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PREFACE 

This document is intended to assist government managers in 
evaluating the efficiency of inventory decisions. Inventory 
levels are governed by decisions about when and how much to 
replenish stock. The basic premise of this document is that^in­
ventory systems are managed most efficiently when inventory lev­
els are such that the sum of the costs of carrying inventories« 
replenishing inventories/ and running out of stock is minimized. 

We are issuing this document as part of the General 
Accounting Office response to title VII of the Congressional 
Budget Act of 1974 (Pub. L. No. 93-344), which requires us to 
develop and reconunend methods for reviewing and evaluating govern­
ment programs and activities. We believe it will help expand 
congressional activities in investigating alternative ways of 
achieving program objectives that are "preferable according to 
cost effectiveness criteria or other explicit standards," as the 
Act intends. 

In recent years, interest in analytic techniques for inven­
tory management has been increasing for several good reasons. 
One is that inventory investment has had a tendency to become 
larger than most managers would like. Moreover, new operational 
requirements, especially in the military, have intensified the 
pressure for faster and more reliable service from inventory 
systems. At the same time, there has been a trend toward using 
budgets more efficiently, while the use of high-speed computers 
has made it possible to implement more sophisticated control 
procedures. This is an opportune time to question and evaluate 
the extent to which analytic techniques can help inventory 
managers make decisions that will minimize costs. 

It is important to note, however, that inventory managers 
cannot control the demand for inventory other than by setting 
service level objectives. Therefore, it is not likely that 
total procurement actions over any period of time will be reduced, 
although average inventory investment might be. Rather, reduc­
tions can be made in the cost of operating a system—that is, 
what is reduced is the sum of the costs of carrying inventories, 
being out of stock, and placing orders. Thus, potential cost 
savings are generally operational and recurring rather than one­
time savings achieved by cutting inventory requirements, and they 
can be significant. Even in relatively small systems, proper 
decisionmaking can reduce operational costs by hundreds of thou­
sands of dollars each year. 

We believe this document will be useful not only to managers 
who are interested in operating inventory systems efficiently but 
also to evaluators and auditors. This is partly because we in­
tend it to be useful on the job, and to this end we have presented 
checklists and other guidance material as aids in insuring that 
proper evaluative considerations are being made. In addition, 
we hc.ve placed much of the discusjion in a perspective that 
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is different from most of the literature on the subject in the 
expectation that this will be useful for novices but also for 
knowledgeable practitioners as well. 

Many of the exeunples we present are taken from experience 
and data obtained during various GAO evaluations of Federal 
inventory systems. Much of the philosophy about the nature of 
inventory systems and how they should be managed reflects the 
influence of Eliezer Naddor of The Johns Hopkins University. 
He has served GAO in an advisory capacity for many years. For 
information about the contents of this document, contact Insti­
tute for Program Evaluation, Associate Director, Methodology 
Development and Measurement Assistance Group. 

This paper is one of a series of methodology transfer papers 
developed by the Institute for Program Evaluation. The purpose 
of a methodology transfer paper is to provide GAO staff with a 
clear and comprehensive discussion of the basic concepts of an 
evaluation methodology. Additionally, transfer papers explain 
both the general and the specific applications and procedures 
for using the evaluation methodology. The first paper in this 
series. Causal Analysis: A Method to Identify and Test Cause 
and Effect Relationships in Program Evaluations, and the present 
one will be followed by others in preparation. 

Eleanor Chelimsky, Direclfor 
Institute for Progreun Evaluation 

ii 
bMSASMMM. 



C o n t e n t s 

P a g e 

PREFACE ^ i 

CHAPTER 

1 INTRODUCTION 1 

2 INVENTORY POLICY OPTIONS 4 
Reorder point-fixed order quantity 5 
policy 

Fixed interval-order level policy 5 
Reorder point-order level policy 7 
Selecting a policy option 7 

3 COSTS THAT VARY WITH INVENTORY POLICY 9 
Carrying costs 9 
Shortage costs 10 
Replenishment costs 12 
Other costs 13 
Operating the information-processing 13 

system 
Quantity discounts 13 

Computing the costs 14 
Cost checklist 16 

4 THE NATURE AND MEASUREMESIT OF INVÊ T̂ORY 18 
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CHAPTER 1 

INTRODUCTION 

This document is for managers, evaluators, auditors, and 
others who conduct studies in government inventory systems. We 
focus.on two related replenishment questions that inventory 
managers face: (1) when to order from an outside vendor or 
the internal production system and (2) how much to order each 
time an order is placed. Answering these questions properly 
can assure an organization that it holds just enough inventory 
or stock to meet its demand commitments economically. 

Although deciding when and how much to order is only one 
of several functions of inventory or supply management, it is 
probably the heart of supply management, because it directly 
affects the cost of operating all the other supply management 
functions. One writer, for example, suggests that supply 
management contains seven major functions, which (listed in 
chronological order) are managing, cataloging, determining 
requirements, procurement, distribution, overhaul, and disposing 
of material. (Kuhlman, 1969, p. 7)1./ Thus, a decision to 
place orders frequently will affect the cost of operating the 
supply system's procurement function. Similarly, a decision to 
place large orders infrequently will affect the cost of storing 
the inventory until it is needed. 

An objective of inventory decisionmaking is to arrive at 
a set of optimal rules for deciding when to place an order and 
how much to order, Optimal rules assign values to controllable 
variables that minimize the sum of all relevant inventory costs. 
One problem in arriving at optimal rules is that these costs 
conflict with each other. For example, buying in large quanti­
ties reduces the probability of stockouts, reduces the cost of 
placing and receiving replenishment orders, and tends to result 
in lower prices per unit of stock and lower transportation 
costs, but the larger quantities increase investment and tend 
to increase the cost of holding the inventory. Thus, inventory 
managers must seek a balance between the costs of holding inven­
tory, ordering additional quantities, and running out of stock. 

Another problem in deciding when and how much to order is 
that the decision involves risk. To acquire additional stock, 
it is necessary to forecast future demand and lead time, but 
forecasts are risky because demand usually varies from month 
to month and delivery time or procurement lead time varies from 
order to order. In striving for a reasonable balance between 
costs, managers must provide for these variations and their 
ensuing risks. 

_l/lnterlinear bibliographic references are cited in full in 
appendix II. 



If managers are to minimize costs, their decisions about 
when and how mucî  to order must be made in view of conflicting 
cost functions, forecasts of demand rates, and forecasts of 
replenishment lead times. A number of sophisticated techniques, 
or models, have been developed for doing this, and it is our 
purpose to show how to evaluate the appropriateness of the tech­
niques that are used in government organizations. In chapters 
2 through 5, we discuss the four factors by which inventory 
systems are characterized—namely, policy or when to order and 
how much to order; the costs of carrying, shortage, and replen­
ishing; constant and variable demands; and lead time, whether 
insignificant or significant, constant or variable. In chapter 
6, the final chapter, we discuss the techniques that are 
available for considering these factors together to minimize 
cost. 

The three policies that are used the most are reorder 
point-fixed order quantity, fixed interval-order level, and 
reorder point-order level. We give an illustration of each 
in chapter 2. 

In chapter 3, we focus on the cost elements that should 
be considered in developing rules for deciding when and how 
much to order. It is not enough to be able to say "These are 
the rules"; good inventory management can also say " . . . and 
this is how much it is going to cost." Time and quantity are 
the variables that are subject to control, and the problem is 
to find their specific values for minimizing total cost. 

Organizations keep inventories to meet demands, fill 
orders, and satisfy demands, but only rarely do they have suf­
ficient knowledge about what generates demand to predict demand 
patterns with certainty. In some cases, demand patterns show 
a regularity that, for purposes of an adequate approximation, 
can be treated as a certainty. Often, however, managers have 
to describe demand in probabilistic terms and to assume that 
a random process generates demand. Accordingly, in chapter 4 
we discuss the probability of demand and demand forecast. 

In chapter 5, we discuss the nature and measurement of 
lead time—the time between scheduling a replenishment or placing 
an order and its actual addition to stock. It is of concern 
because some of this time cannot be controlled by the decision­
maker. The resulting uncertainty must be considered in trying 
to optimize decisions. 

In the last chapter, we discuss analytic, simulation, and 
heuristic techniques for assigning values to policy variables. 
With an analytic approach, managers construct a mathematical 
model of the system to be studied with which they can determine 
the set of operating rules that minimizes costs. With simula­
tion, they design and conduct experiments with a model of a 
real system for the purpose of either evaluating various deci­
sion policies for the system's operation or understanding the 



system's behavior. In heuristic considerations, managers study 
Insights from analytic approaches or experience with and intui­
tions about a system. 

Various professional organizations have issued formal 
guidance for analyzing and auditing many of the functions of 
supply management systems. (Among them are Harden, 1973} 
Institute of Internal Auditors, 1970; McCarthy and Morison, 
1975; and National Association of Accountants, 1964.) Guidance 
for analyzing how wsll management decisions minimize costs is, 
howsvsr, sketchy, at best. Ws hope that this document can help 
fill in that gap in our practice and knowledge of government 
supply management. 



CHAPTER 2 

INVENTORY POLICY OPTIONS 

Answering systematically the questions of when to place an 
order and how much to order is inventory policy decisionmaking. 
The question of when to order is usually answered in one of 
two ways—inventory should be replenished after a specified, 
fixed interval of time, t, or inventory should be replenished 
when it has been reduced to a specified number of units, R, 
called the "reorder point." 

With the first answer, orders are placed each time an 
inventory count in made if there have been any demands at all 
since the last couit, whether the counts are dally, weekly, 
quarterly, or at some other ir^erval. Thus, for example, if 
inventory levels are reviewed monthly, either physically or 
by computer, and in May, some stock, regardless of the amount, 
has been depleted since April, then the manager places an order. 

With the second answer, orders are placed only when the 
inventory position—usually defined as the amount on hand and 
available for issue plus the amount on order and due in from 
suppliers—is less than or equal to the reorder point. The 
interval of the inventory counts is not what determines the 
answer. Thus, if the reorder point is 25 units and an inven­
tory count reveals an inventory position of 20 units, then an 
order should be placed. If the inventory position is 26 or 
higher, no order should be placed. 

The question of how much to order is also usually answered 
in one of two ways—the quantity to be ordered is a predeter­
mined, fixed quantity, Q, or the quantity to be ordered will 
bring the inventory position to a specified level, L, called 
the "order level." 

The first answer means simply that whenever a manager decides 
to place an order, the quantity is already known. For example, 
if it has been established that 50 units will be ordered whenever 
the inventory position—the amount on hand and on order—falls 
below a certain amount, then 50 units will be ordered. 

The second answer means that the amount that is ordered 
is sufficient to bring the appropriate inventory position up 
to a maximum order level. For example, if the established order 
level is 100 units and the inventory position is 25 units, and 
if it is time to order, then the order quantity will be 75 
units. If the inventory position had been only 20 units, the 
order quantity would be 80 uni\.s. Thus, the order quantity 
varies according to the inventory position at the time an in­
ventory count or review is made. 

The four ways of answering the two questions suggest four 
possible decisionmaking policies, but in practice only three 



are used. These are (1) the reorder point-fixed order quantity, 
or RQ, policy; (2) the fixed interval-order level, or TL, policy; 
and (3) the reorder point-order level, or RL, policy. 

REORDER POINT-FIXED ORDER 
QUANTITY POLICY 

Under the reorder point-fixed order quantity policy, the 
order size is held constant and the time between placing orders 
is allowed to vary to compensate for variability in usage rates. 
Orders are placed only if the inventory position is less than 
or equal to some specified amount, the reorder point, at the 
time inventory levels are reviewed, whether by physical count 
or by computer analysis. 1,/ The quantity ordered is some fixed 
amount called the order quantity. If this quantity is not suf­
ficient to bring the new inventory position above the reorder 
point, then multiples of the order quantity are ordered until 
the position is more than the reorder point. 

Figure 1 on the next page diagrams this policy. To keep 
the presentation simple, we assume that lead time is insigni­
ficant. All orders (all positive Q's) are equal. Orders are 
placed at the time of review only if the inventory position 
is less than the reorder point—in the diagram, this is periods 
1, 3, and 4. At period 2, the time of the second review, the 
inventory position was above the reorder point, so no order 
was placed; the quantity ordered is zero. 

FIXED INTERVAL-ORDER LEVEL POLICY 

As its name suggests, in the fixed interval-order level 
policy, orders of varying sizes are placed to replenish stock 
at fixed intervals of time. For example, a stock count might 
be taken once a month, at which time the manager places a 
replenishment order, basing it on the amount used or demanded 
since the last review and taking into account the f.>recast for 
the next period. The decisionmaker must decide what the fixed 
interval or the review cycle and what the rules gc.erning the 
order size ought to be. Figure 2 shows how this policy operates. 

l / h distinction is usually made between continuous and periodic 
review. In a continuous review, the state of a system is 
known at each point in time because each transaction (demand, 
placement of order, receipt of shipment, and so on) is re­
corded and reported as it occurs. In a periodic review, the 
state of the system is examined only at discrete, usually 
equally spaced, points in time. We do not emphasize this dis­
tinction in this document. In reality, most systems are re­
viewed periodically and for some the period is quite small. 
In the so-called transactions reporting system, for example, 
computer printouts are given to managers daily. While this 
sounds like continuous review, it still entails the lapse of 
one day. 
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Figure 3 

Reorder Point-Order Level Policy 
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Note that the order size varies, being relatively large in the 
second period but small in the third period. 

REORDER POINT-ORDER LEVEL POLICY 

The reorder point-order level policy is a blend of the two 
others. Inventory stccks are reviewed regularly and periodically, 
and stocks are replenished only when they have fallen to or below 
a specified level. The order that is placed will bring the amount 
of stock on hand and on order up to a specified maximum level. 

Tlie ordering rule for the reoroer point-order level policy 
is very simply stated. At the time of the review, if fewer than 
R^nits are available on hand and on order, then order enough 
to bring stock up to level L; otherwise, do not order. (Magee 
and Boodman, 1967, p. 136) Operation of this rule is portrayed 
in figure 3. The system shown here operates identically to that 
shown in figure 2 except for the third review, when the stock 
is above the minimum level R and no order is placed. 

SELECTING A POLICY OPTION 

Recall that in deciding when and how much to order, man­
agers should seek to minimize the costs of carrying inventory. 



running out cf stock, and ordering additional quantities. 
Generally, the reorder point-ordet level policy is less 
costly than either of the two other policies, (-(adley and 
Whitin, 1963, pp. 364-74; Naddor, 1966, pp. 314-19) They may 
be justifiably selected for other reasons, however. 

The reorder point-fixed order quantity policy is employed 
most usefully where close control is not necessrry because of 
low activity or a low item value. Both characteristics typi­
cally cause order sizes to be large, economical, and infrequent. 
One drawback of the fixed order quantity system, however, is 
that two items can reach their reorder points at different 
times, making it difficult to group orders going to the same 
supplier. 

The fixed interval-order level policy makes possible 
tighter, more frequent control over high-value inventories. 
Inventories may be reviewed weekly or even daily. One problem 
with it is that it is possible to place small, uneconomical 
orders (as in the third period in figure 2). on the other hand, 
it is also possible to group orders for a number of individual 
items from one supplier so that they can be shipped in carload 
lots, thus lowering costs. 
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CHAFJER 3 

COSTS THAT V.̂ RY WITH INVEWTORY POLICY 

Balancing, opposing coats is at the heart of all inventory 
proolem-(£Olving. These are the costs that vary with changes in 
inventory policy. They are characteristically not the costs 
reported in summary accounting records. Cost information taken 
from accoun*-ing records typically requires reorganizing or re­
stating to arrive at cost definitions suitable to a particular 
problem. Oft in, costs must be derived by experimental or 
statistical methods. 

Developing and measuring inventory-related costs require 
differentiating accounting costs for historical and financial 
reporting from operational or functional costs. Operational 
costs are eBsentially the out-of-pocket expenditures or forgone 
opportunities for profit that are considered in arriving at 
policy decisions or day-to-day management decisions, and their 
magnitudes are affected by changes in inventory decision vari­
ables such as replenishment size. The three types of cost that 
may be Important in determining Inventory policy are the costs 
of carrying items in inventory, the costs associated with demands 
occ-'rring when an item ir out of stock (these are called "short­
age costs"), and the coses associated with replenishing the 
units stocked. 

CARRYING COSTS 

The costs of carrying or holding inventory are roughly pro­
portional to the size and value of the inventory. They have 
several components. (England and Leenders, 1975, pp. 359-60) 

1. The cost of money tied up in carrying the inventory 
is oft<̂ n referred to as an "opportunity cost," money or capital 
tied up in carrying inventory that could be put to alternative 
uses. Thus, an opportunity for its earning a return may be for­
gone. Although the concept of profitability may not be relevant 
to goverrunent, alternative uses of limited funds are reaF and 
frequent. The minimum cost assigned to this component is the 
return that could have been earned by keeping the money in a 
bank and includes interest on money invested in the inventoried 
items, in land and buildings to hold the inventory, and in inven­
tory handling and control equipment. 

2. Storage space cost is the cost associated with the 
physical space required to house the inventory of a given item. 
It depends on alternative uses for the storage space. If it is 
available and no alternative uses are prevalent, the space is 
essentially free. If alternatives do exist, then the storage 
cost is an opportunity cost. 

Storage space costs can include rent on the storage facility, 
taxes and insurance on the building, depreciation on the building 



and warehouse installation, tĥ . cost of maintenance and repairs, 
Ltili . chatgei for heat, light, and water, and the salaries of 
recun:/ anc maintenance personnel. T'oreover, in many situa­
tions, storage costs vary directly witli the quantity of inventory 
in storage. For example, storage space might be rented as needed, 
electricity might vary with the number of items requiring refrig­
eration, and taxes migh': be levied on various inventory values. 

3. Shrinkage costs are associated with items that shrink in 
value during storage. Th«i: shrinkage of the inventory value can 
result from phys .cal deterioration, obsolescence, or pilferage 
and represents a cost that must be assigned to carrying inventory. 
If the inventory is insured against triis risk, then the cost of 
insurance should be included. 

4. Inventory service costs are the results of the netd to 
provide prompt service to an organization's clients. The costs 
cormected with providing this service Include labor costs in 
handling and maintaining stocks, clerical expenses in keeping 
records, and employee benefits for warehouse and administrative 
personnel. Inventories may also be taxed, and the tax assess­
ments should be included as a cost '̂o- p'-ovidlnq a service. 

5. Handling-equipment costs, in addition to the Investment 
cost in money tied up in V7arehouse equipment. Include taxes and 
insurance on equipment, depreciation on equipment, fael expen •:?, 
and maintenance and repair costs. 

Carrying cost is customarily computed as a fraction of the 
cost of items carried in inventory per unit of time. For ex­
ample, a one-dollar item may cost 25 cents per year to carry— 
that is, one-fourth, or 25 percent, of its value. The fraction, 
usually referred to as a percentage, depends "̂n the nature of the 
cost elements. For many government applications, its numerical 
value varies from about 20 percent to al̂ out 40 percent. Unfor­
tunately, this value cannot be determined directly from present 
accounting records without a certain amount of research. 

Some have deemed this method of assessing the holding 
interest rate to be somewhat meaningless. (Lewis, 1975, p. 109) 
Some have proposed that the value that is used should be a con­
trol variable that management alters in light of changes in an 
existing financial situation. High values of the rate would be 
used during recession to justify reducing inventories, and low 
values would be used during expansion to allow for increased 
stockholding. We do not advocate this proposal because it de­
feats the purpose of making decisions that minimize costs. A 
better way to reduce or raise inventories is by using service 
level or fill rate goals, which we discuss in the next section. 

SHORTAGE COSTS 

The cost of not having inventory available when it is 
needed is called the "shortage" or "stockout" cost. In this 
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definition, it is important to take note of the phrase "v/hen 
needed"! if the system is out of stock but stock is not needed, 
no shortage cost is incurred. (See U.S. General Accounting 
Office, 1981, pp. 41-45, for an application of this concept.) 
The shortage cost can be one of two types, depending on the 
reaction of the prospective customer to the item's being out of 
stock. If the customer is willing that delivery be delayed, the 
system can typically institute an emergency e.^pedltlng procedure 
to get stock. This is called a "back order." The sale is thus 
not lost, but additional costs such as for special telephoning, 
shipping, and handling are Incurred. 

The other kind of shortage or stockout cost is the sale that 
is lost because the customer Is not willing to wait but seeks an 
alternative source for the item. In government or other organiza­
tions with "captive" customers, the cost of a stockout might have 
to be measured in terms of its consequences to the customer, 
especially if the customer is forced to choose alternatives that 
are less than economical. For example, the Veterans Administra­
tion stockn goods only if they can be sold to customers (generally 
hospitals) at a certain percentage lower than in the local market 
(currently 15 percent). If a hospital requests an item that is 
out of stock but cannot wait for it—items such as medicine and 
food may be needed immediately—-then there is an additional cost 
to the government (of at least 15 percent) because the customer 
must pay a higher price for the commodity. 

Many managers state that they do not allow shortages to 
occur. This usually means that they assume that the unit short­
age cost is infinite. This may sound unrealistic but it is not. 
What the managers are really saying is that the unit shortage 
cost is relatively high and, therefore, they intend to have 
very few shortages. 

Many other managers state categorically that the unit 
shortage cost cannot be measured, and it is true that often it 
cannot be measured precisely. Nevertheless, managers who may 
not be able to state the numerical value of a stockout may make 
decisions affecting surpluses and shortages that imply that such 
a value exists. For example, many organizations strive to achieve 
a given fill rate or service level—that is, a set percentage of 
orders filled from stock. Opinions about the definition of serv­
ice level vary from "the probability of not running out of stock" 
to "the proportion of annual demand not satisfied." The former 
has the advantage of being fairly easy to calculate but the dis­
advantage of being easily misinterpreted. From a customer's point 
of view, the latter is preferred. The former is actually a 
"vendor service level" whereas the latter is a "customer service 
level." (See Lewis, 1975, pp. 112-13, 155-69, for a good discus­
sion of this.) For estimating shortage costs with the approach 
we describe, these differences of definition are not significant. 

Establishing a fill rate or service level implies that the 
organization can tolerate stockouts. A 90 percent fill rate, 
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for example, means that it is acceptable to be out of stock 10 
percent of the time. By permitting stockouts, managers can reduce 
the amount of inventory on hand at any one time and, thus, reduce 
carrying costs. But because stockouts also cost money, managers 
must balance these opposing costs when deciding when and how 
much to order. 

If shortage and carrying costs are known, selecting optimal 
decision rules will balance the expected cost of carrying an 
incremental unit in inventory against the expected cost of not 
carrying that unit. (We discuss this in chapter 6.) When short­
age costs are not known, the fill rate may be used to assign an 
implicit value to them, as in the following formula: 

Cj = Ci[F/(l - F)] 

F is the desired fill rate, C^ represents unit carrying costs, 
and Co represents unit shortage costs. A 90 percent fill rate, 
therefore, implicit-ly values the cost of maintaining one unit 
on back order at nine times the cost of carrying one unit in 
inventory for the same length of time. (See National Associa­
tion of Accountants, 1964, pp. 47-58, 107-12, for a relatively 
nontechnical discussion and Naddor, 1975a, p. 1240, for a mathe­
matical derivation.) 

REPLENISHMENT COSTS 

,m Replenishment costs, sometimes referred to as "procurement* 
or "order" costs, arise in many different ways and can vary con­
siderably among systems. For example, processing an order through 
accounting and purchasing may include costs for paper, postage, 
and labor, for telephoning vendors, and for using computer time 
in making computations and updating records. Transportation may 
also be borne directly by the inventory system, as may receiving 
costs in uncrating, inspecting, and testing the goods. 

Some replenishment costs depend on the quantity ordered; 
others do not. Transportation costs, for example, and part of 
the receiving and part of the inspection costs depend on the 
quantity ordered and could be included as part of the cost of 
the item procured. The cost of placing an order also depends 
sometimes on the size of a contract to be processed, with larger 
contracts requiring more administration and review while orders 
in smaller dollar amounts may require very little review. For 
example, orders of $2,500 or less may cost as little as $10 while 
costs may rise to $45 for orders involving contracts between 
$2,500 and $10,000 and to $75 for orders in excess of $10,000. 

Costs that are independent of the quantity ordered Include 
costs for paper, postage, and telephones as well as the labor 
in processing the order. Some parts of receiving and inspection 
costs are also independent of the order size, as are the costs 
of setting up for a production run if the inventory system con­
trols the plant in which the item is made. Every order incurs 
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costs that do not depend on the quantity ordered. They are often 
referred to as "fixed costs" even though they may vary somewhat 
from one order to another. 

Replenishment costs may be difficult to measure from stand­
ard accounting records. One approach might be to divide the 
total period cost of the procurement department by the number 
of orders it processes in thnt period. This would assume, erron­
eously, that all procurement costs are borne by the procurement 
department and that all its costs are variable, depending on 
the number, of orders processed. A better approach to measuring 
the various components of replenishment cost is to analyze a 
representative sample of orders for the cost of placing orders 
over tims. This would help determine both the fixed and the 
variable c(xnponents of procurement costs. 

The number of different items pertaining to one order is 
an Important consideration in determining the unit replenishment 
cost. When two or more different items may be ordered simulta­
neously, only one replenishment cost exists. The items are in 
a sense sharing the cost of such things as transportation and 
paperwork. If the items were to be ordered Individually, these 
costs would likely be higher and, correspondingly, the replenish­
ment cost would be higher. Thus, decisions should not be made by 
considering each item individually. 

OTHER COSTS 

Operating the information-processing 
system 

In operating an inventory system daily, managers will find 
that the cost of obtaining and processing the information neces­
sary for decisionmaking clearly depends on the type of system 
it is and on the policies they are guided by. The cost of a com­
puter's continuously or periodically updating inventory records, 
the cost of physically counting the inventory, and the cost of 
maiking demand forecasts should all be recognized as a part of the 
cost of carrying inventory—that is, as inventory service costs. 
These costs are often sizable, however, and may be worthy of 
special consideration when managers evaluate the inventory 
management system. 

Quantity discounts 

The amount paid to vendors, representing the cost of units 
procured, is relevant for analysis only if quantity discounts are 
allowed. That is, when the unit price of an item is adjusted 
for the quantity purchased, a decisionmaker can vary the item's 
unit price by varying the replenishment size. 

Suppose, for example, that an organization expects to use 
1,200 units of an item a year and the unit price is $10. The 
total ajaount to be paid annually to the vendor is $12,000 
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regardless of whether replenishment is scheduled at 1,200 units 
once a year or 100 units 12 times a year. The decisionmaker 
cannot influence the total amount to be paid to the vendor by 
altering inventory procurement policy. The vendor, however, 
might offer quantity discounts at some rate such as 

Order quantity 

1-100 
101-300 
301-600 
601-1,200 

Unit price 

$10.00 
9.50 
9.00 
8.50 

If 100 units are procured 12 times a year, the total amount p&*d 
the vendor is $12,000, but if 600 units are procured twice a 
year, the vendor is paid $10,800. Procurement policy Influences 
cost and cost, therefore, becomes relevant for decislorunaklng. 

COMPUTING THE COSTS 

We can illustrate how costs are computed by considering the 
simulation in table 1. The policy represented here is that of a 
12-month reorder point-fixed order quantity for a $25 item with 
the following cost assumptions: 

J' 

^'~.-: 

Cairrying cost 
Shortage cost 
Replenishment 

Beginning 
Month inventory . 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

90 
60 
50 
0 
80 
50 
20 
100 
70 
50 
30 
70 

• 
» 

cost » 

36 percent per year per 
unknown, with 

item cost 
a 90 percent fill rate 

$100 per order 

Table 1 

Cost Computatior Simulation 

Ending 
Demand inventory 

30 
10 
50 
10 
30 
30 
10 
30 
20 
20 
50 
40 

Average monthly amount 
Average monthly cost 
Total cost: $70.52 

60 
50 
0 

-10 
50 
20 
10 
70 
50 
30 
-20 
30 

Carried 

75.0 
55.0 
25.0 

0 
65.0 
35.0 
15.0 
85.0 
60.0 
40.0 
9.0 
50.0 

42.83 
$32.13 

Short 

0 
0 
0 

5.0 
0 
0 
0 
0 
0 
0 

4.0 
0 

0.75 
$5.06 

Ordered 

0 
1 
0 
0 
1 
0 
0 
0 
1. 
0 
0 
1 

0.33 
$33.33 
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Figure 4 

Average Amount Carried for Period 11 

M 

In addition, it is assumed that inventories are reviewed only 
once a month so that all calculations are expressed in monthly 
terms. 

The carrying cost for the item is computed by determining 
the average amount carried per month or per period (42.8 units) 
and multiplying this amount by the carrying cost per item ($0.75, 
or $25 times 0.03). Except for period 11, computing the average 
amount carried is fairly straightforward. Since inventories are 
reviewed only once a month and there is no knowledge of the rate 
of withdrawal, we assume a linear withdrawal rate. Thus, for 
period 1, beginning with 90 units on hand and ending with 60 
units, the linear average amount carried is 75 units—that is, 
the midpoint between 90 and 60. 

Computing the average amount carried in period 11 is not as 
easy, but for this example it is fairly straightforward if we 
use some simple geometric relationships. Figure 4 shows B as 
beginning inventory, X as demand during time period t, t̂  as the 
time in which some inventory is carried, and I^ as the average 
amount carried. Using the notion of similar triangles and the 
formulas for the area of a triangle and a rectangle, we can 
derive the formulas 

1̂ =5 and lit = B^t 
2X 

which in turn yield 

2X 
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We find, then, that the beginning inventory was 30 units and 
the demand during the period was 50. With the formula, we learn 
that on the average 9 units were carried during period 11. 

We compute the shortage cost in much the same way as the 
carrying cost. First we determine the average amount short 
per period and then we multiply by the cost of being short one 
time. The cost of being short in this particular example will 
have to be valued implicitly with the 90 percent fill rate and 
the formula on page 12. We find that 

Co -- 0.9 (0.75) » $6.75 
^ 1 - 6.d 

Since the average amount short during the entire simulation is 
0.75 units, multiplying 0.75 by $6.75 will yield the average 
cost of being short during this simulation, or $5.06. 

Computing the cost of ordering or replenishing inventory is 
quite easy. Four orders were made during the simulation for an 
average of 0.333 per month. The average replenishment is thus 
$33.33 per month. 

The most important amount in this example is the total cost 
of $70.52. Could different operating rules have produced a low­
er figure? Remember that it is not enough to say "These are the 
rules." We must be able to add " . . . and this is how much it 
is going to cost." 

COST CHECKLIST 

If managers are to be able to control the costs attribu­
table to decisions about when to replenish stock and by how much, 
it is evident that these costs must be identified and measured. 
Categorizing inventory system costs as the cost of carrying stock, 
the cost of running out of stock, and the cost of replenishing 
stock, we can identify their components if we use a checklist 
something like this one: 

Carrying costs 

1. Capital, or interest on investments 
—In inventory 
—In land and buildings to hold inventory 
—In inventory handling and control equipment 

2. Storage space 
—Rent on buildings 
—Taxes and insurance on buildings 
—Depreciation on buildings 
—Depreciation on warehouse installations 
—Maintenance and repairs 
—Utility charges for heat, light, and water 
—Salaries of security and maintenance personnel 
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3. Shrinkage 
—Obsolescence of inventory 
—Physical deterioration of Inventory 
—Losses from pilferage 
—Insurance on Inventory 

4. Inventory service 
—Labor in handling and maintaining stocks 
—Clerical expense in keeping records 
—Employee benefits for warehouse and administrative 

personnel 
•—Taxes on Inventory 

5. Handling equipment 
—Taxes and Insurance 
—Depreciation 
—Fuel expense 
—Maintenance and repairs 

Shortage costs 

1. Back order 
—Overtime 
—Special clerical and administrative work 

^2. Lost sales or consequences to the customer 

Replenishment costs 

1. Dependent on quantity 
—Transportation 
—Receiving 
—Inspection 
—Contract administration 

2. Independent of quantity 
—Order handling (paper, postage, telephone, and so on) 
—Setting up production 
—Computer time to update records and the like 
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CHAPTER 4 

THE NATURE AND MEASUREMENT 

OF INVENTORY DEMAND 

Inventories are kept to meet demands for orders—that is, 
to satisfy demands—but managers rarely have sufficient :cnow-
ledge about what generates demand to predict any patterns with 
certainty. Some demand patterns show enough regularity that, 
for purposes of adequate approximations, they can be treated 
as being known with certainty. Often, however, demand is more 
random and we have to describe it probabilistically. In this 
chapter, we explain the probability of demand and the demand 
forecast as two requisites for making optimal decisions about 
when and how much to order. 

THE PROBABILITY OF DEMAND 

Demand for units in stock can seldom be predicted with 
certainty. Both the time between demands and the number of 
units demanded typically vary within a range of values and can 
therefore be thought of as "random variables." That is, their 
specifi;:; places in the possible range of values are determined 
by chance. Thus, the chance or likelihood or "probability" of 
a given time or quantity can be found by studying a probability 
pattern or the "distribution" of the random occurrences. Here 
we show how to identify the type of probability distribution 
that demand data most nearly fit. 

The probability distribution 

Probabilities are usually expressed as percentages or pro­
portions and are computed by dividing the total number of items, 
values, events, or whatever in a given group or universe by the 
total of all possible types of item, value, event, or whatever 
in the same universe. For example, in a universe of a total of 
1,000 vouchers made up of 250 receiving vouchers, 700 shipping 
vouchers, and 50 inventory adjustment vouchers, the probability 
that any one voucher selected at random will be an inventory 
adjustment voucher is 0.05, or 50 divided by 1,000. 

A listing of the possible values of a variable and their 
associated probabilities is called a "probability distribution." 
When all the possible probabilistic values are summed, the total 
will equal 1.00. The probability distribution for the universe 
of vouchers in the example above is 

Type of voucher Probability 

Shipping 0.70 
Receiving 0.25 
Inventory adjustment 0.05 

TJSS 
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Table 2 

A Frequency Distribution for 

Weekly demand 

Up to 46 
46-55 
56-65 
66-75 
76-85 
86-95 
96-105 
106-115 
116-125 
126-135 
136-145 
146+ 

Frequency 

1 
1 
3 
7 
11 
21 
28 
16 
22 
7 
1 
2 

120 

Weekly Demand 

Probability 
of demand 

0.008 
0.008 
0.025 
0.058 
0.092 
0.175 
0.234 
0.133 
0.183 
0.058 
0.008 
0.017 
i.dbTT 

To make a reasonable guess or hypothesis about the distribu­
tion of a random variable, it is necessary to collect and analyze 
data, whether this is historical or experimental. Data that have 
been collected are usually summarized in a chart called a "fre­
quency distribution" such as that shown in table 2. Notice that 
the range of values in the table has been broken into equal in­
tervals, or classe3, and that the frequency within each interval 
or class has been recorded. This is a common practice with 
inventory demand data when the range of possible values is large. 
Using the frequency table helps us interpret the probability of 
an event as the proportion of the time in which similar events 
will occur in the long run. Thus, for the data in table 2, we 
can expect weekly demand to be between 96 and 105 over approxi­
mately 23 percent of the time. 

We can also show the distribution graphically as in figure 
5 on the next page. When we do, we find a characteristic shape 
to the distribution. Knowing the mean and the standard deviation 
of demand can help us predict what shape a distribution of demand 
values will take. 

The mean and standard deviation 

The mean is the arithmetic average of a set of numbers and 
it is widely used as a measure of "central tendency." We can 
compute the mean by adding the values of all cases in a distribu­
tion and dividing that sum by the total number of cases. We can 
state this algebraically as 

Sumofvslues _ ZX 
Mesn = or X = 

Number of cases N 
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Figure 5 

Probability 
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Figure 6 

Mean and Standard Deviation 
for a Single Distribution 
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For example, the set of values 1, 2, 3, 4, 5, sum to 15, and 
when we d̂ ivide this sum by 5, or the number of cases, we find 
a mean, X, of 3. 

Tbd standard deviation is the degree of spread in a series 
of numbers or a measure of dispersion. It is computed by ex­
tracting the square root of the average of the squared devia­
tions of the individual values from their mean. Algebraically, 
it is denoted as 

Figure 6 illustrates how the standard deviation is computed 
using the set of numbers 3, 4, 5, 6, and 7. 1/ 

Two sets of values can have the same mean but different 
standard deviations. For example, the set of numbers 1, 4, 3, 
15, and 2 has the same mean as the set 3, 4, 5, 6, and 7 (the 
set in figure 6) but a different standard deviation—5.1 rather 
than 1.4. This difference reflects the fact that the value.̂  
in 1, 4, 3, 15, and 2 are more widely dispersed around their 
mean than are the values in the other set. Knowing the amount 
of dispersion about the mean is especially importaiit in inven­
tory decisionmaking. 

Some theoretical distributions 

The frequency of observed data often compares well with 
some theoretical frequency distribution. Accordingly, mathema­
ticians have formulated a number of theoretical probability 
distributions that approximate demand data found in inventory 
control situations. We should also take note of the recent 
observation that knowing the precise form of a demand distri­
bution is not essential for determining optimal decisions. 
(Naddor, 1978, pp. 1769-72) In many cases, an optimal decision 
depends on the mean and standard deviation of demand but not 
on the specific form cf the distributions. Nevertheless, we 
discuss briefly three theoretical distributions that are some­
times encountered. 

1̂ /The sum of the squares is sometimes divided by N - 1 rather 
than N when a sample of values is being studied rather than 
all values. In such cases, the standard deviation of the 
population, since it is unknown, must be estimated. McAllister 
(1975, p. 62) offers this r&flection: "Previous samples . . . 
showed that . . . extreme population values . . . were seldom 
chosen. Hence, the variability of items about the sample 
mean will be smaller on the average than the variability of 
the population items about the population mean. If the nume­
rator [for the standard deviationl is too small, then a corre­
spondingly small denominator will compensate for this effect." 
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The normal distribution 

The normal distribution is the theoretical distribution 
used most often in statistics because it represents a wide 
variety of actual distributions in nature and because it simpli­
fies a number of statistical calculations. It is characterized 
as a "bell-shaped curve," being symmetrical about the mean, as 
can be seen in figure 7. One of its unique features is that it 
enables us to make an explicit determination of the probability 
of a certain value of customer demand per unit time being ex­
ceeded. For example, if demand is distributed normally (or 
approximately so), the mean value will be within 2 standard 
deviations 95.44 percent of the time. We can put this another 
way by saying that the mean value plus 2 standard deviations 
will, on average, be exceeded only 2.28 percent of the time. 
This concept is Illustrated in figure 7 for various multiples 
of the standard deviation. Further values can be obtained from 
normal distribution function tables readily available in almost 
every statistics textbook. 

According to C. D. Lewis, the normal distribution is often 
used to provide an approximate fit to the demand distribution 
at the factory level because the averaging that naturally takes 
place as customer orders are aggregated in the upward process 
from retailer to wholesaler to factory tends to produce this 
type of distribution. (Lewis, 1975, p. 20) However, use of 
the normal distribution may imply the existence of a "negative" 
'demand, as in stock being returned, which may not be appropriate 
in many government situations. For example, if the mean demand 
is 10 units and the standard deviation is 5 units, then the 
normal distribution would indicate that demand is less than 0 
(10 units minus 2 standard deviations) 2.28 percent of the time. 
This may not be a reasonable assumption. 

The gamma distribution 

Several practitioners have found the gamma distribution 
particularly useful in describing demand values, especially when 
demand cannot assume negative values. (Lewis, 1975, p. 24) The 
distribution is expressed by the following equation: 

P(X) - /3".x'*-"e"/3*/<« - 1" 

Unlike the normal distribution, the geunma distribution does 
not have a single characteristic shape, being defined in terms 
of two parameters, ot and B , where a is the shape parameter anr* 
8 is the scale parameter. These parameters are defined in terms 
of the mean and the standard deviation. The gamma distribution 
is illustrated in figure 8. 

The Poisson distribution 

In many applications involving failure statistics, such as 
for spare parts items, the Poisson distribution has been found 
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Figure 7 

The Normal Distribution 

StandsrJ units 

•68.86-
-95.44-
•99.74^ 

Percentage of area under the normal curve 

Figure 8 

The Gamma Distribution 

Constant a Constant p 

Mean X = ^ 

Standard deviation S » 
/ f l 2 

Source: Adapted from R. E. Shannon, Systems Simulation: The Art and Science-(Englewood 
Cliffs. N.J.: Prentice-Hall, 1975). p. 364. 
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Figure 9 

The Poisson Distribution 

PIX - k) 

• • • 
J L - J I ' • ' ' ' • 

to be the simplest and most convenient to use. (Rudwlck, 1969, 
p. 268) It contains only one parameter—the average failure 
rate. The standard deviation is equal to the square root of the 
mean. Mathematically, the Poisson distribution is expressed by 
the following equation: 

P(X) - e-*« • Ut)*/XI 

This function gives an expression for the probability, P(X), of 
an event X occurring within a time period t with an average rate 
of X per unit time. Unlike the normal and the gamma distribu­
tions, the Poisson is what is called a "discrete" distribution. 
That is, values for event X can be only Integers. 

The characteristic shape, shown in figure 9, is skewed to 
the left—that is, the bulk of the distribution is to the left 
of the mean. Thus, one way of detecting whether a distribution 
is likely to be approximately Poisson is to see whether it is 
skewed to the left (and whether the standard deviation is approx­
imately equal to the square root of the mean). 

Tables of values of the Poisson distribution do not gener­
ally include values for a mean above 20. For higher values of 
the mean, the distribution becomes very nearly normal. Thus, the 
Poisson distribution is usually characteristic only for a fairly 
narrow range of low, average values. 

Other distributions 

Demand data can be approximated from other theoretical dis­
tributions. The three we have discussed above are among the more 
frequently used. We avoided others that are mathematically more 
complex. The handbook of statistical distributions by N. A. J. 
Hastings and J. B. Peacock (1964) is a good reference for other 
distributions. We repeat, however, that the precise form of 
demand distribution is generally not essential for determining 
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optimal decisions. Optimal decisions frequently depend only on 
the mean demand and its standard deviation. 

THE DEMAND FORECAST 

A demand forecast is an attempt to predict the mean of an 
assumed probability distribution. (Recall that the standard 
deviation also helps determine the shape of a distribution.) It 
is the link between the external and uncontrollable movements of 
the environment and the internal and uncontrollable affairs of an 
organization. Reliable, Inexpensive demand forecasts are essen­
tial for planning soundly designed and operated inventory systems. 
In their absence, managing inventories is futile. Forecasting 
is generally based on collective opinion, on historical data, 
trends, and patterns, or on related information. 

Forecasting from collective opinion 

This method of forecasting is basically qualitative analysis 
built from the opinions of experts such as managers, wholesalers 
and retailers, customers, and economists. Market research, panel 
consensus, and the Delphi method are three approaches. 1̂ / The 
method might be used when data are scarce, as when a new product 
is being introduced to a market. It might be useful for building 
forecasts by product, customer group, o-. geographical territory. 
Regardless of the availability of other forecasting methods, it 
is useful for providing approximate estimates, and it can be used 
to verify or modify a forecast developed by other means. 

Forecasting from historical data 

This method of forecasting is based on the assumption that 
although change is going to take place, what has gone on before 
will continue. Its techniques are the statistical techniques 
of time series analysis and projection—or moving averages, ex­
ponential smoothing, and trend projections, as we discuss later 
in the chapter. Acceptable degrees of reliability in its use 
depend on there being sufficient data about the inventoried item. 

To understand the forces that make for change and to under­
stand and predict their future implications, the demand or use 
rate of an inventoried item may be described as subject to the 
several forces that operate on it simultaneously. Thus, one 
basic approach to forecasting demand from historical data is to 
decompose demand into its basic components. These are average 
demand, trends in the average, seasonal patterns, cyclical pat­
terns, and random variations. The data plotted in figure 10 
have been decomposed into seasonal pattern and random varia­
tions together with their linear trend as shown in figure 11. 

1̂ /The Delphi method is an attempt to obtain group consensus 
through revised estimations after additional group information 
is circulated in written form anonymously within a group. 
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Figure 10 

A Plotting of Hypothetical Data 

Figure 11 

The Hypothetical Data Deoomposed 
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In forecasting from such components, we would analyze and predict 
each one and then combine them to construct a forecast. 

Time series analysis and projection techniques are especially 
useful for forecasting the near future, but their reliability 
declines rapidly the further into the future we attempt to see 
with them. The two fundamental questions that must be answered 
in using historical data for forecasting are whether they are avail­
able and whether they are relevant. If the item in question has 
been Inventoried for several years, demand rates, service levels, 
delivery patterns, and the like may all be available but often 
such data have not been accumulated in the forms that are the 
most appropriate for forecast decisionmaking. That is, the his­
torical data may not have been clearly identified by specific 
items, at specific times and locations, or by specific classes 
of customer. 

Even when historical data are available in usable forms, 
they may not be relevant for estimating the future. Some fore­
casting techniques are based on the assumption that existing 
patterns will continue into the future. If significant changes 
are taking place in the inventory system—as when new products 
are being designed or old ones are being Improved, when custom­
ers are new or changing, when various buying behaviors differ, 
and so on—the similarity between the past and the future will 
diminish. 

Forecasting from related information 

Forecasts based on related information attempt to make 
explicit the relationships between the factor to be forecast 
and other factors. The forecaster tries to explain and under­
stand the forces affecting future sales levels, either because 
It is easier to forecast these forces directly than it is to 
forecast Scales or because they lead sales and are therefore 
known in advance of sales. Some of the more popular methods 
for doing this use regression models, econometric models, and 
input-output models. As a whole, these methods are more costly 
and time-consuming than other methods. 

The most relevant techniques 

An inventory system may need thousands of individual item 
forecasts, and the cost of developing them is an important con­
sideration. A significant problem in designing forecasting sys­
tems for inventory control is to achieve an appropriate balance 
between the forecast's accuracy and its cost. Many inventory 
systems require forecasting procedures that are simple, computer-
based routines that provide reasonable, short-range accuracy, 
but computational requirements and costs generally increase 
rapidly as refinements are added to the forecasting system. 
The point at which marginal savings from increased forecasting 
accuracy begin to exceed marginal costs is usually reached with 
relatively simple, automatic forecasting procedures. 
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Automatic forecasting procedures are 

"objective computational routines that measure past patterns 
in the data series and generate new data with similar pat­
terns for future periods. The causal factors underlying 
most product demand series, and thus, the pattern of these 
series, undergo changes through them. Forecasting systems 
based upon extending past patterns into the near future 
should therefore be responsive to these changes. New data 
should be utilized as soon as they are available and, since 
past observations become increasingly less reliable for 
establishing model parameters, greater weight should be 
given to more recent observations in analyzing the patterns 
of past data. While the forecasting system should respond 
quickly to permanent changes in the demand pattern, it 
should not be overly responsive to purely random varia­
tions. The appropriate level of responsiveness changes 
not only for different product demand series, but for the 
same product through time." (Groff, 1970, p. 257) 

The techniques we discuss in the remainder of this chapter meet 
these requirements to some degree. 

Moving average 

Average demand can be simply the average of all past data. 
The hypothetical data we looked at in figure 10, for example, 
show a simple average of 116.7 units per quarter. This figure 
probably would not serve as a very good basis for a projection, 
however, since the data obviously express some trend. Because 
of the apparent trend, the average of quarterly demand is said 
to be "moving" over time. 

The concept of a moving average enables us to smooth out 
the data so that the underlying trend becomes easier to see 
and analyze. To calculate a moving average, data from several 
periods numbering at least three are added together and divided 
by the number of periods. After that, data from the next period 
can be added while data from the earliest period are dropped. 
Figure 12 shows a three-quarter and a four-quarter moving average 
for the data presented in figure 10. 

Exponentially smoothed average 

As demand takes place, actual use may deviate from what had 
been projected, partly or entirely because of random effects 
or because the average level of demand has changed. Exponential 
weighted averaging, or "smoothing," is a means of adjusting 
a moving average of demand by Incorporating the most recent 
information without dropping any earlier information, as is done 
in simple moving averaging. The equation for the exponential 
weighted average is 

$2 - Si + a(y2 - St) 
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Figure 12 

A Plotting of a Hypothetical Moving Average 
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Sj^ = average forecast in period 1, S2 = average forecast 
iod 2, yo = actual demand in period 2, 

where 
in per 
smoothing constant (0 to 1 ) . 

and c( = exponential 

The forecast average—that is, the smoothed d e m a n d — f o r 
period 2 is equal to the forecast average for period 1 plus or 
minus some fraction of the deviation between the actual demand 
in period 2 and the forecast average for period 1. This frac­
tion, the alpha value, can range from 0 to 1. It is usually 
set at 0.10 to 0.20. To make the computation easier, the terms 
can be rearranged to 

S2 = «Y2 + (1 - «)Si 

FOr any succeeding time period t, the smoothed value S^ is found 
by computing 

Sj = oyt + (1 - <r)St-i where 0<a<1 

For example, returning to the data in figure 10, we can 
compute the following smoothed values with an alpha of 10 per­
cent and S Q equal to 100: 

Si » ay, + (1 - a)So 
» (0.1)(13B) + (0.9X100) 
s 13.8 + 90.0 
« 103.8 
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Figure 13 

A Ploning of Exponentially Smoothed Averages 
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= 10.0 + 93.4 
= 103.4 

In figure 13, the rest of the S^ values are calculated and also 
plotted for alphas of 10 and 20 percent. 

The fundamental idea of this and other exponentially smoothed 
models is that of filtering out "noise" or random variations. 
When actual demand changes gradually, the forecasting system can 
track the changes rather well. If, however, demand changes sud­
denly and permanently, a forecasting system using small values 
for the smoothing constants will lag substantially behind the 
actual change. 

Recently, several schemes have been proposed for the adap­
tive control of exponential smoothing constants. In many of 
these schemes, it is assumed that forecasted values that lag 
behind actual demand values will cause biased error when error 
is defined as the difference between forecast and actual demand 
in each period. When the forecasting system is tracking changes 
in demand correctly, the positive errors in some periods are 
balanced by negative errors in others, so error is not biased 
one way or another. Adaptive systems detect any tendency toward 
bias and correct the smoothing constants to remove it. 
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other techniques 

Many forecasting techniques that are relevant for inventory 
management require sophisticated statistical analysis, but it 
is possible to describe some of them in brief and general terms. 
We mention six of the more promising models. 

The exponentially weighted moving average (EWMA) is a 
technique appropriate for generating forecasts of an item 
whose demand has a pronounced seasonal effect. The EWMA model 
operates by separately estimating at each point in time the 
smoothed process average, the process trend, and the seasonal 
factor and then combining these components to build a forecast. 
The sinusoidal forecasting model is a least-squares technique 
using sine and cosine functions of timo as the independent or 
predictor variables. It detects seasonal effects over time 
that may exist within the time series. The autoregressive fore­
casting model uses a linear technique that accounts for correla­
tions between adjacent observations in a time series. Lagged 
process values assume the role of the independent or predictor 
variables. (Mendenhall and Relnmuth, 1971, pp. 413-20, 399-408) 

Exponential smoothing is a special case of the Box-Jenkins 
model. The time series is fitted with an optimal mathematical 
model whose parameters must be estimated. The X-11 technique, 
developed by the Bureau of the Census, simultaneously removes 
seasonal data from raw data and fits a trend-cycle line to the 
data. It provides details on seasons, trends, the accuracy of 
the seasonal data and the trend cycle fit, and a number of other 
measures. (Chambers, Mullick, and Smith, 1971, pp. 71-72) 

Curve-fitting techniques fit a trend line or curve to a 
mathematical equation and project into the future with it. The 
simplest type of trend is a linear function, although more com­
plex curvilinear functions, such as polynomials or growth equa­
tions, are used. 

EVALUATION CONSIDERATIONS 

Ideally, inventory managers should have detailed information 
on the demand for each item inventoried over extended periods, 
but it is rarely available in a form that is useful for analysis. 
When it is available, sometimes there is more of it than can be 
handled efficiently. The usefulness of data depends on their 
ability to display the true characteristics of customer-demand 
variations. Some prevalent data sources are (1) orders showing 
the dates of receipt and shipment, (2) consolidated demand 
figures by day or week, (3) consolidated shipment records by day 
or week, and (4) records cf inventory balances by day, week, or 
some other normal review period. Data in the first form are the 
most useful; usefulness declines in the order listed. 

Keeping this in mind, an inventory manager might select 
a sample of items and develop the details of their demand 
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characteristics. The manager might then study these character­
istics however crudely arranged, to form some idea of average 
levels of demand and random variations, trends, seasonal varia­
tions, and so on. From this information, frequency charts and 
graphs may hj prepared so that judgments may be made about the 
type of probability distribution that best approximates the 
data. Computer programs are available for simplifying this 
task. 

In evaluating the forecasting aspectr of Inventory manage­
ment, managers should attempt to keep the analysis conceptual 
and avoid getting lost in details. To this end, several impor­
tant questions can be asked. 

—Does the system attempt to create updated forecasts 
of expected demand for inventoried items? 

—What is the average time period between successive 
forecasts? 

—On what bases are forecasts made? 

—How is the accuracy or reliability of forecasts measured? 

—What is the record of the historical accuracy of the 
forecasting system being used? 

—How much time and effort go into forecasting? 

—What savings or advantages result from the forecasting 
system? 

—Is there a pronounced seasonality to demand? If so, 
do forecasting techniques systematically take it into 
account? 

—Have the forecasting techniques been automated or do 
they require substantial human computation and discre­
tion? 

—Do forecasting techniques require much computer storage 
capacity and time? 

—Can the forecasting techniques being used be adapted to 
permanent changes in user demand levels and patterns? 

Although concrete information is not likely to result from any 
one of these questions alone, overall patterns should emerge. 
Data evaluators can generally study the appropriateness of a 
forecasting system in terms of the reliability, timeliness, and 
economy of operation that are needed. 
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CHAPTER 5 

THE NATURE AND MEASUREMENT 

OF REPLENISHMENT LEAD TIME 

In this chapter, we define some important properties of 
replenishment lead time and the peculiarities that make it a 
problem for inventory decisionmakers. We also describe the 
variability of lead time and some of the problems that make it 
difficult to forecast lead time duration. 

LEAD TIME CHARACTERISTICS 

Total lead time, also known as "order and ship" time, "pro­
curement lead" time, and "lag" time, is the time between an 
order's being placed and the receipt of the new stock followed 
by its storage in a warehouse. Usually stated in terms of days, 
weeks, or months, it can also be seen as internal and external 
lead time. 

Internal lead time consists of all or any of the following 
elements. It may be the time it takes to become aware that the 
stock position is low. This is usually the time between review 
cycles. It may be the time it takes to process request documents 
or the time of a delay in obtaining an approval of a request. 
It may be the time required to advertise a procurement or process 
an order. Internal lead time may b^ negotiation or advertising 
time or the time required to award a contract. It may be the time 
required to process the receipt of material, place it in storage, 
and make it ready for issue. (Kuhlman, 1969, p. 74) 

External lead time is, as the term implies, the time delay 
in filling a request that is external to the supply manager's 
organization and, to some extent, beyond the manager's control. 
External lead time may consist of all or any of the following. 
It may be mail or transmittal time. It may be the time required 
to process orders or set up an operation. It may be manufacturing 
time. It may be inspection delay. It may be preservation and 
packing time or shipping time. (Kuhlman, 1969, p. 74) 

When a supply manager can replenish stock from a nearby 
depot, delay may be as little as a day or two. If instantaneous 
delivery could be assured, lead time would be zero. If a stock 
item must be manufactured commercially, delay may extend for 
months or a year or more, depending on the complexity of the 
item. Thus, lead time can be identified only individually for 
each item, and what it will be depends on the facts of the supply 
source. Once it has been established, lead time cannot be 
ignored. It must be reviewed constantly under the dictates of 
actual experience and changes in supply sources. 

Aggregate internal and external lead time should be con­
sidered in establishing inventory levels. For example, if the 
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Table 3 

The Components of Pipeline Inventory 

Average movement 
Average transit or Inventory (500 

Movement delay time (days) units per day) 

Factory-to-factory 1 500 
warehouse 

Delay at factory 2 1,000 
warehouse 

warehouse to dlstribu- 6 3,000 
tlon center 

Delay at distribution 2 1,000 
center 

Distribution center 3 1,500 
to user 

Total 14 7,000 

total lead time is 3 months, it may be desirable to establish 
a reorder point such that when it is reached, stock on nand 
is enough for at least 3 more months or, alternatively, to set 
the order level sufficiently high that a 3-month supply will 
be available whenever an order is placed. Stock held for these 
purposes is frequently referred Lo as "pipeline" inventory or 
"transit" or "movement" inventory. 

At any one time, an organization may need to have thousands 
of items in pipeline inventories, representing an investment of 
millions of dollars. The average pipeline inventory can be cal­
culated from transit times, delays, handling times, and use rates 
for the inventory system. The simple example in table 3 illus­
trates the calculation of pipeline inventories for an organiza­
tion using an average of 3,500 units of an item each week—that 
is, 500 units each day. 

In many situations, it is not necessary to hold great 
quantities of stock if suppliers' delivery times are strictly 
adhered to. Unfortunately, delivery times vary considerably, 
making the holding of some stock essential. Some managers seek­
ing to replenish stock think that suppliers control lead time, 
particularly when deliveries are late. On closer examination, 
however, delay can often be attributed to the purchasing organ­
ization or other agents as well as the supplier. 

C. D. Lewis gives an interesting illustration of the con­
stituents of delay. His scenario begins at the earliest point 
in time that the purchasing organization realizes a replenish­
ment order should be placed. The first delay is at the purch­
asing organization in transmitting the replenishment information 
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to its own buying department. The second delay occurs when the 
purchasing organization's buying department delays in compiling 
the order. Next, the post office delays in sending the order to 
the supplier. The supplier creates the fourth, fifth, and sixth 
delays in processing the order, then in manufacturing the items 
ordered or in taking them from stock, and finally in packaging 
and shipping the order. Seventh is a transit delay, whether 
postal, rail, or road. The eighth delay occurs in the purchasing 
organization's "goods inwards" department in acceptiro and un­
packing the order, the ninth in its inspecting and controlling 
the quality of goods received, and the tenth in its getting the 
replenished stock into stores ready for issue. Finally, after 
clearing the paperwork, the replenished item is ready to be 
issued. (Lewis, 1975, p. 101) Of these ten delays, five— 
the first two and the last three—lie within the control of 
the purchasing organization. It is rare that five delays make 
up 50 percent of the total. Nevertheless, by no means all de­
lays in overall lead time can be attributed to suppliers. 

LEAD TIME VARIABILITY 

Lead time is generally noc constant. The time to fill an 
order at its source, the shipping time,, the time required for 
paperwork, and the time for various other activities can vary 
from one order to another. Even though lead time duration varies, 
organizations rarely analyze it to estimate its mean and standard 
deviation. 

In chapter 4, we pointed out that demand data are often not 
available. This is even more true with lead time data. When 
lead times are fairly long and orders are placed infrequently, 
data are rarely sufficient to yield a probability distribution 
for lead time. Sometimes about the best that can be done is 
to obtain crude estimates of what the maximum and minimum lead 
times are, average them to find the mean lead time, and estimate 
the standard deviation as the range divided by six (assuming 
that a normal distribution of six standard deviations, three 
on dither side of the mean, will include essentially all the 
possible values of the distribution). (Hadley and Whitin, 1964, 
p. 419) 

In addition to the difficulty of trying to estimate lead 
time distribution, it may be that it is not stationary, since 
lead times tend to change continually. Furthermore, some orders 
may be split and not shipped at one time. Some orders may be 
expedited if it seems they will go out of stock. Because lead 
time and demand forecasts predict the future, and because condi­
tions may change, the best of information may change too and 
the forecasts become erroneous. 

Another important but unpublished observation is that lead 
time variability will not affect optimal decision rules signifi­
cantly if the system can generate a "good" estimate of the lead 
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time mean or average. V That is, optimum decisions on when 
and how much to order will not vary significantly in the long 
run if an accurate forecast of the mean replenishment lead time 
is available, even though lead time varies. 

EVALUATING LEAD TIMS ESTIMATES 

Most questions pertaining to forecasting demand also pertain 
to analyzing how an organization forecasts lead time. Some addi­
tional considerations that can be used as a guide for evaluation 
are: 

—In a comparison of established lead times with actual 
lead times, what are the reasons for differences? 

—Have both internal and external elements been considered 
in estimating lead time? 

—How much stock is pipeline inventory? Can this be reduced? 

—In an evaluation of the actual physical movement of a 
replenishment action, what aspects of it does it seem 
the decisionmaker can control? 

—Could lead time be shortened if several commodities were 
ordered from the same supplier simultaneously? (Recall 
that this practice saves on replenishment cost.) 

—In a consideration of the effects of revised order quanti­
ties on lead time, do large quantities, for example, have 
a longer or a shorter replenishment cycle? 

—Has a priority system been established for expediting 
more essential, costly items in replenishing stock or 
is lead time longer for these items because of more 
intensive management? 

—Is lead time treated as constant or as variable in 
deciding when and how much to order? 

1̂ /The observation was made by Levy and Naddcr and derives from 
their work in Levy, 1979a, and Levy and Naddor, 1979b. 
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CHAPTER 6 

ASSIGNING OPTIMAL VALUES 

TO POLICY VARIABLES 

Now that we have examined the aspects of inventory systems 
that have to be considered in making proper decisions about when 
and how much to order, we can discuss how to use this informa­
tion to arrive at optimal decision values. The usual means is 
mathematical analysis under one of three approaches—the analytic, 
simulation, and heuristic approaches. 

Before discussing these techniques in detail, it might be 
beneficial to reiterate the properties of inventory systems that 
influence how decisions are made. First are the three distinct 
decisionmaking policies—the reorder point-fixed order quantity 
policy, the fixed interval-order level policy, and the reorder 
point-order level policy—one of which must be chosen. Further, 
if costs are to be minimized, a decision about when and how much 
to order must be made in view of conflicting cost functions, 
variations in demand, and variations in replenishment lead time. 
Thus, Inventory systems are characterized by policy (reorder 
point or inventory review interval, order quantity or order 
level), cost (carrying, shortage, replenishing), demand (con­
stant, variable), and lead time (insignificant or significant, 
constant or variable) among other factors. These are summarized 
in table 4. Managers should consider all factors when making 
inventory control decisions if they want to minimize costs. 

Table 4 

Inventory System Properties 

POLICY—WHEN AND HOW MUCH COST 

1. Reorder point-fixed order 1. Carrying 
quantity 

2. Shortage 
2. Fixed interval-order level a. Explicit 

3. Reorder point-order level 
b. Implicit 

3. Replenishment 
a. Constant 
b. Variable 

DEMAND LEAD TIME 

1. Constant 1. Constant 
a* Virtually zero 

2. Variable or probabilistic b. Positive 

2. Variable 
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The literature on optimizing inventory control decisions is 
quite extensive. Many analysts find the problems of optimizing 
inventory control policy variables mathematically interesting 
because there is a seemingly infinite number of possible models. 
Furthermore, the same basic principle may be applied in the 
social and political sciences as in determining what to do in 
a situation in which doing either too much or too little will 
result in excessive costs or unduly low benefits. (Nagel and 
Neef, 1976 and 1979) 

Our intention is not to synthesize the copious literature 
on the subject. Instead, we give an overview of three techniques 
for arriving at decisions that will tend to minimize costs. Eval­
uating precisely how well a government organization is making in­
ventory decisions will, in all likelihood, require some expertise 
in quantitative methods. V Nevertheless, the pertinent theories, 
assumptions, approximations, and judgments can be understood in 
general terms. 

THE ANALYTIC APPROACH 

In the analytic approach, operating rules that minimize 
costs are determined by constructing a mathematical model of 
the system. This method has as its primary purpose to develop 
optimal decision rules and determine the minimum total cost of 
systems. It can also be used to analyze the sensitivity of 
results and to compare different inventory policies. 

In operations research literature, the concept of a mathe­
matical model is presented as a functional relation between 
some appropriate measure of effectiveness or utility and a set 
of controllable and uncontrollable variables. (Ackoff, 1962, 
p. Ill) Such a characterization has the form V = f(Xĵ , ̂ i^» 
where V is the measure of value or utility for the system under 
study (cost, for example), Xĵ  is the set of controllable variables 
(when and how much to order), and Yj is the set of uncontrollable 
variables that affect performance (the cost of the item, demand 
factors, certain lead time factors); f signifies the functional 
relationship between the independent variables and constraints, 
Xĵ  and Y^, and the dependent variable V. 

While this may be considered the prototype of all models of 
problem situations, an actual model may contain several equa­
tions and inequalities. Because there is considerable flex­
ibility in model construction, few principles can assist analysts 
in this phase of work. In fact, the process by which one derives 
a model of a system has been described as an intuitive art. Any 
set of rules for developing models has limited usefulness at best 
and can serve only as a suggested framework.. 

VGAO evaluators should refer to chapter 11 of the GAO Project 
Manual. 
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The few models we discuss are simple and we present them in 
order to provide some idea of the optimization formulas generally 
in use. The "EOQ" formula is famous and the simplest of all 
models because of its underlying restrictive assumptions. After 
we show these, we discuss how they can be altered in two other 
formulas for determining minimum system costs. 

The EOQ model 

Ford Harris of the Westlnghouse Corporation used mathemati­
cal methods in Inventory analysis as early as 1915. (Hadley and 
Whitin, 1963, pp. 2-4; Naddor, 1966, pp. 16-17) His formula for 
deriving the most "economical order quantity" (EOQ) has had more 
applications than any other single result in Inventory systems 
analysis. The formula can be applied to systems with the follow­
ing characteristics—carrying cost and replenishment cost are 
constant; no shortages occur and demand is always met and, thus, 
shortage cost is not considered; the precise rate of demand 
is known and constant; the replenishment lead time is known 
and constant. 

Inventory managers who use the formula can compute the 
order quantity that will balance the cost of carrying inventory 
with the cost of replenishing stock. The formula, whose deriva­
tion is explained in most standard textbooks on inventory theory, 
is as follows: 

where 

Q > the economical order quantity 
D ' demand, usually in units per year 
C^ = unit carrying charge, usually in dollars per year 
C3 - the cost of replenishment in dollars per 

replenishment 

It is important to note that the formula answers only "How 
much to buy?" "When to buy?" is a separate issue. Because of 
the restrictive assumptions upon which the formula is based, 
however, "When to buy?" is relatively easy to answer. Orders 
are placed whenever the amount on hand equals the expected demand 
during the lead time period. This will insure that some stock 
will always be on hand when a demand occurs (no shortages being 
allowed or expected). As this Implies, the EOQ model is usually 
used in connection with reorder point policies, inasmuch as 
the reorder pointy R, equals the lead time demand, Lt*D—that 
is, R = Lt*D. 

The total expected cost (TEC) of managing items in this par­
ticular system can be computed by using the following formula: 
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TEC- -'C, + £»C3 
2 Q 

where 

2 
— c, m yearly cost to carry the item in Inventory, 

Q/2 being the average amount of inventory 
on hand 

D ,-
—• v̂a = yearly cost of replenishment, D/Q being the 
^ number of orders placed per year 

Let us consider an example. Suppose 

Demand = 500 units per year 
Lead time = 6 months, or 0.5 years 
Replenishment cost = $10.00 per order 
Carrying cost = $0.10 per unit per year 

Then 

= \ ^ 
.«« 1 f 2'500»10 
EOQ = \/ = 316 

0.10 
Lead time demand -and 

R 
TEC 

'= 
= 
s 

-

= 
» 

500(0.5) 
250 
250 
315(0.101 
2 

$15.81 + 
$31.62 

+ 

$15 

500(10) 
316 
>.81 

Thus, when the inventory level reaches 250 units, an order 
for 316 units is placed. The order will be received in 6 months, 
at which time the inventory level will be zero. The cost of 
managing the item—that is, carrying it in inventory and placing 
orders—is about $31.62. The cost to carry and the cost to 
order are equal—that is, they are balanced. 

The stockouts permitted model 

Permitting stockouts implies a shortage cost. All other 
assumptions are the same as in the EOQ model. Shortage cost 
may be difficult to measure precisely, as we discussed in chap­
ter 3, but management-imposed service goals or fill rates imply 
that there will be one. Thus, a 90 percent fill rate, for ex­
ample, suggests that it is acceptable to be out of stock 10 
percent of the time. This reduces the cost of carrying an item 
by 10 percent over what it would be if stockouts were not per­
mitted, valuing the cost of maintaining 1 unit on back order 
at 9 times the cost of carrying 1 unit in inventory for the 
same length of time. 
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Using this concept, we can find the optimal order quantity 
(Q), reorder point (R), and total expected cost (TEC) from the 
following expressions: 

'D»C, 
Q 

R 

TEC 

= 

= 

- . 

V^ 
D*Lt 

S2 

2Q 

,'(F/100) 

- QMIOO 

•c, + -

- F)/100 

(Q-S)2 
2Q 

*C2 + 
Q 

•C3 

where 

D = annual demand 
F = fill rate percentage 
C^ = unit carrying cost per year 
Qy ~ unit shortage cost; 

recall that Cj = IC3^*F(1 - F)] 
Co = replenishment cost 
Lt = replenishment lead time 
S = expected inventory level after 

an order has been received— 
in this case, S = Q + R - D*Lt 

Consider the following example, in which it is given that 

D = 500 units per year 
Lt = 0.5 year 
Cj = $0.10 per unit per year 
F = 95 percent 
C2 = $1.90 per unit per year, 

computed from Ĉ  and F 
C3 = $10 per order 

Then we can compute as fol lows: 

Q - W ^ 
V (0.1) 

•S0D»10 

l)*<0.95) 
= 324 

R = 500*0.5 - 324»0.05 
= 234 

TEC = ^ ? ? i . o . l - H - ^ - 1 . 9 + -59°-10 
2*324 2*324 324 

= 14.64 + 0.75 + 15.43 
= $30.82 

Thus, when the inventory level reaches 234 units, an order 
for 324 units is placed. The cost of managing the item under 
these conditions is $30.82 per year. No other combination of 
reorder point and order quantity will give a lower cost. 
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The probabilistic demand model 

In the probabilistic demand model, we change one more of the 
four original assumptions, so that demand will vary, taking on 
a probabilistic nature. Thus, the systems assumptions are now 
that carrying and replenishment costs are constant, stockouts 
are allowed and thus there is a constant shortage cost, demand 
varies, and replenishment lead time is known and constant. 

With these assumptions, the mathematics becomes more compli­
cated. Continuing this trend, the next type of model would show 
not only demand varying but also lead time. We conclude our dis­
cussion on the analytic approach with an illustration of the 
probabilistic demand model, because the level of mathematics 
needed to go any further becomes greater than intended for this 
document. Readers interested in the formules and their manipula­
tion may refer to the bibliography in appendix II. 

The model we discuss here is sometimes referred to as the 
"ship provisioning model" because of its applicability in deter­
mining optimum stock levels for spare parts when ships are being 
constructed. These parts are generally expensive but they are 
bought even though it is unlikely they will be used, because it 
is considerably more expensive to buy them when they are needed 
than to keep them on hand. 

Since there is only one period of concern—the life of a 
ship—deciding when to order is moot. The only decision is how 
much to order. Hence, the objective is to store enough parts 
to meet future demands efficiently, which fluctuate because of 
equipment failure. Lead time—that is, production lead time—is 
not important either, since presumably the spare parts are being 
produced along with the construction of the ship. Lead time is 
zero. 

Two possible situations can be encountered, as depicted in 
figure 14. In situation A, too many parts have been purchased 
for the period of concern, resulting in an unnecessary investment 
cost, even though the leftover parts may have some salvage value 
that will partially offset this. In situation B, the stock has 
been depleted before the end of the period, and a penalty must 
be paid either for having to construct and transport the part 
that is needed or for having the ship (or aircraft, tank, combat 
unit, or whatever) go completely out of commission. 

Situations A and B both indicate that three costs must be 
considered—(1) the buying price (B) for one item, (2) a salvage 
value (S) for each item left at the end of the period of concern, 
and (3) a penalty cost (P) for each item needed but not in stock. 
Since the model incorporates demand that is known not exactly 
but only probabilistically, decisions can be made only in terms 
of the "expected" cost of stocking a certain number of items. 
Expected values are computed by multiplying the probability of 
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Figure 14 

Inventory Positions in the Probabilistic 
Demand Model 

Inventory 
position 
(units) 

Inventory 
position 
(units) 

1 
J Salvage 1 

Situation A Situation B L J 
Shortages 

an outcome by the value of the outcome if it does occur and then 
summing the products obtained. 

To obtain the optimum stock level (L) we could tabulate 
the expected cost of various stock levels. The level that gives 
the lowest expected cost is the optimum amount to stock. A 
formula derived from this concept gives the optimal L without 
computing the expected cost for all values. That is, the optimal 
value of L is one for which 

Pr(X<L - 1) < (P - B)/(P - S) < Pr(X ̂  L) 

in which the righthand term is 
is less than or equal to L." 

'the probability that demand (X) 

Suppose, for example, that a submarine is being provisioned 
for a polar voyage. One of the items to be carried is a very 
specialized bilge pump, and we have to determine the number of 
reserve pumps to carry. They cost $3,700 each and have a salvage 
value of $1,000 if they are not used, if the Initial provision­
ing is inadequate, however, the cost of manufacturing and deliv­
ering a replacement pump will be $15,000, including production, 
delivery, and downtime costs. The distribution of demand, de­
termined from past history of similar activities, is as follows-
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Demand X Probability Pr(X) 

0 
1 
2 
3 
4 
5 

0.10 
0.15 
0.20 
0.30 
0.20 
0.05 

0 
0 
0 
0 
0. 
1. 

.10 

.25 

.45 

.75 

.95 

.00 

The probability that demand will be less than or equal to 
level L is then 

Level L Pr(X 1 L) 

0 
1 
2 
3 
4 
5 

Using the concept of expected value, we can construct the 
following cost table: 1/ 

Level 

1 
2 
3 
4 
5 

Thus, the optimal decision would be to procure 4 pumps, since 
this choice has the lowest expected cost. Using the optimiza­
tion formula above, we find 

(P - B)/(P - S) = (15,000 - 3,700)/(15,000 - 1,000) = 0.807 

and, since Pr(L = 3) = 0.75 < 0.807 < Pr(L = 4) = 0.95 

the optimal level L is 4. 

Cost 

0 
3,700 
7,400 
11,100 
14,800 
18,500 

Expected 
penalty 

$37,500 
24,000 
12,750 
4,500 
750 
0 

Expected 
salvage 

$ 0 
100 
350 
800 

1,550 
2,500 

Total 
cost 

$37,500 
27,600 
19,800 
14,800 
14,000 
16,000 

3./For example, if one pump is bought but never needed, there 
will be a return of $1,000 in salvage. However, since there 
is only a 10 percent chance of this occurring, the expectsd 
salvage value is only $100(0.10*1000) when the pump is pur­
chased. All figures for expected values in the table are 
computed in this manner. 

44 



THE SIMULATION APPROACH 

Simulation is the development and use of models to aid in 
evaluating ideas and studying systems or situations. The essen­
tial characteristic of simulation is understood in the observa­
tion that "a model represents a phenomenon, but that simulation 
imitates it." (Ackoff, 1962, p. 346) It allows experimentation 
with systems that would otherwise be impossible or impractical. 
Simulation is not unique to the analysis of inventory or supply 
systems, having numerous applications in almost every social, 
economic, .technological, and humanistic endeavor. This concept 
is both simple and intuitively appealing. 

Simulation is, however, based heavily on computer science, 
the mathematics of probability, and statistics. Thus, simula­
tion models of real systems are usually computerized, though this 
is not always true. Experiments with them are for the purpose 
of either evaluating various strategies for the operation of a 
system or understanding the behavior of the system. In the rest 
of this section, we illustrate both purposes with examples that 
keep the mathematics as simple as possible. 

Evaluating alternative decisions 

Simulation is used frequently to compare new operating rules 
with others whose experience is known. This is generally done for 
a system for which no valid analytical model has yet been devel­
oped; it can be simulated once with its new rules and again with 
old ones, employing the same pattern of demand in both. Thus, 
a comparison can be made by computing the costs that would be 
incurred under the two operating doctrines over the length of 
time for which the simulations were carried out. 

The following example illustrates this with a relatively 
simple computer simulation model. Suppose that demand is prob­
abilistic with the following distribution: 

Monthly 
demand 

10 
20 
30 
40 
50 

Probability 
of demand 

0.2 
0.2 
0.3 
0.2 
0.1 

where 

C-̂  = $0.75 per item per month 
F = 90 percent 
C2 = $6.75 per stockout per month 
Co = $100 per order 
Lt = 2 months 
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Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

12-Month Simulation 
Policy—Reorder 

Beginning 
inventory 

70 
40 
30 
60 
50 
20 
60 
50 
20 
70 
50 
0 

Demand 

30 
10 
50 
10 
30 
30 . 
10 
30 
20 
20 
50 
40 

Average monthly amount 
Average monthly cost 
Total 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Aver a? 
Averac 

cost: $79. 

12-Month 

.90 

Table 5 

of Reorder Point-
Point = 50 and Order 

Ending 
inventory 

Simulation 
Policy—Reorder 

Beginning 
inventory 

50 
20 
10 
40 
30 
60 
30 
20 
60 
40 
20 
30 

Demand 

30 
10 
50 
10 
30 
30 
10 
30 
20 
20 
50 
40 

le monthly amount 
re monthly < 30St 

40 
30 

-20 
50 
20 

-10 
50 
20 
0 
50 
0 

-40 

Table 6 

On hand, 
on order 

40 
110 
60 
50 
90 
60 
50 
90 
70 
50 
70 
30 

Carried 

31.7 
$23.79 

of Reorder Point-
Point = 40 and Order 

Ending 
inventory 

20 
10 

-40 
30 
0 
30 
20 

-10 
40 
20 

-30 
-10 

On hand. 
on order 

20 
90 
40 
90 
60 
30 
90 
60 
40 
80 
30 
60 

Carried 

22.7 
$17.06 

•Order Level 
Level « 12C 

Ordered 

80 
0 
0 
70 
0 
0 
70 
0 
0 
70 
0 
90 

Short 

2.1 
$14.44 

•Order Level 

[ 

Received 

0 
0 
80 
0 
0 
70 
0 
0 
70 
0 
0 
70 

Orders 

0.4 
$41.67 

Level = 100 

Ordered 

80 
0 
60 
0 
0 
70 
0 
0 
60 
0 
70 
0 

Short 

2.3 
$15.70 

Received 

0 
0 
80 
0 
60 
0 
0 
70 
0 
0 
60 
0 

Orders 

0.4 
$41.67 

Total c o s t : $74.43 
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Now suppose that an organization uses the reorder pcint-
order level policy, setting the reorder point at 50 units and 
the order level at 120. Table 5 shows a 12-month simulation 
of such a situation. The average monthly cost of managing this 
item is $79.90. Rules of 40 and 100, respectively, would cost 
only $74.43, as shown in table 6, and thus would save approxi­
mately 7 percent in operating costs. The optimum rules using 
an analytic model are 60 and 150, respectively, and would total 
only $73.10 in system operating costs. 

Simulatioh can also be used in evaluating strategies to 
study parameter variations or to make sensitivity analyses, which 
are difficult to do analytically. For example, it may be inter­
esting to study what happens to operating cor̂ t estimates when 
lead time is reduced or increased, when the demand pattern is 
changed slightly, when different cost figures are used, and 
so on. 

Understanding system.behavior 

Simulation often gives useful insights into a system's oper­
ation, sometimes by revealing inadequacies or inconsistencies 
in the operating rules that might not come to light short of 
implementing them in the real world. It is a valuable and rela­
tively efficient tool for this purpose. GAO has used it, as re­
ported in Alternatives Available for Reducing Requirements for 
Spare Aircraft Engines (LCD-77-418, October 12, 1977). The 
following example is drawn from that report. 

Spare aircraft engines are routinely needed to replace 
engines undergoing periodic maintenance or major overhaul, the 
purpose being to keep a $20 million aircraft operable at the ex­
pense of an extra $2 million engine. In other words, a high cost 
is placed on being out of stock. Requirements for spare engines 
are governed by predicted flying hours, engine removal rates, 
pipeline times in transporting and repairing or overhauling the 
engines, and the number of aircraft bases to be supported. 

Separate requirements are computed for the central depot 
and each base. Spare engines are stocked at the depot and sent 
to a base whenever an aircraft's engine is removed and shipped 
to the depot for overhaul or repair. Enough spares are stocked 
at each base to cover the time required for receiving replacement 
engines from the depot or for repairing engines at the base. The ^x 
continual movement of engines from aircraft to overhaul and re­
pair facilities and back is shown in figure 15 on the next page. 

Total requirements are determined analytically with a model 
very similar to the ship provisioning, or probabilistic demand 
model, illustrated in the section above. In the case at hand, 
however, the Navy included quantities of engine stock to support 
aircraft operations at land bases and also aboard aircraft car­
riers. In our analysis, we deemed this to be duplicative, the 
problem arising because the Navy computed its requirements for 

\ 
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Figuro 15 

Spare Engine Supply System 
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Engine 
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Spare engine 
ttock 

at depot 

bases as if aircraft operated at them year-round, when in fact 
many aircraft are stationed at bases but also aboard carriers 
for one-third to one-half the time. The Navy supplied a quantity 
of spares aboard each carrier to support the same aircraft being 
supported by spare engine stock at their land bases. 

When we suggested that this practice was "not consistent 
with the pipeline concept which is designed to determine aircraft 
operational needs and distribute assets considering depot over­
haul capability and shipping times," agency personnel expressed 
concern. (U.S. GAO, 1977, p. 19) They feared that large reduce 
tions would hamper their ability to meet contingency surges in 
demand for spare engines. Consequently, a computer simulation 
of the spare engine support system was developed to evaluate 
how the system would behave under various conditions. 

The results of one simulation run for one particular engine, 
the Navy's F-14 aircraft engine, is shown in table 7. It is con­
structed in 10-day intervals so that the flow of engines in and 
out of the various pipelines may be seen as well as the amount 
of .ĉ pares on hand. GAO's estimate of the agency's requirements 
was 191, compared to the Navy's claim that 262 engines were 
needed. The simulation demonstrates the effect on the amount 
of stock on hand over a period of time as the engines going into 
the pipeline begin to offset the engines leaving it. Thus, the 
feasibility of eliminating the duplication in spares can be 
seen, given that shortages occur only rarely (the depot was 
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Days 
elapsed 

Peacetime 0 
10 
20 
.30 
40 
50 
60 
70 
80 
90 

Wartime 100 
110 
120 
130 
140 
150 
160 
170 
180 

Spare 

Table 

Engine Supply 

Number of 
Introduced 
into 

Depot 
overhaul 

0 
8 
8 
9 
11 
9 
12 
9 
12 
8 

12 
21 
17 
15 
14 
14 
16 
7 
2 

pipeline 
Base 

repair and 
resupply 

0 
15 
23 
24 
29 
26 
23 
25 
20 
21 

35 
43 
47 
40 
33 
44 
43 
42 
47 

engines 

2 
sy 

Ret" 
from p 

Depot 
overhaul 

0 
0 
0 
0 
0 
8 
8 
9 
11 
9 

12 
9 
12 
8 
12 
21 
17 
15 
14 

Stem Simulation 

jrned 
ipeline 

Base 
repair and 
resupply 

0 
0 
1 
17 
21 
23 
30 
28 
21 
26 

19 
21 
39 
43 
42 
41 
32 
44 
43 

>Jumber 
of serviceable 

spares 

Depot 

69 
61 
53 
44 
33 
32 
28 
28 
27 
28 

28 
16 

^ 11 
4 
2 
9 
10 
18 
30 

Rases and 
carriers 

122 
107 
85 
78 
70 
67 
74 
77 
78 
83 

67 
45 
37 
40 
49 
46 
35 
37 
33 

Total 

191 
168 
138 
122 
103 
99 
102 
105 
105 
111 

95 
61 
48 
44 
51 
5!; 
45 
55 
63 

out for a short period between day 140 and day 150) and that, 
in a contingency, a sufficient quantity is available to maintain 
the system's operability. At day 90, the ending of peacetime, 
the table shows 111 spares on hand. Other areas in the system 
where cost savings could be achieved were also shown in the 
simulation and are discussed in detail in the 1977 report. 

Because it is sometimes difficult to represent reality in 
complete detail, simplifications and approximations become neces­
sary. In making them, we should be careful that the resulting 
system represents enough of reality to adequately test whatever 
is being examined. It is, of course, difficult in a simulation 
to subject a system to all possible types of stress and interac­
tion. Thus, it is often necessary to give parameters numerical 
values that are difficult to estimate. The outcome may or may 
not be sensitive to them. This is especially likely when there 
are a number of such parameters, because it is very difficult 
to make sensitivity analyses of them all. Problems like these 
make it difficult in many cases to derive clear-cut conclusions 
from the results of a simulation. 

THE HEURISTIC APPROACH 

As we have seen, the computational effort required in the 
numerous analytical models available for deriving optimal 
inventory decision rules sometimes prohibits their practical 
application. Frequently, they are difficult to understand and 
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their data requirements are cumbersome. When the computation 
of an optimal policy requires complete specification of the prob­
ability distribution of demand, for example, the information 
required for the model may be unrealistic for many practical 
settings it might be applied to. Consequently, another approach 
to inventory decisionmaking is growing rapidly in Importance. 
This is the heuristic approach. 

The usual meaning of "heuristic" in problem-solving defines 
an act of learning that may lead to further discoveries or con­
clusions but provides no proof of whether outcomes are correct or 
not. (Wiest, 1975) This meaning has been expanded somewhat to 
include any device or procedure that can be used to reduce a 
problem-solving effort. In short, a heuristic may be a rule 
of thumb. 

Without using the term, however, many government Inventory 
systems are actually managed from heuristic models or rules 
of thumb. For example, the EOQ formula might be used to answer 
the question "How much?" but when its assumptions that demand 
and replenishment lead time do not vary are not, in practice, 
met (as they seldom are), then some sort of rule of thumb might 
be used for deciding when to order. That Is, orders are usually 
placed when the inventory level falls below a quantity equal 
to the replenishment lead time demand plus some "safety stock." 
There is no proof that this procedure is the least costly. In­
deed, costs are never even computed in this method. It is, 
however, simple to use and easy to program in a computer. As long 
as the system service level meets management's approval (usually 
stockouts are to be kept to a minimum), the system is believed 
to be operating satisfactorily. 

Heuristic rules for when and how much to order have recently 
been developed that compare very favorably with optimal rules 
in terms of cost yet are very simple to use, requiring no signif­
icant computer time. (Ehrhardt, 1979; Freeland and Porteus, 1980; 
Naddor, 1975a; Nahmlas, 1979) Use of them comes very close to 
balancing and, thus, minimizing the costs of carrying inventory, 
placing orders, and running out of stock. 

To illustrate, we can consider the following data on a $2.40 
item in a system with variable demand properties but a relatively 
stable replenishment lead time of four months. The policy is the 
reorder point-order level with values of 700 and 1,500, respec­
tively. Costs are known to be as follows—carrying cost is $0.04 
per month, shortage cost is $3.96 per stockout per month (implied 
from the carrying charge and the agency goal of 99 percent service 
level), and replenishment cost is $100 per order. The mean demand 
is 83.5 per month, while the standard deviation of demand is 50.3 
per month. 

Using the heuristic rules presented in appendix I for a 
system with these characteristics and an optimization model 
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Projected 
Reorder Order Monthly operating costs service 

Source 

Agency 

Heuristic 

Analytic 

point 

700 

550 

500 

level 

1,500 

1,200 

1,150 

Carrying 

$30.60 

21.60 

19.60 

Shortage 

$ 0 

0.90 

2.00 

Order 

$10.00 

12.30 

12.30 

Total 

$40.60 

34.70 

33.80 

level 

100.0 

99.7 

99.4 

developed by Naddor (1975a and 1975b), results were obtained as 
shown in the accompanying display. JL/ The agency could reduce 
operating costs by about 15 percent by using the heuristic deci­
sion rules because they show less stock carried. Orders are 
placed more frequently, but the extra replenishment cost is not 
enough to offset the savings in inventory carrying costs. Costs 
could be reduced slightly more by using the analytic solution, 
but this particular model is very complex, being highly mathe­
matical, and takes considerably more computer time; indeed, 
solving for the rules manually is unthinkable. 

While a heuristic approach may not always lead to the "best" 
solution, experience has proved it generally useful in finding 
good solutions with a minimum of effort. In some cases, it can 
result in computer savings. (Naddor, 1975b) More importantly, 
it is easy to understand. Actually, the basic notion of heuristic 
problem-solving is not new. Recent sophisticated extensions of 
this basically simple concept, when combined with the power of 
a computer, can enable decisionmakers to consider many complex 
situations successfully—among them some that have resisted solu­
tion by other techniques. 

CONCLUSION 

It has been said that Inventory system management is based 
largely on intuitive judgment and experience. (Hadley and 
Whitin, 1964, p. vi) Further, we have pointed out that because 
there are few principles to assist in the development of mathe­
matical models, inventory management frequently depends on in­
tuition. Thus, all that can be recommended for constructing 
models of Inventory systems that will derive optimal decision 
rules is that modelers and evaluators be aware of the four prop­
erties we outlined in table 4—inventory policy, cost, demand, 
and lead time. They must be given due consideration. t 

From an evaluative point of view, however, it may not be 
necessary to model a given system. It may be necessary only 

VFor the analytic solution, a probabilistic model was used in 
which the geumna distribution was assumed (see chapter 4). This 
model was also used to compute the monthly operating costs for 
all three sets of decision rules. 
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to check on the assumptions underlying policy, cost, demand, 
and lead time. If some assumptions are found to be out of line 
with reality, it may be sufficient to report this. Since such 
a report could not give interested parties any idea about the 
monetary effect of assumptions or communicate a procedure that 
would improve the system, it might be desirable to make specific 
recommendations about what to do to Improve decisionnaking for 
purposes of minimizing costs, in such cases, expertise in build­
ing models becomes a necessity. It is not enough to say "These 
are tlie rules." It is equally Important to be able to state 
". . . and this is how much it is going to cost." 
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APPENDIX I APPENDIX I 

HEURISTIC DECISION RULES 

FOR THE REORDER POINT-ORDER LEVEL POLICY 

Eliezer Naddor (1975b) has proposed the following heuristic 
decision rules as providing excellent results for the reorder 
point-order level policy in probabilistic systems. 

(II R - (Lt + w/2)3( - (Q + u)/2 + N V(Lt + w/Slo^ + ((wX)2 + tf + u^l/l2 - û pw/B 

(2) L - (Lt + T/21X + N V(Lt + T/3)o2 + (7X)2/12 + u^d - pT^e 

where 

R B reorder point, to the nearest multiple of u 

L - order level, to the nearest multiple of u 

Lt » lead time in units of time 

N = number of standard deviations of a standardized normal 
distribution 

P = probability of no demand in a unit of time. Expressions 
containing P are of theoretical interest only and may be 
ignored. If this probability is unknown, set P = 0. 

Q = lot size or order quantity 

a - standard deviation of demand in a unit of time 

T = scheduling period in tinlts of time. This is the length 
of time between consecutive decisions about replenish­
ments; it is the fixed interval in the fixed interval-
order level policy. 

u - unit quantity in which demand data are considered. (See 
text discussion at table 2.) 

w - reviewing period in units of time. This is the unit of 
time in which inventory levels are determined. Gener­
ally, w s 1. Where inventory levels are reviewed bi­
monthly, for example, but all other variables are in 
monthly units, w - 2. 

X = mean or average demand in a unit of time 

It is assumed that inventory is reviewed every reviewing 
period w. If the amount on hand and on order is equal to or less 
than R, an order is placed to raise the inventory on hand and on 
order to the Level L. If there are shortages in the system, it 
is assumed that they are on back order. 
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APPENDIX I APPENDIX I 

The variables N, Q, and T are derived from 

(3) N - A-'(F) 

(4) Cj - C,F/(1 - F) 

(5) T - V2Cj/(C^ffi) to the neifMt positive multiple of w 

(6) Q - \^C^/(CiF) to the nesrsst muMpis of u 
where 

F « fraction of time during which Inventory Is available; 
this is the fill rate 

C^ • carrying cost per unit per unit of time 

C2 " shortage cost per unit per unit of time 

C3 ~ cost of replenishing inventory 

A » cumulative normal distribution 

For F » 1, a suitable value for N in most applications is 3. 
In deterministic systems, when a » 0, N « (2F - 1)(3)^'^. If we 
work through an example, we can assume the following: 

Costs 

Cĵ  - $0.10 per unit per month 

F = 90 percent 

C2 » $0.90 per unit per month (using 90 percent fill rate 
goal) 

C3 » $100 per month 

Demand 

X = 100 units per month 

<7 = 20 units per month 

u = 10 

Lead time 

Lt s 4 months 

Other variables 

w = 1 

P - 0 
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APPENDIX I APPENDIX I 

To begin computing this example, we would approximate the 
variables T and Q'—the "fixed interval" and "fixed order quantity' 
as described in chapter 2—with formulas 5 and 6 from above, as 
follows: 

T - V2*100/0.r0.9*100 « 4.7, or 5 months, to the neerestfnuitipis of w 

Q - Y2»100*1G0/0.1*0.9 - 471.4. or 470 units, to the nesrsst multiple of u 

The number, N, of standard deviations corresponding to F « 90 
percent is approximately 1.28. N may be found by using formula 
3 with the aid of normal distribution tables. 

Substituting into the formulas, we obtain the following 
results. Note that for computational ease, every term may first 
be divided by u « 10 if the final answer is then multiplied 
by u » 10. 

R - (4 + 1/2)100 - (470 + 10)/2 + 1.28 V(4 + 1/3)20^ + (100̂  + 470^+ 102)/12 

* 210 + 1.28(144.866) 

« 396.416. or 400 units, to the nesrest multiple of u 

L - (4 + 6/2)100 + 1.28 ^4 + 5/3)20^ -t- (5*100) /̂12 

- 660 -»- 1.28(151.987) 

« 844.54, or 840 units, to the nesrsst multipls of u 

While the formulas appear to be considerably more complex 
than the EOQ formula, they are not difficult to use manually and 
are easily programmed into a computer, where they require an 
almost insignificant amount of time. They have been shown to be 
very nearly optimal. Thus, organizations can manage inventories 
at lower cost while simultaneously maintaining some desired serv­
ice level with other heuristic decisionmaking policies already in 
place. We have shown this recently, in a 1981 report. Better 
Investment Decisions ^an Save Money at GSA and FAA, PLRD-81-30, 
June 5, 1981. 
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