
INSIDE:
Software Tools, Software
Techniques, Benefits,
Classification of Software
Tools and Techniques,
Glossaries of Software
Tools and Techniques

l
' I

73-02-1 0

Frederick Gallegos

PAYOFF IDEA. Software tools and techniques are most
widely used by systems analysts and programmers for
developing and maintaining systems. They can also be
valuable aids for the auditor in performing compliance or
substantive testing in the development, operation, or main-
tenance phases. -This article describes these resources
and discusses how they might be categorized for appli- e cation.

INTRODUCTION
The complexities of writing and maintaining programs have caused

software costs to outstrip computer hardware costs. Recent studies pre-
dict that by 1990, more than 90 percent of the cost of data processing
will be attributable to software. During the 1970s, private industry and
government spent more than $8 billion a year on software. Experts
believe that such expenditures currently exceed $20 billion yearly.
Because of such skyrocketing costs, software tools and techniques are
emerging that facilitate the development effort through spe-amlined

Many tools and techniques have been developed that offer significantly
improved management control and reduced costs if properly applied.
The number of new tools and techniques continues to grow.

This article discusses the use of software tools and techniques to
alleviate the problems of development, maintenance, modification, oper-
ation, and conversion of applications software. Many of the software
tools and techniques discussed are available for all types of computers.
Software tools and techniques can be valuable aids to information re-
source managers; data processing design, development, and operations

procedures or automation of some development tasks. I / ; ,

EDP Auditing @ 1985 Auerbach Publishers Inc
P-12

EDP AUDITING

staff; and EDP auditors. In addition, this article provides a glossary of
the most common types of software tools and techniques and a method
for productively classifying and managing them.

SOFTWARE TOOLS
A software tool is a program that automates some of the labor in-

volved in the management, design, coding, testing, inspection, or main-
tenance of other programs. Commercially available tools range in size
and complexity from simple aids for individual programmers and end
users to complex tools that can support many software projects simul-
taneously. The following are some common tools:

Preprocessors-Preprocessors perform preliminary work on a draft
computer program before it is completely tested on the computer.
Types of preprocessors include filters (also known as code auditors) ,
which allow management to determine quickly whether program-
mers are adhering to specifications and standards, and shorthand
preprocessors, which allow programmers and end users to write
the programs in an abbreviated form that is then expanded by the
preprocessor before it is tested on the computer. Shorthand p r e
processors reduce writing, keypunching, and proofreading effort.
Programmer or user support libraries-These automated filing sys-
tems can support the programming development projects of entire
installations. Such a support library maintains files of draft pro-
grams, data, and documentation and can be used to provide man-
agement with progress reports.
Program analyzers-These tools modify or monitor the operation
of an applications program to allow information about its operating
characteristics to be collected automatically. This information can
then be used to help modify the program to reduce its run cost or
to verify that the program operates correctly.
Online programming support programs-These tools enable pro-
grammers and users to quickly correct and modify applications
programs and test program results.
Test data generators-These tools analyze a program and produce
files of data needed to test the logic of the program.

Specific examples of software tools are provided in Figure 1.

SOFTW#FE TECHNIQUES
Soft$&e techniques are methods or procedures for designing, develop-

ing., 'documenting, and maintaining programs, or for managing these
activities. There are generally two types of software techniques: those
used by personnel who work on programs and those used by managers
to control the work.

Examples of software techniques useful to workers include:
Structured programming-Developing programs in a certain style
with standard constructs so that they will be more easily under-
stood by others who must later maintain and modify them, which
facilitates documentation, testing, and correction.

2

SOFTWARE TOOLS AND TECHNIQUES

-

X

X

X
X

VENDOR

AGS Management Systems Inc
880 First Ave
King of Prussia PA 19406

Aims+ Plus Inc
1701 Directors Blvd, Suite 400
Austin TX 76744

X

x x

X

x x

x x

Allen Ashley
395 Sierra Madre Villa
Pasadena CA 91 107

Applied Data Research
Rte 206 8 Orchard Rd
Princeton NJ 08540

Azrex Inc
3 Mountain Rd I Burlington MA 01803

Brislol Information Systems Inc
84 N Main St
Fall River MA 02721

Byte1 Corp
1029D Solano Ave I Berkeley CA 94706

Caine Faber & Gordon Inc
750 East Green St I Pasadena CA 91 101

Capro Inc
12781 Pala Drive

2300 Montana Ave
Cincinnati OH 4521 1

Computer Associates
125 Jericho Turnpike
Jericho NY 11753

Computing Productivity Inc
Larrow House
Waitsfield VT 05673

Consumers Software Inc
Suite 106C
314E Holly S1

Cortex Corp
55 William St

Cullinet Software Inc
400 Blue Hill Dr
Westwood MA 02090

PRODUCT

Estiplan
SDMlStructured

AIMS PLUS

Hybrid Development System
Source Module Development
Utility

ADR/Dala Designer
ADR/ldeal
ADR/MelaCOBOL

I B I I x
I c I I x BIS Dalaprint Report Generator

Cogen
Menupro

I B I l x Mantis

CA-EZTEST
CA-symbug
Jobdoc /i/ I

Application Builder 1 f 1 ~ 1 1
Application Factory

AdalBatch
AdalOnline B X

Figure 1. Software Tools

3

EDP AUDITING

I A l Datamate Co Datamate Reference Language
4135 100th E Ave. Suite 128
Tulsa OK 74146 User Svstems)

GENIUS (Generator of Interactive

D : I Digital Research Inc BT-80
60 Garden Ct Display Manager
Monterev CA 93942 SID & ZSlD

B
B

-

D
D
D

X

-

X
X
X

Dylakor DYL-260
PO Box 3010 DYL-280
Granada Hills CA 91344

Dynatech Microsoftware Div
3 NE Executive Park
Burlinaton MA 01803

C 0 R P Program Generator
Codewriter Program Generator
Techwriter Proaram Generator

Forth Inc Polyforth
2309 Pacific Coast Hwy
Hermosa Beach CA 90254

10 E 40th St
New York NY 10016
~~~~~~~~ ~ 

Henco Software Inc 
100 Filth Ave 
flaltham MA 02154 

I 

INFO 

A /  

USE IT Higher Order Software Inc 
2067 Massachusetts Ave 
Zambridae MA 02140 

Informatics General Corp 
21031 Ventura Blvd 
floodland Hills CA 91364 

MARK IV 
MARK V 

Information Builders Inc 
1250 Broadway 
New York NY 10001 

FOCUS 
PC-FOCUS 

Information Processing Inc 
1850 Lee Rd S320 
iNinter Park FL 32789 

BLlSSlCOBOL c l  
<en Orr & Associates 
1725 Gage Blvd 
ropeka KS 86604 

X 
X 

DSSD Design Library 
STRUCTURE(S) 

M Bryce & Associates 
1248 Springfield Pike 
:incinnati OH 45215 

PRIDE X 

Management and Computer 
Services-Computer 
Associates 

498 N Kings Hwy 
Cherry Hill NJ 

Datamacs 
Systemacs 
Tracmacs 

B 
A X  
B 

Manager Software Products Inc 
131 Hartwell Ave 
xxington MA 02173 

TESTMANAGER 

Figure 1. (Cont) 

4 



SOFTWARE TOOLS AND TECHNIQUES 

0 4  
g F  
Z P  
X 
X 

x x  

X 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 
X 

X 

___ 
x x  

x x  

PRODUCl VENDOR 

RAMIS II 
UFO 

Martin Marietta Data Systems 
PO Box 2392 
Princeton NJ 08540 

PrograMaster Master Software 
42 Pleasant St 
Watertown MA 02172 

ANIMATOR 
Level II COBOL 
Sideshow 

Micro Focus Inc 
2465 E Bayshore Rd S400 
Palo Alto CA 94303 

DataStar MicroPro International Corp 
33 San Pablo Ave 

Multiplications Software Inc 
1050 Massachusetts Ave 
Cambridae MA 02136 

Accolade 

DPL National Information Systems Inc 
20370 Town Center La 5130 
CuDertino CA 95014 

Computer-Aided Programming Netro Inc 
99 St. Regis Crescent N 
Downview, Ontario, Canada 
M3JlY9 

EASYTRIEVE PLUS 
ProlGrammar 

Pansophic Systems Inc 
709 Enterprise Dr 
Oak Brook IL 60521 

Hercules System-80/2 Phoenix Systems Inc 
One Station Sq 
Pittsburah PA 15219 

Progeni Tools Progeni Systems Inc 
715 N Central Ave 
Glendale CA 91203 

Number Crunchei Pyramid Data Ltd 
1050 W Katella SA 
Oranae CA 92667 

SLIM Quantitative Software 
Management 
1057 Waverley Way 
McLean VA 22101 

ASSET 
Quick-Draw 
soncost 

RCI 
Suite 208 
25550 Hawthorne Blvd 
Torrance CA 90505 

Relational Database Systems Inc 
2471 E Bayshore Rd S600 
Palo Alto CA 94303 

Ace 
Perform 

Softool Corp 
340 S Kellogg Ave I Goleta CA 93117 

SOFrOOL 

Figure l.(Cont) 

5 



EDP AUDITING 

SofTech Microsystems Inc 
16875 W Bernard0 Dr 
San Diego CA 92127 

The Software Store 
706 Chippewa Sq 
Marouette MI 49855 

STSC Inc 
2115 E Jefferson St 
Rockville MD 20852 

~ 

System Support Software Inc 
5230 Springboro Pike 
Dayton OH 45439 

Systems & Software Inc 
1319 Butterfield Rd 
Downers Grove lL 60515 

TOM Software 
127 SW 156th St 
Seattle WA 98166 

Tominy Inc 
4221 Malsbary Rd 
Cincinnati OH 45242 

TSI International 
187 Danbury Rd 
Wilton CT 06897 

Notes: 

Operating Environment 
A Multiple systems 
8 Mainframes 

PRODUCT 

Advanced Development Kit for 
P-System 
Native Code Generator for 
P-System 

INFO-88 Application 
Development System 

~ D 

APL' PluSlBO Application 
Development System 

Quikjob 111 
Quikwrile 

l A  Rex-Tools 

EZ-SPEED 
SPEED UTILITY 

DATABASE-PLUS l A  
DATA ANALYZER 
Profrest 

C Minicomputers 
D Microcomouters 

Figure 1. (Cont) 

z 
k 

z w 

0 
2 

0 3 0  o w n  

x x x  

X 

X 

x x  

x x  
X 

x x  

Top-down development-Designing, coding, and testing systems by 
building program modules starting with those at the general level 
and proceeding down to the most specialized, detailed level. 

0 Performance improvement-Analysis and modification of pro- 
grams to make them run more efficiently without affecting user 
requirements. Performance may be improved by various software 
tools, including program analyzers. 
Concurrent documentation-The development of documentation 
concurrently with program development to provide better project 
control, increase completeness of the documentation, and save 
money. 

6 



SOFTWARE TOOLS AND TECHNIQUES 

Examples of techniques useful to managers include: 
0 Third-party inspection of software to improve quality-It is now 

feasible to require such inspection because current tools can auto- 
mate much of the work involved. 

0 Chief programmer team method-The team nucleus is a skilled 
chief programmer, a backup programmer, and a programming 
librarian. 

0 Alternatives to software development-This applies to both soft- 
ware tools and applications software. 

BENEFITS OF SOFTWARE TOOLS AND TECHNIQUES 

Software tools and techniques can be powerful aids in the design, 
development, testing, and maintenance of software. Several studies have 
reported that the application of tools and techniques result in significant 
benefits, including improved management control, equipment procure- 
ments that could be deferred, and reduced software c0sts.l Specifically, 
the use of software tools and techniques can : 

0 Reduce adverse impact on user tasks-Structured programming 
produces programs that are easier to test and, once tested, easier 
to modify. Therefore, structured programming can reduce the 
chances of errors in the user results (e.g., overpayments) and make 
it easier to respond quickly to future user requests for modifications. 
In addition, appropriate tools can reduce the work of verifying that 
test data has actually exercised a program. This improves the 
chances of removing errors from the program before it is placed 
into production. 

0 Reduce overruns and delays-Current design and development 
techniques, including structured programming, can make software 
development more visible to management and more controllable. 
Reduce redundant software projects-software tools and tech- 
niques make it easier for organizations to reuse existing software 
and avoid the expense and delay of developing their own software. 
Tools reduce the labor of analyzing software for suitability; modern 
techniques give a better idea of what to analyze for. 

0 Reduce software conversion costs-As noted in various studies and 
expounded by conversion contractors, appropriate tools can sig- 
nificantly reduce the labor of making programs written for one type 
of computer run on another. 
Allow equipment purchases to be deferred-Newly written software 
requires fewer machine resources to run, and existing software can 
be modified to reduce required machine resource utilization. 

0 Reduce operating costs-This includes the labor costs of mainte- 
nance, modification, and conversion, as well as the cost of the 
machine resources required to run the software. 

0 Improve software quality-Improved quality reduces testing and 
revision and simplifies future maintenance, modification, and con- 
version. 

7 



EDP AUDITING 

An organization that adopts a carefully selected group of software 
tools and techniques can better predict software costs and provide better 
documentation. For example, some organizations have adopted and 
required the use of a group of modern programming tools and tech- 
niques, including structured programming, a program support library, 
structured design, concurrent documentation, and preprocessors.2 The 
reported benefits include improved project control, better end products, 
better organization for the maintenance phase, and estimated annual 
savings of more than $1 million in the development and maintenance of 
systems. 

Software quality can be improved by applying appropriate tools and 
techniques in the development phase. Software tools can reduce the 
labor of preparing test data and verifying that the test data has exercised 
all program logic. More thorough testing becomes feasible and more 
reliable programs result. 

One management technique to improve the quality of software sys- 
tems requires the use of quality control groups independent of the 
software developers. This quality control can be performed by per- 
formance evaluation groups or internal auditors. These groups can 
review either software development or maintenance projects. For exam- 
ple, two recent government reports highlight cases in which internal 
auditors' use of software tools and techniques resulted in the detection 
and correction of errors before system implementation and eliminated 
unnecessary program instr~ctions.~ 

CLASSIFICATION OF SOFTWARE TOOLS AND TECHNIQUES 
Software tools and techniques assist the analyst, manager, program- 

mer, and user by providing meaningful information and can be used to 
automate parts of the software effort, thereby increasing software re- 
liability and productivity. Most important, they can be reused for 
multiple projects with diverse needs, distributing their development 
costs and thus lowering the cost to individual projects. 

Figure 2 illustrates a life cycle concept for developing a method of 
classifying software tools and techniques. The basic model of the soft- 
ware life cycle process has been developed in accordance with the 
standard definitions of a software life cycle. This model illustrates the 
managerial, methodological, and evaluative techniques required through- 
out the cycle. The managerial techniques necessary over a software 
life cycle involve: 

Managing people-The users, systems analyst, programmers, proj- 

Managing a project-Planning, coordination, direction, control, 

Managing the configuration-Change control, documentation con- 

Using quality assurance as a verifying agent 
The methodological techniques involve: 

ect manager, test personnel 

review 

trol, modification control, upgrade, optimization 

8 
t. 

i' '_ 

A U L R B A C H  
0 

A ,.a- ., .., 



Software Support Tools I 
I 1 I I I 

I 

Requirement Analysis Operational 
Tools Tools 

MaintenancelModificationl 
Conversion Installation 

Software 
System Requirement 

People 

Managerial 

Disciplines 

Project 

Configuration 

Quality Assurance 

Methodology 

Disciplines 

Technology Integration 

Productivity 

PortabilityKransferability 

Evaluation 

Disciplines 

Melrics 

cost 

Figure 2. Software Life Cycle Taxonomy 

cn 
0 n 

D a 
2 

d 
L 

rn 

0 

D z 
0 
-I rn 
0 
I: 

5 c 
cn rn 



EDP AUDITING 

Integrating current and new technology (e.g., structured design 
concepts, programming, programmer’s workbench, utilities, new 
software tools) into the design, development, and operational 
stages of the software life 
Using methods to improve the productivity of the designers, de- 
velopers, testers, quality assurance personnel, and auditors 
Using methods for transferring the knowledge gained to other 
projects and people (e.g., training, seminars, professional papers, 
conferences, software decomposition and migration, tool migration) 

The evaluative techniques required involve the better use of metrics 
and cost data to assess the implications of and risk caused by environ- 
mental changes. Examples of such metrics are resource estimators, factor 
analyzers, reliability models, and product measures. The basis for soft- 
ware life cycle evaluation is cost; therefore, accurate cost accounting for 
DP resources, especially in software, is a critical element. 

The National Bureau of Standards (NBS) has developed a taxonomy 
for classifying general-purpose software tools in the DP environment. 
The taxonomy was published as Federal Information Processing Stand- 
ard (FIPS) 99, “Guideline: A Framework for the Evaluation and Com- 
parison of Software Development Tools.” Because such a wide range 
of tool packages could be encompassed by the term general purpose, 
that term was applied only to those software tool packages usually not 
provided by the vendor as part of the purchased system. The goals 
established for the taxonomy were to: 

Permit existing tools to be uniquely classified 
Allow tool needs to be easily specified 
Provide a simple and meaningful set of descriptors for each tool 

Permit tool capabilities, costs, and benefits to be compared within 

The characterization of software tools represents a major challenge 
because most tool descriptions fail to provide sufficient information. 
Considerable effort may be required to glean the information necessary 
to identify what the tool does and how it interfaces with the external 
environment. Once identified, these facts are extremely useful. Specifying 
what a tool does allows meaningful comparison of the capabilities of 
competing tools. It also permits the establishment of criteria for select- 
ing tools (i.e., costs and benefits associated with tool usage can be 
related to tool capabilities and evaluated accordingly). Specification of 
a tool’s interface enables a user to determine if the tool can produce 
the output needed and if it can work within the given operational en- 
vironment. For example, the tool may become part of a programming 
environment (e.g., an integrated collection of tools used to support 
software development). In this case, the tool’s interfaces with other 
tools are an important factor in tool evaluation. 

This Federal Information Processing Standard is explicit in the 
specifications of features in all three dimensions (i.e., input, functions, 

classification 

a given classification 

10 



SOFTWARE TOOLS AND TECHNIQUES 

output), achieving a primary objective-a unique classification of an 
individual tool or a tool need. Products are classified according to a 
features designator called the taxonomy key. The key is formed by 
combining the individual feature keys for each of the three dimensions 
of the taxonomy. As many individual designators are chosen in each 
dimension as are necessary to completely describe the tool. The key, as 
illustrated in Figure 3, clearly and succinctly communicates the results 
of classification in all three dimensions. 

Tools 

Descriptors Classifiers 

Figure 3. Tool Description and Classification Interrelationships 

@ A GLOSSARY OF SOFTWARE TOOLS 
The glossary of software tools is divided into the following classes: 

Transformation 
0 Static analysis 

Dynamic analysis 
Management 

The types of software tools that can be classified under these areas are 
listed in Table 1. 

Transformation 
Transformation features describe how the subject is manipulated to 

accommodate the users’ needs. They describe what transformations take 
place as the input to the tool is processed. There are seven transforma- 
tion features. These features are briefly defined in the following sections: 

Editing. Editors modify the content of the input by inserting, delet- 
ing, or moving characters, numbers, or data. 

Formatting. Formatting arranges a program according to predefined 
or user-defined conventions. A tool having this feature can clean up a 
program by making all statement numbers sequential, alphabetizing 
variable declarations, indenting statements, and making other standard- 
izing changes. 

AUf R E A C H  
0 

11 



EDP AUDITING 

Table 1. Software Tools 

Transformation 
Editing 
Formatting 
Instrumentation 
Optimization 
Restructuring 
Translation 

Assembling 
Compilation 
Conversion 
Macro expansion 
Structure preprocessing 

Synthesis 

Dynamic Analysis 
Assertion checking 
Constraint evaluation 
Coverage analysis 
Resource utilization 
Simulation 
Symbolic execution 
Timing 
Tracing 

Breakpoint control 
Data flow tracing 
Path flow tracing 

Tuning 
Regression testing 

Static Analysis 
Auditing 
Comparison 
Complexity measurements 
Completeness checking 
Consistency checking 
Cross reference 
Data flow analysis 
Error checking 
Interface analysis 
Scanning 
Statistical analysis 
Structure checking 
Type analysis 
Units analysis 
I/O specification analysis 

Management 
Configuration control 
Information management 

Data dictionary management 
Documentation management 
File management 
Test data management 

Project management 
Cost estimation 
Resource estimation 
Scheduling 
Tracking 

Instrumentation. This adds sensors and counters to a program for the 
purpose of collecting dynamic analysis information. Most code analyzers 
instrument the source code at strategic points in the program to collect 
execution statistics required for assertion checking, coverage analysis, 
or tuning. 

Optimization. Optimization is the process of modifying a program to 
improve performance (e.g., to make it run faster or use fewer resources). 
Many vendors’ compilers provide this feature. Many tools claim to have 
this feature but do not modify the subject program. Instead, these tools 
provide data on the results of execution, which may be used for tuning 
purposes. 

Restructuring. Restructuring rearranges the subject in a new form 
according to well-defined rules. A tool that generates structured code 
from unstructured code is an example. 

Translation. There are five types of translation features, which con- 

Assembling-Translating a program expressed in an assembly 

Compilation-Translating a program expressed in a problem- 

vert from one language form to another. They are defined as follows: 

language into object code. 

oriented language into object code. 

12 



SOFTWARE TOOLS AND TECHNIQUES 

Conversion-Modifying an existing program to enable it to operate 
with similar functional capabilities in a different environment. 
Examples include CDC FORTRAN to IBM FORTRAN, ANSI 
COBOL 1974 to ANSI COBOL 1985, and Pascal to PL/1. 
Macro expansion-Augmenting instructions in a source language 
with user-defined sequences of instructions in the same source 
language. 
Structure preprocessing-Translating a program with structured 
constructs into its equivalent without structured constructs. 

Synthesis. Program generators, precompilers, and preprocessor gen- 
erators generate programs according to predefined rules from a program 
specification or intermediate language. 

Static Analysis 
Static analysis features specify operations on the subject without 

regard to its ability to be executed. They describe how the subject is 
analyzed. The 15 static analysis features are briefly described in the 
following sections: 

Auditing. Auditing conducts an examination to determine whether 
predefined rules have been followed. Examples include a tool that 
examines the source code to determine whether coding standards are 
complied with. 

ComDarison. Comparison determines and assesses similarities be- 
- 

tween two or more items. A tool with this feature can identify changes 
made in one file that are not contained in another. 

Complexity Measurement. This determines how complicated an en- 
tity (e.g., routine, program, system) is by evaluating some associated 
characteristics. For example, complexity can be affected by instruction 
mix, data references, structure and control flow, number of interactions 
and interconnections, size, and number of computations. 

Completeness Checking. Completeness checking determines whether 
all the parts of an entity are present and whether those parts are fully 
developed. Examples include a tool that examines the source code for 
missing parameter values. 

Consistency Checking. This determines whether an entity is inter- 
nally consistent in the sense that it contains uniform notation and termi- 
nology or adheres to its specification. Examples include tools that check 
for consistent use of variable names or tools that check for consistency 
between design specifications and code. 

Cross Reference. Entities are referenced to other related entities by 
logical means. Examples include a tool that identifies all variable refer- 
ences in a subprogram. 

13 



EDP AUDITING 

Data Flow Analysis. Data flow analysis entails a graphic analysis of 
the sequential patterns of definition and references of data. Tools that 
identify undefined variables on certain paths in a program have this 
feature. 

Error Checking. Discrepancies, their importance, and their cause are 
determined. Examples include a tool used to identify possible program 
errors (e.g.. misspelled variable names, arrays out of bounds, and 
modifications of a loop index). 

Interface Analysis. This feature checks the interfaces between pro- 
gram elements for consistency and adherence to predefined rules or 
axioms. A tool with this feature could examine interfaces between 
modules to confirm adherence to axiomatic rules for data exchange. 

Scanning. Scanning entails examining an entity sequentially to iden- 
tify key areas or structure. Examples include a tool that examines source 
code and extracts key information for generating documentation. 

Statistical Analysis. This performs statistical data collection and 
analysis. Examples include a tool that uses statistical test modules to 
identify where programmers should concentrate their testing and a tool 
that tallies occurrences of statement types. 

Structure Checking. Structure checking detects structural flaws with- 
in a program (e.g., improper loop nesting, unreferenced labels, unreach- 
able statements, and statements with no successors). 

Type Analysis. This evaluates whether the domains of values attrib- 
uted to an entity are properly and consistently defined. A tool that type 
checks variables has this feature. 

Units Analysis. Units analysis determines whether the units or phys- 
ical dimensions attributed to an entity are properly defined and con- 
sistently used. Examples include a tool that checks a program to ensure 
that variables used in computations have proper units (e.g., hertz cycles/ 
second). 

:nput/Output Specification Analysis. The input and output specifica- 
tions in a program are analyzed, usually for the generation of test data. 
An example of an application of this feature is the analysis of the types 
and ranges of data defined in an input file specification for the purpose 
of generating an input test file. 

Dynamic Analysis 
Dynamic analysis features specify operations that are determined 

during or after execution. Dynamic analysis, unlike static analysis, re- 
quires some form of symbolic or machine execution. Dynamic analysis 
features describe the techniques used by the tool to derive meaningful 

14 ., ...... 
R U E R B A C H  

0 



SOFTWARE TOOLS AND TECHNIQUES 

information about a program’s execution behavior. The 10 dynamic 
analysis features are briefly described in the following sections. 

Assertion Checking. This reviews user-embedded statements that 
assert relationships between elements of a program. An assertion is a 
logical expression that specifies a condition or relation among the pro- 
gram variables. Checking may be performed with symbolic or run-time 
data. Tools that test the validity of assertions as the program is executing 
have this feature, as do tools that perform formal verification of 
assertions. 

Constraint Evaluation. This generates or solves path input constraints 
for test data. Typically, tools that help generate test data specifications 
have this feature. 

Coverage Analysis. This process helps determine and assess mea- 
sures associated with the development of application program structural 
elements. This is extremely helpful in determining the adequacy of a 
modular or integrated test run. For example, coverage analysis is useful 
when attempting to execute a program statement, branch, or iterative 
structure. 

Resource Utilization. Resource utilization associated with system 
hardware or software is analyzed. A tool that provides detailed run-time 
statistics on core usage, disk usage, queue durations is an example. 

Simulation. Simulation entails representing certain features of the 
behavior of a physical or abstract system by means of operations per- 
formed by a computer. A tool that simulates the environment under 
which operational programs will run has this feature. 

Symbolic Execution. The logic and computations along a program 
path are reconstructed by executing the path with symbolic rather than 
actual data values. 

Timing. This reports actual CPU, clock, or other times associated 
with parts of the program. 

Tracing. Tracing monitors the historical record of execution of a pro- 

Breakpoint control-Controlling the execution of a program by 
specifying points (usually source instructions) at which execution 
is to be interrupted. 
Data flow tracing-Monitoring the current state of variables in a 
program. Tools that dynamically detect uninitialized variables have 
this feature, as do tools that allow users to interactively retrieve 
and update the current values of variables. 
Path flow tracing-Recording the source statements or branches of 
a program in the order that they are executed. 

gram. The three types of tracing features are described as follows: 

e 
A U L A B A C H  

0 

15 



EDP AUDITING 

Tuning. Tuning determines which parts of the program are being 
executed the most. Examples include a tool that instruments a program 
to obtain the execution frequencies of its statements. 

Regression Testing. Test cases that a program has previously exe- 
cuted correctly are rerun to detect errors resulting from changes or 
corrections made during software development and maintenance. A tool 
that automatically drives the execution of programs through their input 
test data and reports discrepancies between the current and previous 
output has this feature. 

Management 
Management features help in the administration or control of software 

development. The three types of management features are described in 
the following sections. 

Configuration Control. This helps establish baselines for configura- 
tion items, the control of changes to these baselines, and the control of 
releases to the operational environment. 

Information Management. Information management aids in the orga- 
nization, accessibility, modification, dissemination, and processing of 
information associated with the development of a software system. Some 
specific areas of information management are: 

Data dictionary management-Aiding in the development and con- 
trol of a list of the names, lengths, representations,- and definitions 
of all data elements used in a software system 
Documentation management-Aiding in the development and con- 
trol of software documentation 
File management-Providing and controlling access to files associ- 
ated with the development of software 
Test data management-Aiding in the development and control of 
software test data. 

Project Management. Tools aiding in the management of a software 
development project commonly provide milestone charts, personnel 
schedules, and activity diagrams as output. Some specific areas of 
project management are described in the following items : 

Cost estimation-Assessing the behavior of ihe variables that affect 
life cycle cost. A tool to estimate project cost and investigate its 
sensitivity to parameter changes has this feature. 
Resource estimation-Estimating the resources attributed to an 
entity. Examples include tools that estimate whether storage limits, 
input/output capacity, or throughput constraints are being exceeded. 
Scheduling-Assessing the schedule attributed to an entity. A tool 
that examines the project schedule to determine its critical path 
(shortest time to complete) has this feature. 

16 



SOFTWARE TOOLS AND TECHNIQUES 

0 Tracking-Tracking the development of an entity through the soft- 
ware life cycle. Examples are tools used to trace requirements from 
their specification to their implementation in code. 

A GLOSSARY OF SOFTWARE TECHNIQUES 

Software techniques are methods or procedures for designing, de- 
veloping, documenting, and maintaining computer programs or for 
auditing or managing these activities. The following are nine major cate- 
gories of software techniques, which can be managerial, methodology, or 
evaluation oriented: 

0 Code arrangements-These include structured programming, struc- 
tured coding, and top-down coding. 
Descriptive documentation-This is documentation external to the 
code, including H I P 0  charts, structure charts, and pseudocode, as 
well as conventional flowcharts. 
Embedded documentation-This is documentation embedded in the 
code itself, including comments, variable-naming conventions, and 
indentation conventions. 
Performance documentation-This includes files of test data sets 
and their results and execution monitor results. 
Programming practices standards-These include adherence to 
structured programming conventions, avoidance of non-ANSI fea- 
tures of programming languages, modularity requirements, and 
standard data names. 
Reuse of already written code-This includes the use of COBOL 
COPY libraries and library subroutines. 
Design-Design techniques include top-down design, structured 
design, and user design reviews. 
Quality assurance organization and management-These techniques 
include a quality assurance testing organization independent of the 
developer, user reviews, and user acceptance tests. 
Programming organization and management-These techniques 
include chief programmer teams, structured walkthrough, and pro- 
gramming librarians. 

CONCLUSION 

Software tools and techniques can be as useful to auditors as they are 
to systems developers. Auditors should familiarize themselves with these 
tools and techniques before purchasing a new tool or adopting a new 
technique. 

Frederick Gallegos, CISA, CDE, is manager, Management Science 
Group, US. General Accounting Office, Los Angeles and lecturer, 
Computer Information Systems Department, California State Polytechnic 
University, Pornona. 

A U l R B A C H  
0 

17 



EDP AUDITING 

Notes 

1. B.W. Boehm, et al., Characferisfics of Software Quality (New York: North-Holland 
Publishing Company, 1978). 
D. Fife, Software Conflgurafion Managemenf: A Primer for Project Confrol, (NBSSP: - .  
July 1977) 500-511. 
W.E. Howden, “A Survey of Dynamic Analysis Methods” Tutorial: Software Testing 
and Validation Techniques, IEEE Catalog No. EH0138-8 (1978). 
W.E. Howden, “A Survey of Static Analysis Methods” Tutorial: Software Testing 
and Validafion Techniques, IEEE Catalog No. EH0138-8 (1978). 
Office of Software Development, A Soffware Tools Project: A Means of Capturing 
Technology and lmproving Engineering, Report OSD-82-101 (General Services Ad- 
ministration: February 1982). 
D. Teichroew and E. Hershey 111, “PSL/PSA: A Computer-Aided Technique for 
Structured Documentation of Information Processing Systems,” /€€E Transacfions 
on Software Engineering Vol. SE-3, No. 1 (1977). 
US. General Accounting Office, Wider Use of Better Computer Soffware Technology 
Can lmprove Management Control and Reduce Costs, Report to the Congress, 
FGMSD-80-38 (April 29, 1980). 
U.S. General Accounting Office, Governmentwide lssues Regarding ADP Software, 
Areas of Growing Concern-Present and Future, Internal Report to FGMSD-ADP by 
Los Angeles Regional Office (November 2, 1979). 

R. Houghton, “An Inverted View of Software Development Tools,” Proceedings of 
the 20th Annual Technical Symposium of the Washington, D.C. Chapter of the ACM 
(June 1981). 
U.S. General Accounting Office, lmproving COBOL Applications Can Recover Sig- 
nificant Computer Resources, Report to the Congress, AFMD-82-4 (April 1, 1982). 

U.S. General Accounting Office. lmproving COBOL Applications. 

2. H. Hecht, The lntroduction of Software Tools. (NBSSP: September 1982) 500-91. 

3. U S .  General Accounting Office, Wider Use of Better Computer Software. 

18 



NOTES 

A U E R B A C H  
0 

19 



0 NOTES 

20 




