
United States Gwwral Accounting Office -“1--1~~~ -- ..-.-. --.~“-l~---~-

GAO Report to the Chairman, Committee on
Science, Space, and Technology,
‘House of Representatives

JLIIW 19!)2 SPACE STATION

NASA’s Software
Development Approach
Increases Safety and
Cost Risks

147146

RESTRICTED--Not to be released outside the
General Accounting Office unless
approved by the Office of
Relations. 554b4rp -,. ,.

GAO/lMTEC-92-39

GAO United States
General Accounting Office
Washington, D.C. 20648

Information Management and
Technology Divieion

B-247878

June 19, 1992

The Honorable George E. Brown, Jr.
Chairman, Committee on Science, Space,

and Technology
House of Representatives

Dear Mr. Chairman:

This report responds to your request of April 9,199 1, for a study of software development
issues for the space station. In this report, we address how well the NationaI Aeronautics and
Space Administration (NASA) has implemented key software engineering practices for the
station: independent verification and validation, risk management, standards, and tools.

As requested, we did not provide a draft of this report to NASA for its review and comment.
However, we discussed the report’s contents with officials from NASA headquarters, the Space
Station Program Office, and various work package centers. These comments have been
incorporated into the report where appropriate. Our audit work was performed between
April 199 1 and May 1992, in accordance with generally accepted government auditing
standards.

As agreed with your office, unless you publicly announce the contents of this report earlier, we
plan no further distribution of it until 30 days from the date of this letter. We wllI then give
copies to appropriate congressional committees; the Administrator, NASA; and other interested
parties. Copies will also be made available to others upon request.

This work was performed under the direction of Samuel W. Bowlln, Director, Defense and
Security Information Systems, who can be reached at (202) 612-6240. Other major contributors
are listed in the appendix.

Sincerely yours,

Ralph V. Carlone
Assistant Comptroller General

A:‘.
‘.

Executive Summary

Purpose The National Aeronautics and Space Administration (NASA) is undertaking
one of its most ambitious projects ever-Space Station Freedom. As part of
this effort, NASA has started developing computer software that will drive
the station’s 10 main on-board computer systems. This software will
perform critical functions ranging from keeping the station in its proper
orbit to maintaining life support of the crew. In contrast with the space
shuttle, software development for the station will be highly dispersed, with
three prime contractors and scores of subcontractors across the country
developing millions of lines of computer software code. This software is
meant to last for the station’s entire life-three decades.

Given the risks inherent in such a large, complex undertaking, the House
Committee on Science, Space, and Technology asked GAO to determine
(1) if independent verification and validation techniques are being used to
ensure that critical software meets specified requirements and functions;
(2) if NASA has incorporated software risk management techniques into the
program; (3) whether standards are in place that will prescribe a
disciplined, uniform approach to software development; and (4) if software
support tools will help, as intended, to maximize efficiency in developing
and maintaining the software.

Background The space station is the linchpin of NASA's manned space program for the
early 2 1st century. The 30-year project is an international venture involving
cooperation with the Japanese, European, and Canadian space agencies.
GAO has estimated that the space station will cost about $40 billion to
develop, with total life-cycle costs of $118 billion.

The program has undergone a number of ‘changes during the past several
years that have affected many aspects of the station, including software
development. In early 1993 NASA plans to complete critical design a
reviews - when key designs will be made final, and scores of
geographically dispersed contractors will begin large-scale software
development.

Results in Brief While NASA plans to begin developing critical space station software soon,
basic management control techniques that NASA and its contractors need tc
build and maintain high-quality software are not in place. As a result, safet,
and cost risks are increased. NASA has not implemented independent
verification and validation of critical flight software and lacks a systematic
approach to software risk management. In addition, NASA has been slow to

Page 2 QAOIIMTEC-92-29 Space Station Software Development Bid

Executive hnmiuy

implement standards, has reduced funding for programwide support tools,
and permits different software tool sets1 to be used in different locations.
The agency has not, however, assessed the long-term cost impact of these
actions. Although NASA still has time to assess these issues, it is rapidly
approaching a juncture of critical milestones, after which its ability to
influence software development practices will be severely restricted-and
much more expensive to correct.

Principal Findings

Failure to Implement Basic verification and validation (V&V) functions are normally performed by
Appropriate Controls the builders of the software to help ensure that the software being
Increases Safely, Cost Risks developed meets requirements and performs as intended (see ch. 2).

Independent V&V, however, seeks to attain an additional level of assurance
whereby the products of the software development life cycle are
independently reviewed, verified, and validated by an organization that is
neither the developer nor the acquirer of the software. Government and
industry guidelines strongly recommend that an independent agent be
employed if failure of the software could result in loss of life or personal
injury, mission failure, or catastrophic loss of property. Some space station
software meets these criteria-particularly that controlling life-support
systems and station operations. Nonetheless, NASA has not incorporated
truly independent V&V into the program for its most critical software. What
NASA labels as independent v&v is generally conducted by the same
organization that builds the software and does not provide an added level
of assurance over basic V&V activities. Program officials believe that little
measurable value would be realized from using an independent V&V agent
and that such a practice could be costly. For a critical and expensive a
software undertaking such as that for the space station, however, whether
to employ independent V&V should not be based solely on the judgment of
program officials without data and analysis of additional costs and risks.

Software risk management is another important management control
mechanism needed for a project of this size and scope. It plays a pivotal
role in avoiding safety and cost risks by taking preventive measures against
them before they become sources of major rework. However, the station

‘A tool set consists of hardware and software designed to enhance the productivity of so&are
developers, including common editors, compilers, and other software utilities.

Page 8 GAO/IMTEC-92-39 Space Station Software Development Risks

Exwntive Summary

program lacks a systematic approach to software risk management. Due to
this and other factors, longstanding software risk areas remain unresolved.
For example, several years ago the program’s engineering and integration
contractor identified several high-risk areas-including the overutilization
of computer processing and memory, and the failure to establish
appropriate system redundancy-and recommended that NASA take action
to address them. However, NASA continues to defer resolution of these
issues. By ignoring software risks or addressing them late, serious safety
risks remain unabated, and the cost of resolving these problems may be
substantially higher than if they had been addressed early.

Decisions About Standards
and Tools May Increase
Life-cycle Software Costs

NASA’s strategy for controlling software costs for the space station was to
prescribe a software development methodology-a uniform, disciplined
approach to software development-and provide a complete and consistent
tool set to software developers. A prescribed software development
methodology and a comprehensive tool set play a key role in facilitating
integration and reducing long-term software maintenance costs. They also
help NASA management exert control over a project of this size and scope.
The methodology was to be provided by software standards and other
methods and rules within a common environment for software
development. This environment is known as the software support
environment (sSE). The SSE was also to furnish developers with the tools
needed for software development.

NASA's strategy for containing software costs has fallen well short of
expectations. Because NASA failed to write software standards into
contracts when contracts were awarded and has been slow to implement
them subsequently, developers are writing flight software without needed
software standards. In addition, because NASA developed the SSE
concurrently with flight software, the SSE failed to support key a
development activities. As a result, integration and maintenance are likely
to be more difficult; this may lead to higher software costs over the life of
the program, schedule delay, or both.

With its original strategy for controlling software costs so badly weakened,
NASA has chosen an approach that concentrates on minimizing short-term
costs. For example, the agency has been hesitant to amend contracts to
compel contractors to comply with many software standards because of
increased short-term costs that result from such contract modifications. In
addition, NASA has reduced funding for the SSE, and permitted and
continues to permit different SSE tool sets to be used in different locations.
The agency itself acknowledged the importance of software standards and

Page 4 GAO/IMTEC-92-39 Space Station Software Development Bbks

Exexutive Summary

a common development environment in controlling software costs. Despite
this, it plans to continue on its present course, without assessing how its
failure to implement software standards or commit to a robust and uniform
SSE could increase software costs over the life of the program.

Recommendations In order to reduce safety and cost risks, GAO recommends that the
Administrator, National Aeronautics and Space Administration, direct
space station officials to (1) require independent verification and validation
for critical space station software, and (2) institute a risk management
program that identifies all key software risks and ensures that preventive
measures are taken to minimize those risks.

To ensure that space station software is developed most efficiently, GAO
also recommends that the Administrator direct space station officials to
(1) perform a comprehensive evaluation comparing short- and long-term
costs of implementing a prescribed software development methodology
and fulIy supporting the program’s software development environment,
and (2) proceed in a manner consistent with the results of this evaluation.
Such an evaluation should determine whether implementing software
standards and committing to a robust and uniform software development
environment will save money over the life of the program.

Agency Comments As requested, GAO did not provide a draft of this report to NASA for its
review and comment. However, GAO discussed the report’s contents with
the special assistant to the director of the space station program, as well as
other senior officials at NASA headquarters, the space station program
office, and the field centers. Their comments have been incorporated as
appropriate. NASA officials at the field centers generally believe that the
report is fair and accurately reflects current problems in the program. NASA 4
officials at headquarters and at the space station program office believe
that the agency has attended to the control techniques discussed in this
report in the same way the agency has done business for past programs.
These off&& disagree that the approach to developing software that GAO
described would help NASA develop safer or more economical software.
However, the station’s decentralized management structure, absence of a
single prime contractor, and geographical dispersion of contractors all
mark a significant departure from the way NASA has structured and
managed programs in the past. In light of this, GAO believes it is all the
more important that NASA implement the controls contained in this report
for space station software development.

Page 5 GAO/IMTEC-92-39 Space Station Software Development El&#

Contents

Executive Summary 2

Chapter 1
Introduction Program Management 10

History of Space Station Software Design and Development 13
Objectives, Scope, and Methodology 13

Chapter 2
Appropriate Controls
Over Software
Development Are
Lacking

NASA Has Not Incorporated Independent SoWe
Verification

NASA Lacks Systematic Approach to Sofhvare Risk
Management

15
15

18

Chapter 3
NASA’s Cost- control
Strategy Has Been
Poorly Implemented

Original Cost-control Strategy Relied Upon Uniform Software
Standards and Tools

Key Standards Implemented Late-or Not at Ail
Poor SSE Implementation FJas Eroded Its Goals
Unwillingness to Pay Now May Increase Life-cycle Software

costs

23
23

24
26
27

Chapter 4
Conclusions and
Recommendations

Recommendations
Agency Comment3

29
29
30

Appendix Mqjor Contributors to This Report 32b

Related GAO Products 36

Table Table 1.1: Space Station Systems and Primary Functions 10

Page 6 GAO/IMTEC-92-39 Space Station Sofbvare Development Risks

Figures F’igure 1.1: Artist’s Conception of the Planned Space St&ion
F’igure 1.2: Software Development Community and Program

Management Structure

9
12

Abbreviations 4

ANSI American National Standards Institute
DMS data management system
GAO General Accounting Office
IBM International Business Machines Corp.
IEEE Institute of Electrical and Electronics Engineers
IMTEC Information Management and Technology Division
NASA National Aeronautics and Space Administration
NSIAD National Security and InternationaI Affairs Division
SSE sofhvare support environment
SSEIC space station engineering and integration contractor
V&V verification and validation

Page 7 GAOIIMTJX-92-39 Space Station Software Development Rbkr

I

/I

Chapter 1

Introduction

The National Aeronautics and Space Administration (NASA) is undertaking
one of its most ambitious projects ever-Space Station Freedom. The space
station is the linchpin of NASA’S manned space program for the early 2 1 st
century. The 30-year project is an international venture involving
cooperation with the Japanese, European, and Canadian space agencies.
The primary mission of the space station is to achieve U.S. preeminence in
space exploration. Its scientific use is as a research laboratory to conduct
microgravity and life-science experiments. As of last May, we estimated the
space station project to cost about $40 billion to develop, with total
life-cycle costs of $118 billion.’ Figure 1.1 shows an artist’s conception of
the planned station.

‘QuestIons Remain on the Costs, Uses, and Risks of the Redesigned Space Station
(GAO/T-NSIAD-91-26, May 1, 1991).

Page 8 GAO/IMTEC-92-39 Space Station Software Development Risks

I,,. .,

Chapter 1
Introduction

Flgure 1 .l : Artlrt’r Conceptlon of the Planned Space Statlon

Source: NASA

Page 9 GAO/IMTEC-92-39 Space Station Software Development Riske

l

Chapter 1
Introduction

Developing software for the station will be a major undertaking. Flight
software for the station is expected to consist of over a million source lines
of computer code, and the ground software will consist of millions more.
This software will support the station’s 10 main on-board computer
systems, and will perform functions ranging from keeping the station in its
proper orbit to maintaining life support of the crew. Table 1.1 illustrates
the primary functions of each system. According to senior officials who
have worked on other projects of this magnitude, software may turn out to
be the single greatest cost item over the lifetime of the project.

Table 1 .l : Space Statlon Systems and
Primary Functions Name of System

Data Management

Guidance, Navigation, and
Control
Propulsion

Communications and
Tracking
Environmental Control and
Life Support

Thermal Control

Electrical Power
Extravehicular Activity

Fluid Management

Manned Systems

Primary Functions
Data processing, command and control of other systems
and payloads, and interface with the crew
Attitude control, rendezvous with space vehicles, and
maneuvering of the station
Periodic reboost, attitude control, and collision-avoidance in
conjunction with previous system
Transmission of audio, video, operational, and experimental
data within space and between space and ground
Control of temperature, humidity, air composition, and
atmospheric pressure; control of water supply; processing
and storage of human waste
Maintaining equipment and structure within allowable
temperature ranges
Generation and distribution of power
Capability for pressure-suited crew members to operate
outside of the pressurized main base
Resupply and distribution of nitrogen and water, and
disposal of waste gases
Crew quarters, health care, food management, hygiene,
housekeeping, and trash management

a

Program Management In contrast with software development for the space shuttle, which was
centralized, software development for the station is highly dispersed, with
three prime contractors and scores of subcontractors across the country
developing software that NASA must integrate, maintain, and manage. This
dispersed development environment greatly increases challenges to NASA in
terms of managing this effort when compared with the effort for the
shuttle.

Page 10 GAOAMTEC-92-39 Space Station Soi’hvare Development Rieke

Chapter 1
Introduction

No single prime contractor or NASA field center has overall responsibility
and authority to manage software development for the station as part of
this dispersed environment. This marks a departure from the way that
many previous NASA programs were managed. Instead, NASA established
what it termed work packages to develop the physical station, as well as
software for the station. Each work package consists of a prime contractor,
numerous subcontractors, and a NASA field center charged with principal
oversight and management of that work package.

To manage the space station program, NASA instituted a management
structure consisting of three principal tiers. These management tiers are
known as Levels I, II, and III. Level I has overall responsibility for the
program, and is located at NASA headquarters in Washington, D.C. Level II
performs the bulk of nationwide oversight and integration, and is located
mainly in Reston, Virginia. At this level NASA has also enlisted the support
of a space station engineering and integration contractor (SSEIC), who
performs responsibilities essentially in parallel with work done by Level II.
Level III consists of three work package centers that oversee software
development activity undertaken by the contractors who, in turn, deliver
products to NASA.

Major systems are being designed and developed at the three work package
centers: the Lyndon B. Johnson Space Center in Houston, Texas; the
George C. Marshall Space Flight Center in Huntsville, Alabama; and the
Lewis Research Center in Cleveland, Ohio. Each center manages one prime
contractor. A space station projects office is located at each of the work
package centers; this office includes a center software manager who
reports to the center project manager. In turn, the center project manager
reports to the overall program manager of the station. Figure 1.2
illustrates the geographical dispersion of software developers and the
program management structure. 4

Page 11 GAOAMTEC-92-39 Space Station Software Development RbLa

Chapter 1
Introduction

Flguri 1.2: Software Development Community and Program Management Structure”

Level 111
Work Package 4

States wlth sottware development contractors

a Overall responslbillty

A Natlonwlde oversight and Integration

a Software developer WerSlQht

4m.k ,

hi%.
I‘p

Level I
,, -- NASAHeadl quarters

*DC

Level II
Space Station Program Office
Reston, VA

aWork Package 3 has been eliminated from the program.

Page 12 GAO/IMTEC-92-39 Space Station Software Development Risks

Chapter 1
Introduction

History of Space
Station Software
Design and
Development

Since 1984 the program has undergone major restructuring four times;
each change has significantly altered software requirements, design, and
development. As a result, the first launch is scheduled for late 1995, an
8-month delay, and the number of work package centers was reduced from
four to three. Moreover, the software initiatives have occurred amid a
period of constant management change. Turnover was frequent with NASA
program managers and principal deputies. For example, the program has
had five program managers with differing approaches and concepts.

As a result of past changes, NASA has not progressed much beyond the
early stages of software design and development. NASA is currently involved
principally in preliminary software design. During this phase, software
system architectures and input/output interfaces are defined. Additional
phases to follow in the program’s 30-year life cycle are detailed design,
implementation, systems testing, acceptance testing, and maintenance and
operations.

Objectives, Scope, and On April 9,1991, the House Committee on Science, Space, and Technology

Methodology asked us to study software development issues for the space station. We
were asked to address how well NASA has implemented key software
engineering practices for the station. Specifically, our objectives were to
determine (1) if independent verification and validation techniques are
being used to ensure that critical software meets specified requirements
and functions; (2) if NASA has incorporated software risk management
techniques into the program; (3) whether standards are in place that will
prescribe a disciplined, uniform approach to software development; and
(4) if software support tools will help, as intended, to maximize efficiency
in developing and maintaining the software.

To meet our objectives, we

l reviewed and analyzed software development objectives and strategies
contained in NASA conference publications;

l reviewed and analyzed NASA, other government, and industry guidelines for
establishing good software development practices;

l reviewed and analyzed technical proposals and contracts;
l reviewed and analyzed software management plans, risk management

plans, and program requirements;
l reviewed and analyzed reports prepared by NASA and contractor officials

that identified key issues and challenges facing the program;

Page 13 GAO/IMTEC-92-39 Space Station Software Development Risks

!,“, I: ., . . .,: ,’ ., ,

C!lapter 1
Introduction

l obtained expert opinions on what constitutes appropriate independent V&V
and software risk management activities;

l interviewed program officials at NASA headquarters in Washington, D.C.; at
the Space Station Program Office in Reston, Virginia; and at the three work
package centers: Johnson in Houston, Texas; Marshall in Huntsville,
Alabama; and Lewis in Cleveland, Ohio; and

l interviewed contractor officials doing work for NASA at Johnson and
Marshall.

Our audit work was performed in accordance with generally accepted
government auditing standards, between April 199 1 and May 1992. We
discussed the contents of this report with senior NASA program officials and
incorporated their comments where appropriate.

page 14 GAO/IMT.EC-92-39 Space Station Sof’hvare Development Biske

Appropriate Controls Over Software
Development Are Lacking

Two management techniques key to controlling safety and cost risks
associated with developing software for the space station are independent
verification and validation (VW) and a systematic approach to software
risk management. However, NASA has not incorporated these techniques
into the program. As a result, safety concerns about mission failure or loss
of life due to a software failure are increased, as are concerns about higher
long-term costs resulting from not implementing these mechanisms.
Program off&.ls appear unconvinced that investment now in these control
techniques will yield the desired benefit over the life of the program.
However, generally accepted precepts of software engineering indicate
that they will; beyond this, in the interim, NASA runs largely unnecessary
risks of increased safely hazards and long-term costs.

NASA Has Not
Incorporated
Independent
Verification

Software V&V involves the analysis and testing of software throughout its
life cycle to ensure that it meets requirements and performs as specified.
Basic V&V activities-considered to be software assurance disciplines-are

Software normally performed by the builders of the software. Independent V&V,
however, seeks to attain an additional level of assurance whereby the
products of the software development life cycle are independently
reviewed, verified, and validated by an organization that is neither the
developer nor the acquirer of the software and therefore has no stake in its
success or failure. Government and industry guidelines strongly
recommend that an independent agent be employed if failure of the
software could result in loss of life or personal ir@ry, mission failure, or
catastrophic loss of property. Some space station software meets these
criteria-particularly that controlling life-support systems and station
operations.

NASA has not, however, incorporated independent v&v into the program for
its most critical software. In general, NASA'S actions fall short because a l

separate contractor is not employed to perform these quality assurance
activities, and an added level of assurance over basic V&V is lacking.
Despite our criticism in February 199 1 of its failure to institute
independent V&V for shuttle software,’ NASA is taking a similar approach to
station software. As a result, NASA runs the risk that performance problems
and/or increased operational costs will result for station software.

‘Space Shuttle: NASA Should Implement Independent Overnight of Software Development
(GAO/IMTEX-91-20, Feb. 22, 1991).

Page 15 GAO/IMTEC-92-39 Space Station Software Development Rlelu

Chapter 2
Appropriate Controls Over Software
Development Are Lacking

Verification and Validation
Help Produce High-quality
Software

Software verification is “the process of determining whether or not the
products of a given phase of the software development cycle fulfill the
requirements established during the previous phase.“2 It usually involves
reviewing, testing, and documenting that systems’ requirements, design,
code, and documentation conform to specified requirements. Verification
leads to improvements in overall software quality and reduced costs by
allowing early detection of errors and performance problems. Validation is
“the process of evaluating software at the end of the software development
process to ensure compliance with software requirements.“3 The
difference between verification and validation is unimportant except to the
theorist; practitioners use the term V&V to refer to all of the activities aimed
at making sure the software will function as required.

As defined by government and industry standards, independent V&V is
additional work above and beyond basic V&V normally performed by
software developers. NASA software assurance guidelines recognize that an
added level of assurance is inherent in independent V&V activities.
According to a NASA guidebook, “the independent v&v activities duplicate
the V&V activities step-by-step during the life cycle, with the exception that
the independent V&V agent does no informal testing.“4 This work, however,
must not substitute for the software developer’s responsibility, but should
complement and reinforce the developer’s software engineering process,
configuration management, and qualification test functions.

Independence, Added Level As described earlier, one of the conditions key to independent V&V is that it
of Review Lacking be performed by an organization that is neither the developer nor the

acquirer of the software and therefore has no stake in its success or failure.
However, this type of independence is generally lacking in the program.
Only Marshall, which is responsible for about 18 percent of the software to
be developed for the station, employs a truly independent contractor to ,
perform V&V activities. The remaining 82 percent of software is to be
“independently” verified by the same organization that develops the
software, though by an organizational element that is-according to

‘IEEE Standard Glossary of Software Engineering Termlnolo@, Institute of Electrical and Electronics
Engineers (IEEE), Inc., American National Standards Institute (ANSI), ANSI/IEEE Standard 729-1983,
August 1983, p. 37.

“IEEE Standard Glossary of Software Engineering Terminolo@, p. 37.

4Sofmare Assurance Guidebook, NASA-SMAP-GB-A201, September 1989.

Page 16 GAO/IMTEC-92-39 Space Station Software Development lUska

Chapter 2
Appropriate Controls Over Software
Development Are Lacking

NASA-technically and managerially separate from the element actually
developing the software.

Another condition of independent V&V is that it provide an additional level
of review over basic V&V activities. Basic V&V functions are normally
performed by the builders of the software to help ensure that the software
being developed meets requirements and performs as intended. With
independent v&v, the reviewing agent provides another look at software
that has already been reviewed by the software builder. However, in what
NASA labels as independent v&v, the reviewing agent merely assists the
software builder in the first look at the software being developed. As such,
verification is done only once, and the added level of review intended to be
provided by the V&V agent is lacking.

NASA Offkiak: Independent Program officials are unconvinced that independent V&V as traditionally
V&V Adds Little Value defined (i.e., done by a separate organization and providing an added level

of assurance) adds much to the effort in terms of safety, quality assurance,
or long-term economy. According to these officials, the additional costs
and burdens incurred by independent V&V are clear, but its benefits are not.
For instance, they stated that employing independent V&V can as much as
double the cost of software development, yet few if any significant software
mistakes may be identified. NASA officials also stated that checks and
balances by independent agents are embedded within the software
development process and that NASA'S approach to software verification is
based upon success that has been achieved in previous programs.

While it is true that the work of an independent agent requires an added
level of review and increases short-term costs, such costs may pale in
comparison with the price to be paid in terms of loss of life or property if
critical software fails. Further, the costs of fixing errors late in the software
development process because they went undetected earlier may exceed the l

cost of independent V&V. Despite previous successes, software
development for the space station poses new risks due to the lack of a
single prime contractor, the geographical distribution and large number of
contractors, and the complexity of the software being developed. An
independent second look at software would help to combat these risks.
Finally, for a critical and expensive software undertaking such as that for
the space station, whether to employ independent V&V should not be based
solely on the judgment of program officials without data and analysis of
additional costs and risks.

Page 17 GAO/IMTEC-92-39 Space Station Software Development Risks

Chapter 2
Appropriate Controls Over Software
Development Are Lacking

NASA Lacks Systematic
Approach to Software
Risk Management

Another important control mechanism needed for a project of this size and
scope is software risk management. A software risk management program
is the process of identifying, addressing, and reducing risks in the software
development process before they become sources of additional cost. NASA,
however, has yet to introduce a systematic approach to software risk
management into the station program. Specifically, NASA is not using any
programwide software risk management plan and treats software risk
management unevenly across the program. As a result, key software risk
issues are not being resolved. In addition, NASA is taking the chance that
other serious risks may go undetected or, if detected, not be resolved in a
timely fashion.

Software Risk Management A comprehensive software risk management system is important because it
Helps Produce Safe, provides a continuous identification, assessment, resolution, and status
Economical Software check on a program’s technical, schedule, and cost risks. In September

1987 McDonnell Douglas, the prime contractor for work at Johnson, wrote
in a risk management plan6 that a credible risk assessment approach starts
with the evaluation of technical risks and integrates them with schedule
and cost risks. This contractor developed a risk assessment model that was
to be used throughout the life of the program to ensure that a status check
is maintained on known risks on a continual basis and that new risks are
identified in a timely manner, brought to management’s attention, and
assessed for potential impact and risk minimization approaches.

A key ingredient of a comprehensive software risk management system is a
software risk management plan that lays out a consistent approach to
dealing with software risks. In April 1989 a NASA software working group
said that a software risk management plan should be developed and
implemented for any critical software project.6 The group described the
purpose of this plan: “to assess software development risks and then
control them through risk management planning, risk monitoring, and risk b
resolution.”

Another reason that a systematic approach to software risk management is
important is that it allows software risk issues to be tackled early-at lower
cost-rather than dealing with such issues after they have become
significant problems and sources of rework. Such rework includes

6Risk Management Plan, Work Package No. 2, Plan H4015, September 1987.

&GA--Evolving to Ada: Five-year Plan, April 1989, p. 3.

Page 18 GAOAMTEC-92-39 Space Station Software Development Risks

Chapter 2
Appropriate Controls Over Software
Development Are Lacking

additional analyses, redesigns, reprogramming, and retests, and can result
in schedule delays, increased costs, and reduced functionality.

A September 1989 software risk management plan developed specifically
for the station program provides statistics on why it is particularly
important to limit the amount of rework performed in the software
development process.7 First, rework of software can consume up to 50
percent of the total cost of a software development project. Second,
reworking a problem once software is in operation can cost up to 100
times the cost to fix the problem during the development of software
requirements. Third, approximately 80 percent of the cost to fix software
problems is spent on the top 20 percent highest risks.

Clear Plan, Consistent
Treatment of Risk Issues
Lacking

In June 199 1 NASA introduced a draft version of a revised Software
Management Plan that in a new, extensive section on risk management
describes a consistent and comprehensive approach to software risk
management. However, this plan has not yet been accepted as program
policy. Thus, no clear programwide approach for identifying, categorizing,
and reducing software risks exists. Moreover, the new section on software
risk management is being introduced late in the process, after significant
design and development work has taken place. As a result, program
officials expect that contractors will be resistant to new requirements that
are imposed on them for managing software risks, and that the section’s
content will be reduced before it is accepted as policy.

As long ago as September 1989, the station program commissioned a
program subcontractor to develop such a software risk management plan.”
Even though this plan was developed and workshops were held on how to
apply material in the plan to the program, its use has been suspended since
those workshops took place.

a
In the absence of a programwide plan, the program lacks a clear, cohesive
strategy for managing software risks. While one of the program’s
participants developed such a strategy, it did so independent of direction
by NASA and without any program requirement to do so. Without such a
program requirement, program participants’ approaches to software risk
management are uneven across the program. For example, contractors for

7Sofhvare Risk Management Plan, TRW Huntsville Operations, Sept. 29, 1989.

‘Software Risk Management Plan, TRW Huntsville Operations, Sept. 29, 1989.

Page 19 GAO/IMTEC-92-39 Space Station Software Development Risks

Chapter 2
Appropriate Controla Over Software
Development Are Lacking

work at Marshall and Lewis did not develop any plan comparable to the one
previously mentioned for work at Johnson. In addition, the approach of
contractors for work at Marshall and Lewis has been to identify general
software risks and provide a status update on them, rather than
establishing a thorough and sophisticated system for dealing with software
risks, as the prime contractor for Johnson has done. Uneven treatment of
software risk management across the program leaves NASA vulnerable to
serious risks going undetected, or if detected, not being resolved in a
timely fashion.

Level II, meanwhile, lacks the visibility needed to effectively manage work
being conducted at the work packages. Level II’s primary techniques for
dealing with software risk issues are through a Program Software Control
Board, which meets on a biweekly basis, and through periodic program
reviews. However, rather than a careful process for identifying,
categorizing, and reducing software risks, the Program Software Control
Board is only a mechanism for agreeing upon and establishing program
policy. In addition, periodic program reviews-sometimes a year or more
apart-do not provide anything approaching the system for providing
“continuous” identification, assessment, resolution, and status of the
program’s technical, schedule, and cost risks described earlier in the plan
prepared by McDonnell Douglas. As such, neither the Program Software
Control Board nor periodic program reviews provide Level II with a
mechanism for regularly addressing software risks and ways in which work
package centers are working to resolve them. This is necessary in order for
Level II to provide direction, assign priorities, and allocate resources to
reduce or resolve significant software risk issues.

Longstanding Risk Issues
Remain Unresolved

Due to the lack of a systematic approach to risk management, serious risk
areas that could have been identified and dealt with earlier in the program
remain unresolved. These areas include (1) the failure to provide needed .
system redundancy, (2) inadequate processing and memory reserves, and
(3) the lack of a stable software architecture.

In December 1989 questions were raised about not having adequate levels
of hardware redundancy. In September 1990 the SSEIC reported that the
station’s data management system (DMS), which controls all other major
systems, lacked the level of hardware redundancy needed to effectively
control the risk of a critical failure. Even though the SSEIC said that the DMS
needed to be able to withstand two hardware failures and still function, it is
being built to withstand only one failure. Questions about needed

Page 20 GAO/IMTEC-92-39 Space Station Software Development Risks

Chapter 2
Appropriate Controb Over Softwaxe
Development Are Lacktng

redundant levels of hardware also remain open for the systems that keep
the station in its proper orbit and control temperature. Because the station
will be occupied less than five percent of the time until the year 2000, the
lack of sufficient hardware redundancy is especially dangerous. If the
systems that control attitude fail during this time, it is unlikely that humans
would be available to intervene. Consequently, the station could begin to
tumble and possibly go into a hazardous or destructive orbit.

The station’s on-board computers do not have an adequate level of
processing and memory reserves. This increases the risk that NASA will
underestimate the number of on-board processors required and that these
processors will later be attempted to be utilized at levels above what they
are able to supply. This risk was identified as early as September 1989. A
year later, the SSEIC reported that NASA’s processing and memory reserves
were inadequate to accommodate station software, let alone allow for
expected growth in processing and memory needs. Despite this finding, the
problem remains unresolved.

The station does not yet have a stable software architecture. As a result,
NASA runs the risk that system interdependencies will not be identified,
requirements will not be met, and the systems will not perform as intended.
Despite the identification of this risk in November 1990, NASA officials are
still working on making software requirements final, getting better
estimates of the number of lines of code necessary to fulfill these
requirements, determining whether sufficient processor speed and memory
will be available, and accommodating or modifying these requirements.
Issues that need clearer resolution also include determining whether
software will be written in Ada or a lower-level language, where specific
software functions will reside, and how all system components will
interface with each other.

a

NASA Has Not Assigned a NASA officials stated that they are comfortable with the level of software
Sufficiently High Priority to risk management activity that has been incorporated into the space station
Sofbare Risk Management program. In addition, some officials have asserted that explicit software

risk management activities are not necessary if people in the space station
program do their jobs correctly. According to the program’s software
engineering manager, the entire approach to program software
engineering reduces risk.

These assertions, however, run contrary to a statement by NASA’s Office of
Safety and Mission Quality that “too often the truism that ‘quality is

Page 21 GAO/IMTEC-92-39 Space Station Software Development Risks

Chapter 2
Appropriate Controla Over Software
Development Are Lacking

everybody’s business’ becomes ‘quality is nobody’s business’ if specific
responsibilities are not assigned.“g Moreover, NASA’S comfort with software
risk management in the program as it currently exists is indicative of not
assigning a sufficiently high priority to software risk management. Without
a systematic approach to software risk management-including (1) a
software risk management plan containing goals and strategies for
identifying, categorizing, and reducing risks; and (2) a structured and
consistent approach to software risk management across the
program-major risks may not be identified. Even if they are, they may not
be given the attention necessary to categorize and mitigate them
effectively.

With the approach of critical design reviews in March 1993, NASA is rapidly
approaching a crossroads where it will either implement independent v&v
and a systematic approach to software risk management or leave itself
vulnerable to increased risks of unsafe or diminished software
performance, increased costs, and schedule delay. At the time of these
reviews, major design decisions will be made final and scores of
geographically-dispersed contractors will begin writing software on a large
scale.

%oftware Assurance Guidebook, SMAP-GB4201, p. 6.

Page 22 GAO/lMTEC-92-39 Space Station Softwaw Development RIska

NASA’s Cost-control Strategy Has Been Poorly
Implemented

Key components of NASA'S original strategy for controlling costs of space
station software were to (1) prescribe programwide standards for key
aspects of software development early in the program and (2) provide a
complete and consistent tool set to be used by all software developers.
However, with software development already underway at one site and
about to begin on a large scale at the others, NASA has yet to fully
implement either of these objectives. Because NASA failed to write sofWare
standards into contracts when contracts were awarded and has been slow
to implement them subsequently, developers are writing flight software
without needed software standards. Moreover, the program’s software tool
set is not yet complete, parts completed were available too late to support
certain key development activities, and its use is not consistent across the
program. As a result, NASA's strategy for controlling costs has been badly
weakened. NASA is now proceeding with far less assurance that it can
control software costs over the life of the program.

Original Cost-control
Strategy Relied Upon
Uniform Software
Standards and Tools

NASA convened a panel of software development experts in 1984 to develop
a strategy for effective management of space station software
development. The panel recommended that a uniform software
development methodology be implemented, including software standards
and a robust tool set as the key elements. The panel noted the particular
importance of standards for coding, documenting, and data naming, and
urged that all standards be in place by the end of fiscal year 1985. The
panel also emphasized the benefits of a common software development
environment, both in saving time and money during the development phase
and in enhancing NASA's ability to maintain the system over a long lifetime.

In 1986 the director of the space station program formally adopted the
recommendations of this panel by promulgating as program policy the
need to establish a uniform set of software standards as a component of a ’
comprehensive software development environment.1 This environment was
named the software support environment (SSE).

‘Level A Software Management Policies, Nov. 11, 1986, Sections 2.3 and 2.10, pp. 3,6.

Page 23 GAO/IMTEC-92-39 Space Station Software Development lhlca

Chapter 3
NABA’s Cost-control Strategy Han Been
Poorly Implemented

Key Sbmdards Key software standards were not in place prior to the issuance of requests

Implemented Late-or for proposals and contract awards in 1988. Despite the aforementioned
recommendation that all standards be in place by the end of fiscal year

Not at All 1985, by 1986 NASA had only established policies specifying the need for
software standards. Since that time, NASA has made slow progress in
incorporating standards into contracts. As a result, contractors are now
writing software without needed standards.

Several specific examples of standards that are still not implemented
include: a software management plan, Ada coding standards, and a
software metrics standard. By NASA'S own definition, the software
management plan is a key ingredient in defining programwide standards as
requirements. Such a plan should contain the goals and objectives of the
program; the technical and management approach to be employed;
performance expectations, milestones, reporting requirements; and quality
assurance procedures to follow. According to a 1984 NASA report, the lack
of a programwide software management plan for the station program is a
classic software management error that could contribute to a software
disaster.2 Lacking such a plan, NASA centers are following separate
management plans developed by work package centers and software
management forums.

In addition, the lack of standards for Ada coding is of immediate concern to
several NASA officials. Without standards for Ada coding-standards needed
to control the way Ada software is built-software may be more difficult
and expensive to debug, integrate, and maintain. If implemented late in
software design, these standards could result in increased software
development and maintenance costs over the life of the program.

Finally, NASA has not yet adopted a standard for software metrics.3
Currently, only guidelines exist for the reporting of software metrics. The
lack of a uniform set of software metrics gives NASA program management l

inadequate visibility into all phases of the software development
process-coding, testing, and integration. Without uniform methods for
assessing software development progress, quality, and risk, NASA will have
to rely upon a multitude of differing and possibly inconsistent methods in
managing software development.

‘Space Station Software Issues, NASA CP-2361, August 1984.

31n general, software metrics is the use of numerical methods for assessing software development
progress, quality, and risk. For example, numerical methods are commonly used to estimate the
number of source lines of code to be employed and number of programmers to be assigned.

Page 24 GAO/IMTJE-92-39 Space Station Software Development Risks

Chapter 3
NASA% Cost-control Strategy Bas Been
Poorly Implemented

NASA officials assert that some standards were in place at the time of
contract awards in 1988, and that these standards have helped guide the
work of software developers.4 NASA officials also state that since the time of
contract awards, they have made some progress in developing additional
standards and making them binding on contractors.6 The officials contend
that even though it appears that standards are late, implementing
standards now is appropriate because (1) they did not exist or were
immature earlier in the program, and (2) a software design and
development approach had not been selected prior to contract awards.

While NASA has made some progress in implementing standards since the
time of contract awards, key standards in such areas as software planning,
management, engineering, and security are still lacking. Without these key
standards being implemented, management control over costs in both the
development and maintenance phases remains weak. Finally, while NASA
rightly points out that certain standards were immature at the time of
contract awards, others were ready to be used and could have been
implemented. These standards, as discussed, still have not been
implemented.

NASA has been slow to implement standards in part because it is reluctant
to increase program costs by amending existing contracts. In fact, NASA has
established a program goal to avoid any costs associated with making
standards binding in the near term. According to contractor officials,
amending contracts to comply with many explicit standards now could
have major cost repercussions. This is particularly true for standards that
address software design and development activities that are already in
progress. However, by avoiding any increase in near-term software costs,
NASA is risking unknown and potentially much greater cost increases in the
future.

4NASA’s Information System Life-Cycle and Documentation Standards, version 3.0, and NASA’s Level
A Sofhvare Management Policies.

6These include standards that have been incorporated into programwide architectural control
documents for the data management system and other major systems.

Page 25 GAO/IMTEC-92-39 Space Station Software Development Bisks

7 I .

:
1

Chapter 3
NABA’r Cost-control Strategy Kiss Been
Poorly Implemented

Poor SSE
Implementation Has
Eroded Its Goals

Another key part of NASA'S strategy for controlling software costs-the
software support environment-has been eroded by several factors,
including alienation of users early on, late delivery of an incomplete
environment to its users, and inconsistent use of the delivered portions of
the environment across the program.

The SSE project’s early activities consisted largely of having Lockheed, the
prime contractor, enhance a proprietary software development
environment owned by one of its subcontractors. However, this enhanced
environment did not meet the needs of its users, and consequently, some
users chose other tools. For example, according to a computer systems
analyst from Boeing, for the first l-1/2 to 2 years that the SSE was
operational, it could be used only with great difficulty to generate
documents, maintain document histories, and perform configuration
management.8 These shortcomings led NASA to incorporate
commercially-available tools into the SSE. The key tool introduced was a
commercially-available hardware and software package to assist primarily
with the design and development of Ada code. This equipment, developed
by a company called Rational, is now an integral part of the SSE. However,
key developers had already selected alternative tools by the time the
Rational equipment was added to the SSE and provided to them.

For example, although the technical proposal promised that the “SSE shall
be developed by Lockheed with the clear understanding that the user’s
needs for tools to develop Data Management System software come first,”
the tools were not available when needed to support International Business
Machines Corp. (IBM) in developing the DMS. DMS development comprises
about 65 percent of all flight software development for the station. IBM
needed SSE tool support by the spring of 1989 for early DMS design work.
Because this support was unavailable, IBM used Rational equipment-
though different models than are currently provided by the SSE-t0 help .
design and develop Ada code which, according to IBM, was done at
minimal cost to the government. However, since IBM needs
configuration management tools still not available on the SSE, it has
selected its own configuration management system. NASA has incurred
costs of about $5.4 million7 to pay for IBM'S cost of using this configuration
management system and other tools still unavailable within the SSE.

‘Contlguration management is a process for maintaining and controlling changes to software
requirements, specitkations, code, and documentation.

‘As of May 16,1992.

Page 26 GAOIIMTEC-92-39 Space Station Sofhvare Development Risks

Chapter 8
NASA’r Co&control Strategy Haa Been
Poorly Implemented

Late delivery of an incomplete SSE has also led other contractors to seek
out alternate software development tools. These developers have utilized
m-house tools or obtained independent commercial support due to either
inadequate or uncertain support from the SSE project. For example, to
support early development work at Marshall, Boeing employed a system
distinct from the SSE, for which it cites only a slight cost impact. In
addition, due to uncertainty about what the SSE would provide, McDonnell
Douglas, the prime contractor for work being conducted for Johnson,
procured eight Rational machines. The cost to NASA for this purchase was
approximately $3.5 million. The use of substitute tools by these and other
developers undercuts the project’s goals of containing costs and weakens
the ability of the SSE to exert management control via the promised
“complete and consistent support environment.“* Erosion of the SSE and
its goals is likely to make integration and maintenance more difficult. This,
in turn, may lead to higher software costs over the life of the program,
schedule delay, or both.

SSE Remains Incomplete While the contract for the SSE preceded contracts for flight software design
and development by about 14 months, this did not alIow sufficient lead
time to develop the tools and train users prior to the time the tools would
be needed. According to a key developer, differences between what could
be supplied and what was needed were so severe that had it not been for a
congressionally-mandated restructuring of the space station, the SSE
project might have been canceled. The restructuring postponed the needs
of developers by several years. The SSE remains unfinished and is not
expected to be completed until early 1993. As discussed, the DMS
developer continues to use substitute tools to provide capabilities as yet
unavailable on the SSE.

Unvvillingness to Pay
Now May Increase

b

Having strayed from its original strategy for controlling software costs,
NASA is now focusing primarily on minimizing its short-term costs. For
example, the agency has been hesitant to amend contracts to compel

Life-cycle Software
costs

contractors to comply with many explicit software standards because of
the increased short-term costs that could result from such contract
modifications. Program officials are currently pursuing the goal of
avoiding any costs associated with making new standards contractually
binding.

sSof!xare Support Environment System Concept Document, LMSC FZB6416, October 1988, p. 3-1.

Page 27 GAOIIMTJE-92-39 Space Station Software Development Risks

Chapter 8
NASA's Cost-control Strategy HIW Been
Poorly Implemented

Also, of a planned $250 million budget, the SSE project office has cut $50
million. In doing so, the project office eliminated some capabilities of the
SSE and services intended to be provided by the project office. For
example, the SSE will not run on two of the four workstation types that the
SSE was originally intended to support. Services the SSE project office is no
longer going to provide include maintaining workstations, paying for some
software licenses for commercial software packages, and offering user
training and help.

In addition, NASA continues to permit different SSE tool sets to be used in
different locations. Inconsistency among tool sets may result in integration
and maintenance being harder, costing more, and taking longer than
expected. NASA could have avoided these risks if it had fully developed the
SSE and delivered the needed tools prior to beginning flight software
development.

NASA'S recent decisions about standards and tools fail to adequately
consider the long-term impact on the program. Whiie the agency initially
acknowledged the importance of software standards and a common
development environment in controlling software costs, it now acts without
knowing whether its continuing failure to implement software standards or
to commit to a robust and uniform SSE will increase software costs over the
life of the program. With critical design reviews approaching in
March 1993 NASA is approaching a point where it will either enforce
discipline over the software development process or suffer heightened
risks of increased life-cycle costs. At that time, key design decisions will be
made final and scores of geographically-dispersed contractors will be given
approval for large-scale software development.

Page 28 GAOKMTEC-92-39 Space Station Software Development Bieka

Chapter 4

Conclusions and Recommendations

NASA has not established management control techniques needed for a
software development effort of this scope and complexity. It has not
implemented independent V&V or a systematic approach to software risk
management, and has made decisions about standards and tools without
knowing how these decisions will affect long-term operations and
maintenance costs. As a result, NASA makes itself vulnerable to serious
safety and cost risks-risks that the proper application of these techniques
would significantly reduce.

NASA's approach to independent v&v, software risk management,
standards, and tools is short-sighted. By failing to implement needed
control mechanisms and by showing only wavering support for
mechanisms designed to decrease long-term costs, NASA has concentrated
on decreasing software costs over the short-term rather than effectively
controlling safety and cost risks over the life of the program.

If NASA fails to focus on long-term considerations, long-term safety and
cost risks are likely to increase far beyond what NASA anticipates.
Specifically, if independent V&V and a systematic approach to risk
management are not implemented, serious and potentially catastrophic
safety risks may go undetected or may be dealt with only after they have
become critical, costly problems. In addition, by not adequately
considering the impact of its continuing failure to implement key standards
or commit to a robust and uniform software development environment,
NASA runs the risk that software costs over the life of the program will be
significantly higher than current estimates.

With critical design reviews approaching in early 1993-the time at which
designs will be finalized and contractors will begin major software
development activities-it is becoming increasingly important that NASA
make an immediate and concerted effort to properly apply independent a
V&V, software risk management, standards, and tools across the program.
By acting now, NASA can exert the management control needed to keep
safety and cost risks from increasing far beyond what it anticipates.

Recommendations In order to reduce safety and cost risks, we recommend that the
Administrator, National Aeronautics and Space Administration, direct
space station officials to (1) require independent verification and validation
for critical space station software, and (2) institute a risk management
program that identifies all key software risks and ensures that preventive
measures are taken to minimize those risks.

Page 29 GAOIIMTEC-92-39 Space Station Software Development Risks

Chapter 4
Conclwione and Blacommendationr

To ensure that space station software is developed in the most efficient
manner, we also recommend that the Administrator direct space station
officials to (1) perform a comprehensive evaluation comparing short- and
long-term costs of implementing a prescribed software development
methodology and fully supporting the program’s software development
environment, and (2) proceed in a manner consistent with the results of
this evaluation. Such an evaluation should determine whether
implementing software standards and committing to a robust and uniform
software development environment will save money over the life of the
program.

Agency Comments As requested, we did not provide a draft of this report to NASA for its review
and comment. However, we discussed the report’s contents with NASA
officials, including the special assistant to the director of the space station
program; the manager of the program engineering office; the manager of
the utilization and operations office; the manager of the avionics systems
office; as well as senior program officials at the Johnson Space Center and
Marshall Space Flight Center. We have included their comments as
appropriate. NASA officials at the field centers generally believe that the
report is fair and accurately reflects current problems in the program. NASA
officials at headquarters and at the space station program office believe
that the agency has attended to the control techniques discussed in this
report in the same way the agency has done business for past programs.
These officials disagree that the approach to developing software that we
described would help NASA develop safer or more economical software.
However, the station’s decentralized management structure, absence of a
single prime contractor, and geographical dispersion of contractors all
mark a significant departure from the way NASA has structured and
managed programs in the past. In light of this, we believe it is all the more
important that NASA implement the controls contained in this report for b
space station software development.

Page 80 GAO/IMTJZC-92-29 Space Station Software Development Risk.9

Page 81 GAOWTFX-92-39 Space Station Software Development Bfrka

Aooendix

Major Contributors to This Report

Information
Management and
Technology Division,
Washington, DC.

Ronald W. Beers, Assistant Director
John A. de Ferrari, Assignment Manager
Gary R. Austin, Senior Computer Specialist
Richard B. Weinstock, Evaluator-in-Charge
Scott F. Robohn, Staff Evaluator

Dallas Regional Office Merrie C. Nichols, Senior Evaluator
Andy C. Clinton, Staff Evaluator

Page 32 GAODMTEC-92-39 Space Station Software Development lWcs

Page 23 GAOiIMTEC-92-39 Space Station Software Development Risks

Page 84 GAOfiMTEC-92-39 Space Station Softwsre Development Rbka

I I’
2:

..:
-‘,

Page 8U GAO/IMTRC-92-89 Space Station Software Development RI&e

Related GAO Products

Questions Remain on the Costs, Uses, and Risks of the Redesigned Space
Station (GAO/l’-NSIAD-91.26, May 1,199l).

Space Station: NASA's Search for Design, Cost, and Schedule Stability
Continues (GAO/NSIAD-91-125, Mar. 1,199l).

Space Shuttle: NASA Should Implement Independent Oversight of Software
Development (GAOAMTECd91-20, Feb. 22,199l).

(5106S2) Page 86 GAODMTEC-92-39 Space Station Software Development Risks

Ordering Information

The first copy of each GAO report and testimony is free. Additional
copies are $2 each. Orders should be sent to the following address,
accompanied by a check or money order made out to the Superin-
tendent of Documents, when necessary. Orders for 100 or more
copies to be mailed to a single address are discounted 25 percent.

lJ.S. General Accounting Office
P.O. Box 6015
Gaithersburg, MD 20877

Orders may also be placed by calling (202) 2756241.

_ -
United States
Genwnl Accounting Office
Washington D.C. 20548

Official Rwinws
Penalty for Private ‘IJse $300

