant
challenges. In 2015, FEMA initiated a new endeavor (the GMM program)
aimed at streamlining and modernizing the grants management IT
environment.

GAO was asked to review the GMM program. We found GMM’s initial
May 2017 cost estimate no longer reflected current assumptions about
the program. FEMA officials stated in December 2018 that they had
completed a revised cost estimate, but it was undergoing departmental
approval. We also found GMM’s program schedule was inconsistent with
leading practices; of particular concern was that the program’s final
delivery date of September 2020 was not informed by a realistic

https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-19-164

Appendix VII: Background for Case Studies
and Agile in Actions

Page 262 GAO-20-590G GAO Agile Assessment Guide

assessment of GMM development activities, and rather was determined
by imposing an unsubstantiated delivery date.

GAO reported its findings on April 9, 2019 in FEMA Grants
Modernization: Improvements Needed to Strengthen Program
Management and Cybersecurity, GAO-19-164.

Case Study 11: From Homeland Security Acquisitions: Outcomes Have
Improved but Actions Needed to Enhance Oversight of Schedule Goals,
GAO-20-170SP, December 19, 2019.

Each year, the Department of Homeland Security (DHS) invests billions of
dollars in a diverse portfolio of major acquisition programs to help execute
its many critical missions. DHS plans to spend more than $10 billion on
these programs in fiscal year 2020 alone. DHS’s acquisition activities are
on GAO’s High Risk List, in part, because of management and funding
issues. This report, GAO’s fifth review, addresses the extent to which
DHS’s major acquisition programs are on track to meet their schedule
and cost goals and current program baselines trace to key acquisition
documents.

To help manage its multi-billions dollar acquisition investments, DHS has
established policies and processes for acquisition management,
requirements development, test and evaluation, and resource allocation.
The department uses these policies and processes to deliver systems
that are intended to close critical capability gaps, helping enable DHS to
execute its missions and achieve its goals.

Traceability, which is called for in DHS policy and GAO scheduling best
practices, helps ensure that program goals are aligned with program
execution plans, and that a program’s various stakeholders have an
accurate and consistent understanding of those plans and goals.

Appendix I of this report presents individual assessments for each of the
29 programs we reviewed. Each assessments presents information
current as of August 2019. They include standard elements, such as an
image, a program description, and summaries of the program’s progress
in meeting cost and schedule goals, performance and testing activities,
and program management-related issues, such as staffing.

GAO reported its findings on December 19, 2019 in Homeland Security
Acquisitions: Outcomes Have Improved but Actions Needed to Enhance
Oversight of Schedule Goals, GAO-20-170SP.

https://www.gao.gov/products/GAO-19-164
https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-170SP

Appendix VII: Background for Case Studies
and Agile in Actions

Page 263 GAO-20-590G GAO Agile Assessment Guide

Agile in Actions
Agile in action examples were developed through various site visits made
by GAO during the course of developing this guide. While they are not
based on a previously published GAO report, they were developed by
interviewing agency officials, reviewing documentation, and site visits to
observe Agile being used. To verify that the information presented in
these examples was complete, accurate, and up-to-date, we provided
each organization with a draft version of our summary analysis.

Table 31: Agile in Action Drawn from GAO Interviews

Agile in Action Agency/company visited Chapter
1, 4 NNSA G2 5, 7
2 GSA (18F), US Air Force 6
3 DHS HQ 7
5 Agility Health 8

Source: GAO. | GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Appendix VIII: Specialists Who Helped Develop
this Guide

Page 264 GAO-20-590G GAO Agile Assessment Guide

Appendix VIII: Specialists
Who Helped Develop this
Guide
The list in this appendix names the knowledgeable specialists, with their
organizations, who helped us develop this guide. The list includes the
names of those who made significant contributions to the Agile Guide.
They attended and participated in numerous working group meetings,
provided text or graphics, submitted comments, and hosted research site
visits.

Organization Specialist
Agile Infusion, LLC Bob Schatz
Agile Transformation, Inc. Sally Elata
Artemis Consulting Rohit Gupta
Boeing Jonathan Kiser

Jerry Starling
California Department of Technology Jeffery Porcar

Crystal Taylor
Census Bureau Linda Flores-Baez
CGI Federal Laura Bier

Ed Canoles
ClearPlan, LLC Robin Pulverenti
David Consulting Group Mike Harris
Department of Defense Lawrence Asch

Harry Culclasure
Department of Education Trey Wiesenburg
Department of Energy Ty Deschamp

Kim Hobson
Tim Wynn

Department of Homeland Security Katherine Mann
Department of Justice Anthony Burley
Excella Consulting Patrick McConnell

Dane Weber
General Services Administration Zachary Cohn

Appendix VIII: Specialists Who Helped Develop
this Guide

Page 265 GAO-20-590G GAO Agile Assessment Guide

Organization Specialist
Kendrick Daniel
Ashley Owens

Humphrey’s and Associates Denise Jarvie
IBM Myke Traver
Independent Consultant Wendy Hilton
Intel Sam Caldwell

Leo Monford
Internal Revenue Service Jerome Frese
International Council on Systems
Engineering (INCOSE)

Phyllis Marbach

Leidos Phil Magrogan
Macro Solutions Todd Hager
MITRE Hassib Amiryar

Tony Curington
National Archives and Records
Administration

Sherli Nambiar

National Defense Industrial Association
(NDIA)

Joe Fischetti

National Geospatial-Intelligence Agency James Barclay
Northrop Grumman Eugene Nkomba
National Science Foundation Manik Naik
Office of Management and Budget Jim Wade
Project Management Institute (PMI), Madrid
Chapter

Mario Coquillant

Prometheus Consulting Harold Affo
Scaled Agile team Steve Mayner
Software Engineering Institute Suzanne Miller
Sway Digital and Data Eric Christoph
TekNirvana Tarak Modi
TeraThink Corporation Michael Staab
Treasury Department Matthew Kennedy
United States Air Force Michael You
United States Patent and Trade Office Carol Eakins

Victoria Figaro
Kris Hillstrom
John Owens

Vergys, LLC Greg Mantel
Vidya, LLC Neil Chaudhuri

Source: GAO. I GAO-20-590G

https://www.gao.gov/products/GAO-20-590G

Appendix IX: GAO Contacts and Staff
Acknowledgments

Page 266 GAO-20-590G GAO Agile Assessment Guide

Appendix IX: GAO Contacts
and Staff Acknowledgments
GAO Contacts
Timothy M. Persons, Ph.D., Managing Director, Science Technology
Assessment and Analytics (STAA)/Chief Scientist, at (202) 512-6888 or
personst@gao.gov

Carol Harris, Director, Information Technology and Cybersecurity (ITC), at
(202) 512-4456 or harriscc@gao.gov

Other Leadership on this Project
Michael Holland, Assistant Director, ITC

Jennifer Leotta, Assistant Director, STAA

Key Contributors
Mat Bader, Senior Information Technology Analyst
Jenn Beddor, Senior Systems Engineer
Brian Bothwell, Assistant Director
Chris Businsky, Visual Communications Analyst
Juaná Collymore, Senior Operations Research Analyst
Alan Daigle, Information Technology Analyst
Tim DiNapoli, Director
Emile Ettedgui, Senior Operations Research Analyst
Nancy Glover, Senior Communications Analyst
Anna Irvine, Senior Operations Research Analyst
Karen Richey Mislick, Assistant Director
Amy Pereira, Senior Attorney
Martin Skorczynski, Assistant Director
Walter Vance, Senior Methodologist
Mary Weiland, Senior Operations Research Analyst

mailto:personst@gao.gov
mailto:harriscc@gao.gov

References

Page 267 GAO-20-590G GAO Agile Assessment Guide

References
Agile Alliance. Agile Glossary. Retrieved March 5, 2020, from
https://www.agilealliance.org/agile101/agile-glossary/.

Alleman, Glen B., and Henderson, Michael. “Making Agile Development
Work in a Government Contracting Environment: Measuring Velocity with
Earned Value.” Salt Lake City, Utah: Agile Development. (June 2003.)

Arell, Ray, Jens Coldeway, and Jorgen Heselberg. “Characteristics of
Agile Organizations.” Agile Alliance. (2015.) Retrieved March 24, 2017,
from https://www.agilealliance.org/characteristics-of-agile-organizations/.

Barclay, Jim, and Jon Ruark. “Top 10 Agile Questions to Ask as a Senior
Manager”. National Geospatial-Intelligence Agency: July 25, 2016.

Bashir, Salma. “Team Facilitation.” (October 30, 2009.) Retrieved March
5, 2020, from https://www.slideshare.net/cococorina/team-facilitation.

Bellomo, Stephany, and Carol Woody. “DOD Information Assurance and
Agile: Challenges and Recommendations Gathered Through Interviews
with Agile Program Managers and DOD Accreditation Reviewers.”
Pittsburgh, Pennsylvania: Carnegie Mellon Univeristy, Software
Engineering Institute. (November 2012.)

Bier, L, and others. “Measuring Earned Value in an Agile World.” Binder
Dijker Otte (BDO), Consultants to Government and Industry (CGI), &
Deltek. (n.d.)

Booz Allen Hamilton. version 2.0. McLean, Virginia: Booz Allen Hamilton,
June 2016. Booz Allen Agile Playbook,

California Department of Technology. Understanding Agile, version 1.0.
Sacramento, California: Project Mangement Office, December 5, 2016.

Carnahan, Robin, Randy Hart, and Waldo Jaquith. “De-Risking custom
technology projects.” General Services Administration. (August 5, 2019.)
Retrieved September 3, 2019, from
https://github.com/18F/technology-budgeting/blob/master/handbook.md#b
asic-principles-of-modern-software-design.

https://www.agilealliance.org/agile101/agile-glossary/
https://www.agilealliance.org/characteristics-of-agile-organizations/
https://www.slideshare.net/cococorina/team-facilitation
https://github.com/18F/technology-budgeting/blob/master/handbook.md#basic-principles-of-modern-software-design
https://github.com/18F/technology-budgeting/blob/master/handbook.md#basic-principles-of-modern-software-design

References

Page 268 GAO-20-590G GAO Agile Assessment Guide

Carney, David, Suzanne Miller, and Mary Ann Lapham. “Agile
Development in Government: Myths, Monsters, and Fables.” Pittsburg,
Pennsylvania: Carnegie Mellon University, Software Engineering Institute.
(September 2016.)

Clarios Technology. “What is a cumulative flow diagram?” (2016.)
Retrieved December 31, 2019, from
http://www.clariostechnology.com/productivity/blog/whatisacumulativeflow
diagram.

CollabNet and VersionOne. “9th Annual State of Agile Report.” (2015.)

——-. “12th Annual State of Agile Report.” (2018.)

——-. “13th Annual State of Agile Report.” (2019.)

——-. “14th Annual State of Agile Report.” (2020.)

Craddock, Andrew, and others. “The DSDM Agile Project Framework for
Scrum.” DSDM Consortium. (2012.)

Dalton, Jeff. A Guide to Scrum and CMMI: Improving Agile Performance
with CMMI. Pittsburg, Pennsylvania: Capability Maturity Model Integration
Institute, January 18, 2017.

Davis, Christopher, W.H. Agile Metrics in Action. Shelter Island, New
York: Manning Publications Co., 2015.

Defense Science Board. “Design and Acquisition of Software for Defense
Systems”. Office of the Secretary of Defense. Washington, D.C: February
14, 2018.

Department of Homeland Security. “Department of Homeland Security
Agile Acquisition Software Delivery Core Metrics.” Washington, D.C.:
Department of Homeland Security. (May 22, 2017.)

Department of Justice. DOJ Agile Guidance Document. Washington,
D.C.: November 6, 2015.

Derby, Esther. “Why Not Velocity as an Agile Metric?” (October 18, 2011.)
Retrieved February 26, 2018, from
https://www.estherderby.com/why-not-velocity-as-an-agile-metric/.

http://www.clariostechnology.com/productivity/blog/whatisacumulativeflowdiagram
http://www.clariostechnology.com/productivity/blog/whatisacumulativeflowdiagram
https://www.estherderby.com/why-not-velocity-as-an-agile-metric/

References

Page 269 GAO-20-590G GAO Agile Assessment Guide

Donovan, Shaun. Management and Oversight of Federal Information
Technology, Office of Management and Budget. Washington, D.C.: June
10, 2015.

Eisenberg, Robert and Ron Terbush. “Topics on Earned Value
Management for Agile Development.” Gaithersburg, Maryland:
September 17, 2013.

Federal Acquisition Institute. “Contracting Professionals Smart Guide.”
(June 19, 2017.) Retrieved August 28, 2017, from
https://www.fai.gov/drupal/resources/contracting-professionals-smart-guid
e.

——. “Contracting Professionals Smart Guide: Types of Contracts.”
Retrieved August 28, 2017, from
https://www.fai.gov/resources/contracting-professionals-smart-guide.

——. “Agile Acquisitions 101: The Means Behind the Magic.” April 22,
2015.

Federal Aviation Administration. Federal Aviation Administration Agile
Acquisition Principles and Practices. Washington, D.C.: April 2016.

Foote, Steve, Justin F. Brunelle, and Tim Rice. Building Agile Programs.
MITRE’s Software Engineering Technical Center: November 28, 2018.

Garcia, Suzanne, and Richard, Turner. CMMI® Survival Guide: Just
Enough Process Improvement. Boston, Massachusetts: Pearson
Education, Inc., 2007.

Glover, M. Tanner, and Debra Dennie. How to be Agile with CMMI.
CMMI–Agile Process Combo. LMI Technology: January 27, 2017.

Gorans, Paul, and Philippe Kruchten. “A Guide to Critical Success
Factors in Agile Delivery.” Washington, D.C.: IBM Center for the Business
of Government. (January 16, 2014.)

Government Accountability Office. Drive to Deliver Capabilities Faster
Increases Importance of Program Knowledge and Consistent Data for
Oversight. GAO-20-439. Washington, D.C.: June 3, 2020.

https://www.fai.gov/drupal/resources/contracting-professionals-smart-guide
https://www.fai.gov/drupal/resources/contracting-professionals-smart-guide
https://www.fai.gov/resources/contracting-professionals-smart-guide
https://www.gao.gov/products/GAO-20-439

References

Page 270 GAO-20-590G GAO Agile Assessment Guide

——. DHS Has Made Significant Progress in Implementing Leading
Practices, but Needs to Take Additional Actions. GAO-20-213.
Washington, D.C.: June 1, 2020.

——. Cost Estimating and Assessment Guide. GAO-20-195G.
Washington, D.C.: March 12, 2020.

——. Outcomes Have Improved but Actions Needed to Enhance
Oversight of Schedule Goals. GAO-20-170SP. Washington, D.C.:
December 19, 2019.

——. Comprehensive Planning and Oversight Could Help DOD Acquire
Critical Capabilities and Address Challenges. GAO-20-146. Washington,
D.C.: October 30, 2019.

——. Agencies Need to Develop Modernization Plans for Critical Legacy
Systems. GAO-19-471. Washington, D.C.: June 11, 2019.

——. Including Users Early and Often in Software Development Could
Benefit Programs. GAO-19-136. Washington, D.C.: March 18, 2019.

——. Substantial Efforts Needed to Achieve Greater Progress on High-
Risk Areas. GAO-19-157SP. Washington, D.C.: March 6, 2019.

——. Departments Need to Improve Chief Information Officers’ Review
and Approval of IT Budgets. GAO-19-49. Washington, D.C.: November
13, 2018.

——. Government-wide Actions Needed to Improve Agencies’ Use of
Performance Information in Decision Making. GAO-18-609SP.
Washington, D.C.: September 5, 2018.

——. DOD Needs to Take Additional Action to Promote Department-Wide
Collaboration. GAO-18-194. Washington, D.C.: February 28, 2018.

——. DOD Senior Leadership Has Not Fully Implemented Statutory
Requirements to Promote Departmentwide Collaboration. GAO-18-513.
Washington, D.C.: June 25, 2018.

——. Further Implementation of FITARA Related Recommendations Is
Needed to Better Manage Acquisitions and Operations. GAO-18-234T.
Washington, D.C.: November 15, 2017.

https://www.gao.gov/products/GAO-20-213
https://www.gao.gov/products/GAO-20-195G
https://www.gao.gov/products/GAO-20-170SP
https://www.gao.gov/products/GAO-20-146
https://www.gao.gov/products/GAO-19-471
https://www.gao.gov/products/GAO-19-136
https://www.gao.gov/products/GAO-19-157SP
https://www.gao.gov/products/GAO-19-49
https://www.gao.gov/products/GAO-18-609SP
https://www.gao.gov/products/GAO-18-194
https://www.gao.gov/products/GAO-18-513
https://www.gao.gov/products/GAO-18-234T

References

Page 271 GAO-20-590G GAO Agile Assessment Guide

——. Agencies Need to Improve Certification of Incremental
Development. GAO-18-148. Washington, D.C.: November 7, 2017.

——. Use of Sound Program Management and Oversight Practices Is
Needed to Avoid Repeating Past Problems. GAO-18-46. Washington,
D.C.: October 17, 2017.

——. Further Progress Made in Implementing the GPRA Modernization
Act, but Additional Actions Needed to Address Pressing Governance
Challenges. GAO-17-775. Washington, D.C.: September 29, 2017.

——. U.S. Citizenship and Immigration Services Can Improve Program
Management. GAO-16-467. Washington, D.C.: July 15, 2016.

——. IRS Needs to Improve Its Processes for Prioritizing and Reporting
Performance of Investments. GAO-16-545. Washington, D.C.: June 29,
2016.

——. DOD Has Taken Initial Steps to Formulate an Organizational
Strategy, but These Efforts Are Not Complete. GAO-17-523R.
Washington, D.C.: June 23, 2017.

——. Schedule Assessment Guide. GAO-16-89G. Washington, D.C.:
December 22, 2015.

——. Better Informed Decision Making Needed on Transformation
Program. GAO-15-415. Washington, D.C.: May 18, 2015.

——. Cost and Schedule Commitments Need to Be Established Earlier.
GAO-15-282. Washington, D.C.: February 26, 2015.

——. Ineffective Planning and Oversight Practices Underscore the Need
for Improved Contract Management. GAO-14-694. Washington, D.C.:
July 31, 2014.

——. Agencies Need to Establish and Implement Incremental
Development Policies. GAO-14-361. Washington, D.C.: May 8, 2014.

——. Effective Practices and Federal Challenges in Applying Agile
Methods. GAO-12-681. Washington, D.C.: July 27, 2012.

——. Critical Factors Underlying Successful Major Acquisition. GAO-12-7.
Washington, D.C.: October 21, 2011.

https://www.gao.gov/products/GAO-18-148
https://www.gao.gov/products/GAO-18-46
https://www.gao.gov/products/GAO-17-775
https://www.gao.gov/products/GAO-16-467
https://www.gao.gov/products/GAO-16-545
https://www.gao.gov/products/GAO-17-523R
https://www.gao.gov/products/GAO-16-89G
https://www.gao.gov/products/GAO-15-415
https://www.gao.gov/products/GAO-15-282
https://www.gao.gov/products/GAO-14-694
https://www.gao.gov/products/GAO-14-361
https://www.gao.gov/products/GAO-12-681
https://www.gao.gov/products/GAO-12-7

References

Page 272 GAO-20-590G GAO Agile Assessment Guide

——. Action Needed to Improve Administration of the National Flood
Insurance Program. GAO-11-297. Washington, D.C.: June 9, 2011.

——. Veterans Affairs Can Further Improve Its Development Process for
Its New Education Benefits System. GAO-11-115. Washington, D.C.:
December 1, 2010.

——. Management Improvements Are Essential to VA’s Second Effort to
Replace Its Outpatient Scheduling System. GAO-10-579. Washington,
D.C.: May 27, 2010.

——. Concerted Effort Needed to Improve Federal Performance
Measures. GAO-09-617. Washington, D.C.: September 14, 2009.

——. Lessons Learned for the Next Administration on Using Performance
Information to Improve Results. GAO-08-1026T. Washington, D.C.: June
24, 2008.

——. Framework for Assessing the Acquisition Function at Federal
Agencies. GAO-05-218G. Washington, D.C.: September 1, 2005.

——. Implementation Steps to Assist Mergers and Organizational
Transformations. GAO-03-669. Washington, D.C.: July 23, 2003.

——. Better Acquisition Outcomes Are Possible if DOD Can Apply
Lessons From F/A-22 Program. GAO-03-654T. Washington, D.C.: April
11, 2003.

——. 1997 Government-wide Implementation Will be Uneven. GGD-97-
109. Washington, D.C.: June 2, 1997.

Hayes, Will. “Agile Metrics: Seven Categories.” Software Engineering
Institute blog. (September 22, 2014.) Retrieved June 2, 2020, from
https://insights.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categor
ies.html.

——. Three Secrets to Successful Agile Metrics. Software Engineering
Institute, November 2017.

Hayes, Will, and others. “Agile Metrics: Progress Monitoring of Agile
Contractors.” Pittsburg, Pennsylvania: Carnegie Mellon University,
Software Engineering Institute. (January 2014.)

https://www.gao.gov/products/GAO-11-297
https://www.gao.gov/products/GAO-11-115
https://www.gao.gov/products/GAO-10-579
https://www.gao.gov/products/GAO-09-617
https://www.gao.gov/products/GAO-08-1026T
https://www.gao.gov/products/GAO-05-218G
https://www.gao.gov/products/GAO-03-669
https://www.gao.gov/products/GAO-03-654T
https://www.gao.gov/products/GGD-97-109
https://www.gao.gov/products/GGD-97-109
https://insights.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categories.html
https://insights.sei.cmu.edu/sei_blog/2014/09/agile-metrics-seven-categories.html

References

Page 273 GAO-20-590G GAO Agile Assessment Guide

Intelliware Development Inc. “7 Myths of Agile Development.” Retrieved
March 27, 2018, from
http://www.intelliware.com/7-myths-agile-development/.

Jaikrishan, Vidarth. “Understanding Cumulative Flow Diagram.” Zepel.
Retrieved December 31, 2019, from
https://zepel.io/agile/reports/cumulative-flow-diagram/.

Jordan, Andy. Focus on the Right Stuff: Agile Metrics Matter. CA
Technologies, March 20, 2018.

Jordan, Joseph G., and Steven VanRoekel. Contracting Guidance to
Support Modular Development. Office of Management and Budget.
Washington, D.C.: June 14, 2012.

Kan, Stephen, H. Metrics and Models in Software Quality Engineering.
Upper Saddle River, New Jersey: Pearson Education, Inc., 2003.

Kanban Tool. “Cumulative Flow Diagram.” Get to know one of the most
insightful Kanban metrics. Retrieved December 31, 2019, from
https://kanbantool.com/cumulative-flow-diagram.

Kundra, Vivek. 25 Point Implementation Plan to Reform Federal
Information Technology Management. Office of Management and Budget.
Washington, D.C.: December 9, 2010.

Lapham, Mary Ann, and others. “Agile Methods: Selected DOD
Management and Acquisition Concerns.” Pittsburg, Pennsylvania:
Carnegie Mellon University, Software Engineering Institute. (October
2011.)

Lapham, Mary Ann, and others. “RFP Patterns and Techniques for
Successful Agile Contracting.” Pittsburg, Pennsylvania; Carnegie Mellon
University, Software Engineering Institute, (November 2016.)

Leffingwell, Dean. Agile Software Requirements Lean Requirements
Practices for Teams, Programs, and the Enterprise. Boston,
Massachusetts: Addison-Wesley, December 27, 2010.

List, Doc. “How to Get Started With Story Points Via Affinity Estimation
(And Cheat Sheet).” (June 2, 2016.) Retrieved May 5, 2020, from
https://agilevelocity.com/blogget-started-story-points-via-affinity-estimatio
n-cheat-sheet/.

http://www.intelliware.com/7-myths-agile-development/
https://zepel.io/agile/reports/cumulative-flow-diagram/
https://kanbantool.com/cumulative-flow-diagram
https://agilevelocity.com/blogget-started-story-points-via-affinity-estimation-cheat-sheet/
https://agilevelocity.com/blogget-started-story-points-via-affinity-estimation-cheat-sheet/

References

Page 274 GAO-20-590G GAO Agile Assessment Guide

Lorell, Mark A., Julia F. Lowell, Obaid Younossi. Evolutionary Acquisition
Implementation Challenges for Defense Space Programs. Santa Monica,
California: Rand Publishing, August 1, 2006.

Magennis, Troy. Moneyball for Software Projects: Agile Metrics for the
Metrically Challenged. Agile Alliance, 2014.

Mahmoud, Omar. “Agile Project Management Contorls.” The Barakah
Consulting Group. SW and IT Cost IPT Conference. Arlington, VA:
August 2015.

Marquis, Hank. “5 Steps to Transparent Metrics.” Do-IT-Yourself Guides.
itSM Solutions. (April 1, 2008.) Retrieved May 19, 2020, from
www.itsmsolutions.com/newsletters/DITYvol4iss14.htm.

McNally, Frank. “Enabling Acquisition Success for Agile Development.”
Arlington, Virginia: ASI Government. (March 2014.)

McQuade, Michael J., and others. “Software is Never Done: Refactoring
the Acquisition Code for Competitive Advantage.” Washington, D.C.:
Department of Defense. (March 14, 2019.)

Measey, Peter. “The Top 10 Myths about Agile Development.” June 2015.
Retrieved March 27, 2018, from
http://www.computerweekly.com/opinion/The-top-10-myths-about-agile-d
evelopment.

Miller, Suzanne. “The Readiness & Fit Analysis: Is Your Organization
Ready for Agile?” Pittsburg, Pennsylvania: Carnegie Mellon University,
Software Engineering Institute. (April 2014.)

——. “Is Your Organization Ready for Agile?–Part 5.” SEI Insights.
Carnegie Mellon University. (June 23, 2014.) Retrieved July 15, 2016,
from
https://insights.sei.cmu.edu/sei_blog/2014/06/is-your-organization-ready-f
or-agile.html.

——. “Is Your Organizaion Ready for Agile?–Part 6.” SEI Insights.
Carnegie Mellon University. (January 11, 2015.) Retrieved July 15, 2016,
from
https://insights.sei.cmu.edu/sei_blog/2015/01/is-your-organization-ready-f
or-agile-3.html.

http://www.itsmsolutions.com/newsletters/DITYvol4iss14.htm
http://www.computerweekly.com/opinion/The-top-10-myths-about-agile-development
http://www.computerweekly.com/opinion/The-top-10-myths-about-agile-development
https://insights.sei.cmu.edu/sei_blog/2014/06/is-your-organization-ready-for-agile.html
https://insights.sei.cmu.edu/sei_blog/2014/06/is-your-organization-ready-for-agile.html
https://insights.sei.cmu.edu/sei_blog/2015/01/is-your-organization-ready-for-agile-3.html
https://insights.sei.cmu.edu/sei_blog/2015/01/is-your-organization-ready-for-agile-3.html

References

Page 275 GAO-20-590G GAO Agile Assessment Guide

——. “Is Your Organization Ready for Agile?–Part 7.” SEI Insights.
Carnegie Mellon University. (April 25, 2016.) Retrieved July 15, 2016,
from
https://insights.sei.cmu.edu/sei_blog/2016/04/is-your-organization-ready-f
or-agile-4.html.

Miller, Suzanne, William Hayes, and Eileen Wrubel. “Agile in
Government. Written testimony of Software Engineering Institute’s Agile
in Government Team to House Ways and Means SSA Subcommittee.”
Pittsburg, Pennsylvania: Carnegie Mellon University, Software
Engineering Institute. (July 14, 2016.)

MITRE. “Agile Cost Estimation. Acquisition in the Digital Age.” Retrieved
June 10, 2019, from https://aida.mitre.org/agile/agile-cost-estimation/.

Modigliani, Pete, and Su Chang. “Defense Agile Acquisition
Guide:Tailoring DOD IT Acquisition Program Structures and Processes to
Rapidly Deliver Capabilities.” McLean, Virginia: The MITRE Corporation.
(March 2014.)

NASCIO (National Association of State Chief Information Officers) and
Accenture Consulting. “Agile IT Delivery: Imperatives for Government
Success.” (October 2, 2017.) Retrieved February 26, 2018, from
https://www.nascio.org/resource-center/resources/agile-it-delivery-imperat
ives-for-government-success/.

National Defense Industrial Association (NDIA). “An Industry Practice
Guide for Agile on Earned Value Management Programs.” Arlington,
Virginia: NDIA. (March 31, 2017.)

——-. “An Industry Practice Guide for Agile on Earned Value
Management Programs, Version 1.3.” Arlington, Virginia: NDIA. (May 26,
2019.)

Nicolette, David. Software Development Metrics. Shelter Island, New
York: Manning Publications, Co., 2015.

Niven, Paul, R. and Ben Lamorte. Objectives and Key Results: Driving
Focus, Alignment and Engagement with OKRs. Hoboken, New Jersey:
Wiley, John & Sons, Inc., 2016.

Norton, Michael. Agile Metrics: Velocity is Not the Goal. Agile Alliance,
2013.

https://insights.sei.cmu.edu/sei_blog/2016/04/is-your-organization-ready-for-agile-4.html
https://insights.sei.cmu.edu/sei_blog/2016/04/is-your-organization-ready-for-agile-4.html
https://aida.mitre.org/agile/agile-cost-estimation/
https://www.nascio.org/resource-center/resources/agile-it-delivery-imperatives-for-government-success/
https://www.nascio.org/resource-center/resources/agile-it-delivery-imperatives-for-government-success/

References

Page 276 GAO-20-590G GAO Agile Assessment Guide

Project Management Institute, Inc. Agile Practice Guide, 2017.

——-. A Guide to the Project Management Body of Knowledge (PMBOK®
Guide), Fifth Edition, 2013. PMBOK is a trademark of the Project
Management Institute, Inc.

Potomac Forum, Ltd. Implementing and Managing Agile Development in
Government. AGILE Development in Government Training Workshop IV.
Washington, D.C.: Potomac Forum, January 28, 2015.

Office of the Chief Information Officer; Office of the Chief Technology
Officer. “Department of Homeland Security Delivery Metrics Playbook.”
Washington, D.C.: Department of Homeland Security. (July 19, 2017.)

Office of Management and Budget. “Capital Programming Guide.”
Supplement to Office of Management and Budget Circular A-11:
Planning, Budgeting, and Acquisition of Capital Assets. Washington, D.C.
(2017.)

——-. “Capital Programming Guide.” Supplement to Office of
Management and Budget Circular A-130: Managing Information as a
Strategic Resource. Washington, D.C. (2016.)

——-. “Request for Comments on Digital Services Playbook and
TechFAR Handbook.” (August 21, 2014.) Retrieved March 23, 2020, from
https://www.federalregister.gov/documents/2014/08/21/2014-19805/reque
st-for-comments-on-digital-services-playbook-and-techfar-handbook.

——-. “TechFAR Handbook for Procurring Digital Services Using Agile
Processes.” Washington, D.C.: U.S. Digital Services. (August 7, 2014.)

——-. “Contracting Guidance to Support Modular Development.”
Washington, D.C. (June 14, 2012.)

——-. “IT Dashboard: IT Spending FY2011-2021.” Retrieved June 19,
2020, from https://myit-2021.itdashboard.gov/

Oltman, J. “Agile vs. Traditional: An Unncessary War.” PM World Journal,
vol. II, Issue III. (March 2013.)

Palmquist, Steven M., and others. “Parallel Worlds: Agile and Waterfall
Differences and Similarities.” Pittsburg, Pennsylvania: Carnegie Mellon
University, Software Engineering Institute. (October 2013.)

https://www.federalregister.gov/documents/2014/08/21/2014-19805/request-for-comments-on-digital-services-playbook-and-techfar-handbook
https://www.federalregister.gov/documents/2014/08/21/2014-19805/request-for-comments-on-digital-services-playbook-and-techfar-handbook
https://myit-2021.itdashboard.gov/

References

Page 277 GAO-20-590G GAO Agile Assessment Guide

Pinot, Avinish, and others. “Federal Aviation Administration Agile
Acquisition Principles and Practices.” McLean, Virginia: The MITRE
Corporation. (April 2016.)

Performance Assessments and Root Cause Analyses (PARCA). “Agile
and Earned Value Management: A Program Manager’s Desk Guide.”
Washington, D.C.: Department of Defense. (March 3, 2016.)

Rasmusson, Jonathan. “Agile In a Nutshell.” Agile Myths. Retrieved
March 27, 2018, from
http://www.agilenutshell.com/agile_myths#antiarchitecture.

Reinersten, Donald. The Principles of Product Development Flow:
Second Generation Lean Product Development. Renoldo Beach,
California: Celeritas Publishing, 2009.

——-. Managing the Design Factory: A Product Developer’s Toolkit. New
York, New York: The Free Press, 1997.

Rodrigues, Alexandre. “Can We Measure Agile Performance with an
Evolving Scope? Agile Product Management & Software Engineering
Excellence, vol. 18, no. 1. Arlington, Massachusetts: Cutter Consortium.
(May 22, 2017.)

Rubin, Kenneth, R. Essential Scrum: A Practical Guide to the Most
Popular Agile Process. Upper Saddle River, New Jersey: October 2015.

Runyon, Tamara Sulaiman. “Agile EVM Information for Good Decision
Making.” CollabNet, Inc. (2010.)

Sahota, Michael, and others. “Beyond Budgeting: a Proven Governance
System Compatible with Agile Culture.” Agile Alliance: (2015.) Retrieved
March 24, 2017 from
https://www.agilealliance.org/beyond-budgeting-a-proven-governance-sys
tem-compatible-with-agile-culture/.

Scaled Agile. “Overview of the Scaled Agile Framework® for Lean
Enterprises.” SAFe® 4.6 Introduction. Boulder, Colorado: Scaled Agile.
(November 2018.)

——-. “Overview of the Scaled Agile Framework® for Lean Enterprises.”
SAFe® 5.0. Boulder, Colorado: Scaled Agile. (December 2019.)

http://www.agilenutshell.com/agile_myths#antiarchitecture
https://www.agilealliance.org/beyond-budgeting-a-proven-governance-system-compatible-with-agile-culture/
https://www.agilealliance.org/beyond-budgeting-a-proven-governance-system-compatible-with-agile-culture/

References

Page 278 GAO-20-590G GAO Agile Assessment Guide

Schwaber, Ken, and Jeff Sutherland. “The Definitive Guide to Scrum: The
Rules of the Game.” The Scrum Guide. Mountain View, California:
Creative Commons. (November 2017.)

Scott, Tony, and Anne E. Rung. Federal Source Code Policy: Achieving
Efficiency, Transparency, and Innovation through Reusable and Open
Source Software. Office of Management and Budget. Washington, D.C.:
August 8, 2016.

Section 809 Panel. Report of the Advisory Panel on Streamlining and
Codifying Acquisition Regulations, vol. 1. Arlington, Virginia: January
2018.

——-. Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations, vol. 2. Arlington, Virginia: June 2018.

——-. Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations, vol. 3. Arlington, Virginia: January 2019.

Sidky, Admed. Dr. Agile Training Videos. Retrieved March 1, 2017, from
http://www.dragile.com/videos.php#.

Sims, Chris. “Should Management Use Velocity as a Metric?” Agile
Learning Labs. (August 27, 2013.) Retrieved February 26, 2018, from
http://www.agilelearninglabs.com/2013/08/should-management-use-veloc
ity-as-a-metric/.

Software Engineering Institute. CMMI® for Development, Version 1.3.
Pittsburgh, Pennsylvania: November 2010.

Solomon, Paul J. “Agile Earned Value and the Technical Baseline”
Managing for Success. The Data & Analysis Center for Software.
(September 2009.)

——-. “Basing Earned Value on Technical Performance.” CrossTalk.
(January 2013.)

——-. Software Engineering Institute. “Using CMMI to Improve Earned
Value Management.” Software Engineering Process Management.
Pittsburg, Pennsylvania: Carnegie Mellon University, Software
Engineering Institute. (October 2002.)

http://www.dragile.com/videos.php
http://www.agilelearninglabs.com/2013/08/should-management-use-velocity-as-a-metric/
http://www.agilelearninglabs.com/2013/08/should-management-use-velocity-as-a-metric/

References

Page 279 GAO-20-590G GAO Agile Assessment Guide

——-. Tutorial: Integrated Systems Engineering with Earned Value
Management and Program Management, Contractually and Practically.
NDIA Systems Engineering Conference. Tampa, Florida: October 22,
2018.

Sterling, Chris. “Affinity Estimating: A How To.” Getting Agile. (July 4,
2008.) Retrieved May 4, 2020, from
https://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/.

Sulaiman, Tamara, Brent Barton, and Thomas Blackburn. “Agile EVM-
Earned Value Management in Scrum Projects.” Agile 2006 Conference.
Minneapolis, Minnesota: July 2006.

The PMI Agile Community of Practice Wiki. “Glossary.” Retrieved March
5, 2020, from http://agile-pm.pbworks.com/.

The U.S. Digital Service. “Digital Services Playbook.” Retrieved July 25,
2016, from https://playbook.cio.gov/.

The White House. “Fact Sheet: Improving and Simplifying Digital
Services.” Office of the Press Secretary. (August 11, 2014.) Retrieved
March 23, 2020, from
https://obamawhitehouse.archives.gov/the-press-office/2014/08/11/fact-s
heet-improving-and-simplifying-digital-services.

Van Doorem, Wouter, Geert Bouckaert, and John Halligan. Performance
Management in the Public Sector. New York, New York: Routledge, 2010.

Wrubel, Eileen, and Jon Gross. “Contracting for Agile Software
Development in the Department of Defense: An Introduction.” Pittsburg,
Pennsylvania: Software Engineering Institute, Carnegie Mellon University.
(August 2015.)

(100782)

https://www.gettingagile.com/2008/07/04/affinity-estimating-a-how-to/
http://agile-pm.pbworks.com/w/browse/#view=ViewAllObjects
https://playbook.cio.gov/
https://obamawhitehouse.archives.gov/the-press-office/2014/08/11/fact-sheet-improving-and-simplifying-digital-services
https://obamawhitehouse.archives.gov/the-press-office/2014/08/11/fact-sheet-improving-and-simplifying-digital-services

GAO’s Mission
The Government Accountability Office, the audit, evaluation, and investigative
arm of Congress, exists to support Congress in meeting its constitutional
responsibilities and to help improve the performance and accountability of the
federal government for the American people. GAO examines the use of public
funds; evaluates federal programs and policies; and provides analyses,
recommendations, and other assistance to help Congress make informed
oversight, policy, and funding decisions. GAO’s commitment to good government
is reflected in its core values of accountability, integrity, and reliability.

Obtaining Copies of GAO Reports and Testimony
The fastest and easiest way to obtain copies of GAO documents at no cost is
through our website. Each weekday afternoon, GAO posts on its website newly
released reports, testimony, and correspondence. You can also subscribe to
GAO’s email updates to receive notification of newly posted products.

Order by Phone

The price of each GAO publication reflects GAO’s actual cost of production and
distribution and depends on the number of pages in the publication and whether
the publication is printed in color or black and white. Pricing and ordering
information is posted on GAO’s website, https://www.gao.gov/ordering.htm.

Place orders by calling (202) 512-6000, toll free (866) 801-7077, or
TDD (202) 512-2537.

Orders may be paid for using American Express, Discover Card, MasterCard,
Visa, check, or money order. Call for additional information.

Connect with GAO
Connect with GAO on Facebook, Flickr, Twitter, and YouTube.
Subscribe to our RSS Feeds or Email Updates. Listen to our Podcasts.
Visit GAO on the web at https://www.gao.gov.

To Report Fraud, Waste, and Abuse in Federal
Programs
Contact FraudNet:

Website: https://www.gao.gov/fraudnet/fraudnet.htm

Automated answering system: (800) 424-5454 or (202) 512-7700

https://www.gao.gov/
https://www.gao.gov/subscribe/index.php
https://www.gao.gov/ordering.htm
https://facebook.com/usgao
https://flickr.com/usgao
https://twitter.com/usgao
https://youtube.com/usgao
https://www.gao.gov/feeds.html
https://www.gao.gov/subscribe/index.php
https://www.gao.gov/podcast/watchdog.html
https://www.gao.gov/
https://www.gao.gov/fraudnet/fraudnet.htm

Congressional Relations
Orice Williams Brown, Managing Director, WilliamsO@gao.gov, (202) 512-4400,
U.S. Government Accountability Office, 441 G Street NW, Room 7125,
Washington, DC 20548

Public Affairs
Chuck Young, Managing Director, youngc1@gao.gov, (202) 512-4800
U.S. Government Accountability Office, 441 G Street NW, Room 7149
Washington, DC 20548

Strategic Planning and External Liaison
James-Christian Blockwood, Managing Director, spel@gao.gov, (202) 512-4707
U.S. Government Accountability Office, 441 G Street NW, Room 7814,
Washington, DC 20548

mailto:WilliamsO@gao.gov
mailto:youngc1@gao.gov
mailto:spel@gao.gov

	GAO AGILE ASSESSMENT GUIDE Best Practices for Agile Adoption and Implementation
	Letter
	Preface
	Introduction
	Developing the Guide
	The Guide’s Readers
	The Guide’s Contents
	Acknowledgments

	Chapter 1: Background
	Chapter 2: Agile Adoption Challenges in the Federal Government and Actions Taken in Response
	Challenges
	Challenges to preparing for Agile adoption
	Challenges in executing Agile methods
	Challenges in evaluating Agile methods

	Actions Taken to Address Challenges

	Chapter 3: Agile Adoption Best Practices
	Team Dynamics and Activities
	Best practice: Team composition supports Agile methods
	Agile teams are self-organizing
	The role of the product owner is defined to support Agile methods

	Best practice: Work is prioritized to maximize value for the customer
	Agile teams use user stories to define work
	Agile teams estimate the relative complexity of user stories
	Requirements are prioritized in a backlog based on value

	Best practice: Repeatable processes are in place
	Agile programs employ continuous integration
	Mechanisms are in place to ensure the quality of code being developed
	Agile teams meet daily to review progress and discuss impediments
	Agile teams perform end-iteration demonstrations
	Agile teams perform end-iteration retrospectives

	Program Operations
	Best practice: Staff are appropriately trained in Agile methods
	All members of an Agile team are trained in Agile methods
	Developers and all other supporting team members have the appropriate technical expertise needed to perform their roles

	Best practice: Technical environment enables Agile development
	System design supports iterative delivery
	Technical and program tools support Agile

	Best practice: Program controls are compatible with Agile
	Critical features are defined and incorporated in development
	Non-functional requirements are defined and incorporated in development
	Agile teams maintain a sustainable development pace

	Organization Environment
	Best practice: Organization activities support Agile methods
	Organization has established appropriate life cycle activities
	Goals and objectives are clearly aligned

	Best practice: Organization culture supports Agile methods
	Sponsorship for Agile development cascades throughout the organization
	Sponsors understand Agile development
	Organization culture supports Agile development
	Incentives and rewards are aligned to Agile development methods

	Best practice: Organization acquisition policies and procedures support Agile methods
	Guidance is appropriate for Agile acquisition strategies

	Best Practices Checklist: Adoption of Agile Methods
	Team dynamics and activities
	Program operations
	Organizational environment

	Chapter 4: Overview of Agile Execution and Controls
	Overview of Requirements Development and Management
	Overview of Acquisition Strategy Development
	Overview of Program Monitoring and Control

	Chapter 5: Requirements Development and Management in Agile
	Elicit and Prioritize Requirements
	Refine and Discover Requirements
	Ensure Requirements are Sufficiently Complete, Feasible, and Verifiable for the Current State of the Program
	Balance Customer Needs and Constraints
	Test and Validate the System as it is Being Developed
	Manage and Refine Requirements
	Maintain Traceability in Requirements Decomposition
	Best Practices Checklist: Requirements Development

	Chapter 6: Agile and the Federal Contracting Process
	Enable flexibility in the contract’s requirements
	Contract structure and type
	Incorporate Agile metrics, tools, and lessons learned from retrospectives during the contract oversight process
	Contract data requirements rely on Agile metrics
	Data from Agile artifacts enables contract oversight
	Conduct retrospectives to continually improve based on lessons learned
	Contract oversight reviews align with the program’s Agile cadence

	Integrate the program office and the developers
	Train program office, acquisition, and contracting personnel
	Identify clear roles
	Awareness of the contract’s scope

	Best Practices Checklist: Contracting for an Agile Program

	Chapter 7: Agile and Program Monitoring and Control
	Work breakdown structure in an Agile environment
	Cost estimating best practices in an Agile environment
	Agile measures and documenting the cost estimate
	Considerations for developing a cost estimate for an Agile program
	Consistent sizing
	Expertise of the developers
	Cost estimating benefits

	Scheduling best practices in an Agile environment
	Agile measures and scheduling best practices
	Considerations for scheduling an Agile program
	Planning for all activities
	Minimize the use of schedule constraints
	Assign resources
	Conduct a schedule risk analysis
	Develop and use a schedule baseline

	Earned value management best practices in an Agile environment
	Agile measures and Earned Value Management
	Considerations for applying earned value management to an Agile program
	Tracking work breakdown structure detail
	Measuring earned value
	Calculating variances
	Controlling baseline changes

	Best Practices Checklist: Agile and Program Monitoring and Control

	Chapter 8: Agile Metrics
	Identify key metrics based on the program’s Agile framework
	Ensure metrics align with organization-wide goals and objectives
	Establish and validate metrics early and align with incentives
	Establish management commitment
	Commit to data-driven decision making
	Communicate performance information frequently and efficiently
	Best Practices Checklist: Agile Metrics

	Appendix I: Scope and Methodology
	Appendix II: Key Terms
	Appendix III: Related Terms
	Appendix IV: Auditor’s Key Questions and Effects
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met
	Key considerations and questions
	Likely effects if criteria are not fully met

	Appendix V: Common Agile Frameworks
	Overview
	Structure
	Principles
	Overview
	Structure
	Principles
	Overview
	Structure
	Principles
	Overview
	Structure
	Principles
	Overview
	Structure
	Principles
	Overview
	Structure
	Principles
	Overview
	Structure
	Overview
	Structure
	Principles
	Overview
	Structure
	Principles

	Appendix VI: Debunking Agile Myths
	Appendix VII: Background for Case Studies and Agile in Actions
	Appendix VIII: Specialists Who Helped Develop this Guide
	Appendix IX: GAO Contacts and Staff Acknowledgments
	GAO Contacts
	Other Leadership on this Project
	Key Contributors

	References

