UNITED STATES GENERAL ACCOUNTING OFFICE WASHINGTON, D.C.

FOR RELEASE ON DELIVERY EXPECTED AT 9:00 AM MARCH 16, 1981

STATEMENT OF J. DEXTER PEACH
DIRECTOR, ENERGY AND MINERALS DIVISION
BEFORE THE
COMMITTEE ON ENVIRONMENT AND PUBLIC WORKS
U.S. SENATE

Mr. Chairman:

We appreciate your invitation to discuss some of our recent work at the Tennessee Valley Authority as it relates to the electric power rates paid by Valley ratepayers. As you know, in recent years, rate increases have been a subject of intense public interest. From 1960 to 1970, TVA's wholesale rates went up annually less than one percent in real terms, but from 1970 to 1980, rates rose annually about 9.2 percent in real terms. For 1980-1990, TVA presently forecasts real increases of up to 3.8 percent a year. TVA recently announced a rate increase of 9.3 percent beginning April 1, 1981, and will jump to 12.8 percent effective October 1, 1981.

In our view, the rate increases foreseen by TVA basically will be unavoidable. Fundamentally, TVA's rates are governed by production costs and the interest charges on money borrowed to construct new facilities or to make additions and improvements to existing facilities. In fiscal year 1980, production costs and interest charges accounted for about 86 percent of costs paid by ratepayers. As these costs rise, so must rates.

However, based on some of our recent work at TVA, we believe there is potential for moderating future rate increases to some extent. This potential relates to TVA's nuclear construction program, coal procurement program, and inventory management.

NUCLEAR CONSTRUCTION PROGRAM

As a producer of electric power, TVA today depends on coal-fired generating capacity more heavily than on nuclear powered capacity. But TVA's nuclear construction program schedule calls for 17 nuclear units to be in operation by 1996.

In recent years, much public attention has been focused on the construction program. The past 2 years have seen a 166 percent increase in estimated construction costs, deferrals of the completion dates of 4 nuclear units in response to steadily declining demand forecasts, unintended delays of other nuclear units, and much public scrutiny of the TVA's decision to complete all 17 nuclear units in the face of potential excess capacity.

In looking at the nuclear construction program, I would like to touch on three topics: demand forecasting, potential excess capacity, and the effects of construction program options on rates.

Demand forecasting

The relationship between demand forecasting and electric rates is direct. Demand forecasting is the foundational tool a power system uses to determine the additional capacity needed

to meet future consumption requirements. For TVA, adding more capacity means higher interest charges.

At best, however, forecasting demand beyond a few years into the future involves great uncertainty. Using a sophisticated set of models, TVA deals with uncertainty by producing a range of forecasts based on alternative levels of five explicitly identified factors believed by TVA to influence demand growth. The more important factors are economic growth and price of electricity, and the other three are the price of substitutes, TVA's conservation programs, and the Department of Energy's uranium enrichment power demand.

In 1978, we reported 1/a number of weaknesses in TVA's approach to demand forecasting. Since that time, TVA has made significant improvements. Until recently, in line with our recommendations, TVA prepared three official planning forecasts—low, medium, and high. But recently, the medium forecast has been eliminated. Only the range between the low and high forecasts is used for planning purposes. At present, TVA is basing the nuclear construction program on the high forecast. Our concerns today about TVA's demand forecasting lie in the assumptions made about the factors that influence demand growth.

Economic growth

Before 1973, the TVA region grew significantly faster than the Nation, but during 1973-1979, the region's growth

<u>1</u>/Electric Energy Options Hold Great Promise For the Tennessee Valley Authority, Nov. 29, 1978.

rate fell behind the Nation's. In its current high demand forecast, TVA assumes the region's economy will rebound and grow annually at a 3.5 percent rate during 1980-1990 versus only 2.8 percent for the Nation. Should this assumption prove optimistic, the high demand forecast would tend to be overstated.

Price of electricity

Price influences demand because consumers tend to use less as price increases. Therefore, reliable estimates of future price increases and of how much consumers will cut consumption as price rises (price elasticity of demand) are important. If price increases and the elasticity of demand are understated, the demand forecast would tend to be overstated. We believe there is a significant risk that the estimates of price increases and elasticity of demand used by TVA in its most recent forecast may have been understated.

TVA's estimates of future prices are sensitive to several factors, including interest rates paid on long term debt and the cost of the nuclear construction program. We believe there is a significant risk that interest rates and construction costs may turn out to be higher than currently estimated.

At the time TVA prepared its 1981 demand forecasts, TVA assumed that the interest rate would be 11 percent on long term debt issued in FY 1981 and 10 percent on debt issued during 1982-1987. However, TVA's most recent issues of long

term debt to the Federal Financing Bank in November 1980 and February 1981 were issued at about 12.4 and 12.7 percent, respectively.

In our view, the risk of higher construction costs is also significant. The most current estimate of nuclear program construction costs is \$31.6 billion, including the four deferred units. That estimate is 166 percent higher than the estimate reported in TVA's FY 1980 Budget Program and 89 percent higher than the FY 1981 estimate. According to TVA's FY 1982 Budget Program, these increases have been due in large part to scope additions, design changes, and delays in project completion. In our view the risk of more additions, changes, and delays is significant.

For example, according to TVA, delays in project completion add to construction costs, and delays in two nuclear units have already occurred since the cost estimates appearing in the FY 1982 <u>Budget Program</u> were prepared. In February 1981, we learned that the commercial operating dates for units 1 and 2 at Watts Bar had been slipped 13 months due to design problems. Such unplanned delays in the non-deferred nuclear units have been commonplace. From about May 1979 to about May 1980, the estimated commercial operating dates of every non-deferred unit had slipped from at least 23 to as much as 43 months.

Combining these factors--potentially higher interest rates and construction costs--points toward higher prices for

electricity than now estimated, which would mean the current demand forecast would tend to be overstated.

But we're also concerned about TVA's estimates of how much consumers will reduce electricity consumption in response to price increases. The TVA demand forecasting staff itself holds the opinion that current estimates of price elasticity of demand may be too low. They believe that since the Arab oil embargo, consumers reduce consumption more as price rises than they did before the embargo. However, existing historical data on new consumption behavior is insufficient to reliably reestimate long term elasticity. If the elasticity estimates are too low, the demand forecast would tend to be overstated.

Potential excess capacity

TVA is basing its nuclear construction program on its high demand forecast. Under the current construction schedule and the high forecast, TVA would have relatively little or no surplus capacity during 1981-2000 based on annual peak loads. In other words, TVA's dependable capacity would about equal the total of the Valley's peak demand plus the desired reserves needed to provide for scheduled maintenance, emergency outages, and deviations from average weather conditions. However, under the low forecast, excess capacity over and above desired reserves would range from about 4 to 34 percent during 1981-2000, with excesses consistently exceeding 20 percent after 1990.

Excess capacity is not desirable because it means ratepayers would have unnecessarily paid interest charges on money borrowed during construction, and, after construction completion, rates would include the fixed cost associated with underutilized capacity. In response to potential excess capacity, TVA is investigating the potential for transferring excess power through interchange agreements to oil-dependent utilities in Arkansas, Louisiana, Oklahoma, Florida, Virginia, New York, and New Jersey.

The attractiveness of such interchanges is the potential to relieve TVA ratepayers of the financial burden of surplus capacity after the plants are built. But until the plants are completed and the transfer of power begun, TVA ratepayers would continue to bear the financing costs associated with construction of the surplus capacity.

Construction program options

As mentioned earlier, TVA is now proceeding with a construction schedule that defers further construction of four nuclear units until 1984, when construction of the units may be resumed. The last unit would be completed in 1996. This schedule is designed to meet the requirements of TVA's current high demand forecast.

The decision to proceed with the current schedule was based on two major considerations. First, TVA analyzed future wholesale rates in terms of the current construction schedule versus the option of deferring two additional units in anticipation of possibly cancelling six units in 1984. TVA's analysis showed that, under the high demand forecast, the

optional schedule would yield rates that would be an average of 3.5 percent lower than rates under the current schedule for about the next 12 years. In absolute dollars, the savings would be about \$3.8 billion. Under the low forecast, the optional schedule would yield rates that would be an average of 5.7 percent lower than rates under the current schedule for about the next 18 years. In absolute dollars, these savings would amount to about \$13.6 billion.

However, TVA's analysis also showed that if the optional schedule were chosen over the current schedule, rates might be 10 percent higher in the year 2000 if high demand growth occurred and 20 percent higher in the year 2007 if low demand growth occurred. This is based on the assumption that when it becomes necessary to build additional new capacity or replacement capacity, the costs of construction will be higher than they would have been if the current construction schedule had been maintained.

The second major consideration in TVA's decision to continue the current construction schedule was its concern over what it calls the Valley's "energy advantage." In TVA's words, " * * * the availability of adequate supplies of electric power at competitive prices is an increasingly valuable regional asset in a world of increasing energy scarcity," and, "The most important contribution to the Valley's economy that TVA can make is to ensure that this energy advantage is maintained." With this goal in mind, TVA concluded that the poten-

tial savings available through deferring two more nuclear units in anticipation of possibly cancelling six units in 1984 were outweighed by the risk of losing the "energy advantage."

Taking TVA's data at face value, we would agree that one could subjectively conclude that the benefits of deferring two additional units and possibly cancelling six units in 1984 do not offer great incentive to follow that course. But we believe there are some risks that have not been directly considered in this analysis that could make the potential savings of additional deferrals and cancellation much greater.

For example, we mentioned earlier that we believe the risks of higher than anticipated interest rates and higher than estimated construction costs are substantial. These factors could increase the potential savings of additional deferrals and cancellation so that the risk of losing the "energy advantage" might no longer outweigh the savings of the optional construction schedule.

For instance, we estimate that if interest rates were 1 percentage point higher than anticipated and construction costs of the last six units were 40 percent higher than now estimated, the optional schedule could save ratepayers an additional \$1.9 billion in the next 10 years. If interest rates were 2 percentage points higher and construction costs 40 percent higher, the optional schedule would save about \$2.3 billion more in the next 10 years.

It should also be noted that simply deferring two more units until 1984 would not risk the loss of the Valley's

"energy advantage." If the units were deferred now and in 1984 TVA still believed that today's high forecast would occur, TVA could resume construction. If two more units were deferred, the resultant changes in reserve margins would not jeopardize TVA's ability to meet demand, even under the high forecast.

Conclusions

In our minds, TVA should not cancel any nuclear units now. However, we believe TVA should reassess the potential risks and benefits of deferring two more units. The data we have seen and the uncertainties surrounding future demand for electricity suggest to us that TVA should consider deferring six units, rather than four. By 1984, TVA should have a better grasp on factors such as economic growth, estimated construction costs, interest rates, price increases, and price elasticity of demand which will influence the demand forecast. By that time, TVA should be able to determine how many, if any, units to cancel.

COAL PROCUREMENT

Let me move to a discussion of our tentative findings and observations from a review just now concluding on TVA's coal procurement program. We will be providing TVA a draft of this report for comment and our tentative views are subject to modification as we consider their comments. Nevertheless, our work indicates a number of practices which have detracted from the economy and efficiency of TVA's coal purchasing program. For example, TVA has

- --throughout the 1970s entered long term contracts for much of its coal supplies when market conditions were least favorable, resulting in what we believe are higher than necessary coal costs and severe hindrances to its small coal operator assistance program;
- --purchased coal, in some instances, at higher than necessary prices in order to support economic development east of the Mississippi River and in the Valley;
- --acquired coal reserves, some of which TVA is now mining and getting poor quality, high cost coal and some of which TVA is considering developing but which appear to also have low quality, costly-to-produce coal:
- --failed to assure that it gets the quality of coal for which it contracted at one plant;
- --employed an obsolete price adjustment formula that
 may not adequately compensate TVA for lower quality
 coal delivered by some contractors; and
- --accumulated coal inventories that are in excess of target levels.

Long term contracts

During fiscal years 1970-1979, TVA contracted for nearly 383 million tons of coal. About 31 million tons, or 8 percent, were spot purchases, that is, contracts lasting 6 months or less. About 225 million tons, or 59 perent, were bought under contracts lasting 10 years or more. Another 49 million

tons, or 13 percent, were bought under contracts lasting 5 to 10 years. Thus, about 72 percent of TVA's coal purchases were made under contracts of 5 to 10 years or more in length. In addition, during this period TVA renegotiated contracts for an additional 75 million tons.

The fact that TVA has entered many long term coal supply contracts, would not support a conclusion that it may be paying more than it should for coal. However, that fact coupled with market conditions that existed at the time, and the terms agreed to, suggest that these contracts involved higher than necessary prices.

During 1974-1975 and 1977-1978, the two periods in the 1970s that were least favorable for buying coal, TVA committed itself to contracts with durations of up to 17 years for about 284 million tons of coal, or about 74 percent of all the coal contracted for in the 1970s. Because a sellers' market existed at those times, TVA had to pay premium prices for the coal. Naturally, in a sellers' market, one must expect to pay a premium price. But, it also seems natural that one would try to limit the length of time the premium price has to be paid.

For example, due to an impending coal miners strike, which eventually occurred in late 1974, TVA declared an emergency condition in late 1973 and began negotiating new coal contracts. By March 1975, TVA had contracted for 47 million tons of coal at an average price of \$22.47 per ton. However, by the summer of 1975, prices had fallen from their peak levels and TVA awarded

a 3 1/2-year contract for about \$17 a ton. TVA noted at that time that, "After market conditions eased, prices began falling from the earlier peaks," and TVA was able to replenish stockpiles. TVA could not, however, take full advantage of the more favorable market conditions because many contracts entered during the sellers' market were for 10 years or more.

During the 1977-1978 timeframe, TVA again contracted for large amounts of coal during a sellers' market. Tight market conditions existed primarily because TVA was buying large amounts of low sulfur coal to comply with its proposed Consent Decree concerning air pollution. According to TVA, the coal industry was aware of TVA's requirements, and many suppliers would offer coal only on their own terms. Compounding the supply problem was a coal miners' strike from January-March 1978. Under one requisition during this sellers' market, TVA entered 71 contracts, many of them for 10 years or more and one for 17 years, for delivery of 192 million tons of coal.

But the problem is not simply that TVA entered contracts at a time that would require premium prices. The escalation clauses TVA agreed to in most of these contracts have turned out to be costly. The escalation rates are being applied to already high base prices. For some of the long term contracts entered in 1977-1978, the average price has risen from \$30 to \$40 per ton, or about a 15 percent a year increase.

We recognize that some mechanism, such as an escalation clause, is necessary in term contracts during inflationary

periods. But we believe that TVA should minimize long-term contracting during periods of tight supply so that the base prices that are to be escalated will be minimized. Contracts entered during a sellers' market should be of the shortest length practicable so that when market conditions soften TVA can take better advantage of the lower prices that may be available.

We also noted during our review that TVA bought most of its coal under negotiated contracts. The TVA Act stipulates that TVA will make all purchases only after advertising for bids, unless an emergency requires immediate delivery of the supplies or certain conditions apply. The TVA Code also allows negotiation if advertising procedures fail to produce acceptable bids.

We found that about 76 percent of all the coal placed under contract in the 1970s was through negotiated contracts. TVA usually negotiated these contracts on an emergency basis. We believe that coal bought through advertised bids would tend to be lower priced than coal obtained through negotiations.

Another problem also attributable to TVA's tendency to award long term contracts is the inability to effectively implement its small coal operators assistance program. Small operators are defined by TVA as those who supply 200,000 tons or less per year and employ no more than 50 people. TVA procures coal from them primarily on a spot

purchase basis, but spot coal purchases have been used little in the 1970s because TVA generally has enough coal under long term contracts to meet the full needs of its steamplants. During the 1970s, about 8 percent of total receipts were from spot purchases, and as of September 30, 1980, less than 1 percent of coal under term contract was with small suppliers.

A concern we have at this stage in our review is how much flexibility TVA has to reduce the impact of the long term contracts either through contract expirations or periods of renegotiation. Our work is continuing to address this question.

Eastern coal buying policy

TVA policy allows coal to be purchased only from suppliers located east of the Mississippi River. TVA adopted this policy because it believes this meets the intent of the TVA Act which charges TVA with regional economic development. But this policy also restricts TVA's ability to obtain coal at the lowest possible price. Opening up to the western market could be especially benenficial during periods of tight supply when TVA's bargaining position is weakest.

For example, in the 1977-1978 sellers' market, TVA contracted for coal for the Shawnee steamplant. Although TVA had received several offers from western suppliers, TVA awarded 10-year contracts to eastern producers. The western producers offered coal at least equal in quality to the eastern coal

actually purchased and at a lower price. An internal TVA study showed that the eastern coal would cost \$31 million to \$36 million a year more than the western coal, but TVA still contracted with eastern producers.

Coal reserves owned by TVA

TVA has acquired a number of coal reserves to help assure the availability of coal supply. While this is a worthwhile objective, we believe TVA's experience in developing the Camp Breckinridge reserves in western Kentucky suggests a need for caution in developing other reserves.

From 1973 through 1980, TVA had obtained about 31 million tons of coal from Breckinridge. This coal has turned out to be some of TVA's lowest quality coal. Based on the average price of coal purchased from 1972-1980, we estimate that if TVA had bought Breckinridge quality coal on the open market it could have saved about \$53 million.

We realize the money spent at Breckinridge is gone and cannot be recouped, but TVA should use the Breckinridge experience to determine whether it should develop other reserves, in particular its largest reserve, the Ewing-Northern Coal Association properties acquired in 1977. The coal in this reserve appears to be of about the same low quality as the Breckinridge coal and appears to be expensive—about \$44 per ton.

Quality assurance practices

TVA's quality assurance practices do not always ensure that TVA receives the quality of coal for which it has con-

effective sampling methods even though it is believed that the supplier may be delivering inferior quality coal. TVA personnel have estimated that effective sampling facilities could save TVA up to \$7 million a year at this site. Also, TVA's actual sampling methods for coal used at the Cumberland steamplant are not consistent with recognized standards. The contractor is supposed to collect samples at the mine before loading and shipping the coal, but TVA personnel have noted that the sampling at the mine has been and remains inadequate. Problems detected included poor handling of samples, holes in sample bags, samples not collected after belt shutdown, and instrumentation either out of service or missing.

Price adjustment formula

In addition to implementing adequate quality assurance controls, TVA needs to adopt a more accurate coal quality price adjustment formula. The current formula does not adjust coal prices commensurate with actual costs incurred for delivery of coal lower in quality than contractually guaranteed. Data gathered by TVA's Fuels Group indicates that costs incurred due to low quality coal are substantially greater than the penalties assessed under its price adjustment formula. For example, on one contract, TVA assessed penalties of \$2.6 million, but actual costs incurred due to low quality coal were about \$13.3 million.

TVA implemented its current price adjustment formula in 1957 when steam coal prices were comparatively low--about 18

cents per million Btu. Since then prices on some contracts have increased to over \$2.00 per million Btu. TVA has acknowledged that the formula was biased for the supplier—that is, power plant costs exceeded the penalty adjustment. Even so, TVA has not adopted an alternative formula proposed by us last year, nor has it revised its formula.

Excessive coal inventories

As of September 30, 1980, coal inventories at nine TVA steam plants totaled 14.1 million tons, or 5.9 million tons (71 percent) more than target inventories. Value of the excess coal was \$182.8 million. This surplus was due largely to TVA's use of long-term, inflexible contracts which do not allow changes in the quantities of coal delivered. If a steam plant needs less coal than forecast because of forced outages or lower-than-projected demand, TVA often cannot reduce coal deliveries by contractors. During fiscal year 1980, carrying charges on the average excess inventory were about \$16.8 million.

Conclusion

Based on our observations to date, we believe TVA needs to improve management of its coal purchasing program. More attention is needed to ensure coal is bought and used in the most economical manner.

INVENTORY MANAGEMENT

Last week we issued a report to the TVA Board Chairman on the need to improve security and inventory controls at power

sites. In that report, we noted that TVA needed better inventory controls, lacked adequate and consistent procedures for issuing and controlling tools, theft reporting practices varied widely among construction projects and power plants, and security policies had not been fully implemented because responsibilities had not been defined. As a result, we found that thefts had continued to rise and losses of equipment at TVA's construction projects and power plants were excessive.

We recommended a number of positive steps for dealing with these problems and TVA responded they are beginning to initiate a broad range of actions to address the shortcomings. Although the savings to be gained are relatively small in relation to TVA's total revenues, they, nonetheless, represent potential reductions to future rate increases. Some examples of losses are:

- -- Reported thefts have increased from a monthly average of \$10,470 in 1977 to a monthly average of \$40,035 during the first 5 months of 1980.
- --At the completion of Browns Ferry nuclear plant,
 tagged equipment items valued at \$560,000 could not
 be located.
- --The Computing Operations Branch was unable to locate about \$1.1 million of the approximately \$10.6 million of ADP tagged equipment for which it was accountable as of April 30, 1979.
- --The latest inventory data available from TVA's 12 fossil plants showed that 2,300 equipment items or

about 17 percent of the 13,700 items inventoried were not located.

In concluding my statement Mr. Chairman, let me emphasize that we foresee rate increases for TVA as unavoidable. We also believe, based on recent work at TVA, that greater management scrutiny could dampen the rate increases somewhat. Many tough decisions face TVA and the Congress. Decisions that will be long lasting for the agency and the consumers in the Valley. Decisions on load growth and capacity expansion plans will become more and more critical as the cost of adding capacity continues to escalate. Decisions will be facing the Congress as to how much and how often TVA's debt ceiling should be raised. Although the Congress doubled the debt ceiling from \$15 to \$30 billion just a short time ago, as seen in exhibit 9, this issue will soon be surfacing again. Because TVA's power program is, in effect, a utility without any regulatory oversight, we believe the Congressional Legislative and Appropriation Committees may want to take a more active role in providing oversight over TVA. As an independent agency in the Legislative Branch, we at GAO will continue to assist the Congress if such oversight is pursued.

We appreciate this opportunity to contribute to this Committees review of TVA's activities and will attempt to answer any questions you may have. EXHIBIT 1

TVA ELECTRICITY PRICE GROWTH ASSUMPTIONS USED IN 1981 FORECASTS (Constant 1972 Dollars)

	Residential price				Commercial and industrial price			Wholesale price		
Year	High	Medium	Low	High	Medium	Low	High	Medium	Low	
				Annual	percentage	growth	rate			
Actual										
1960-1970 1970-1980	-1.6 4.5	-1.6 4.5	-1.6 4.5	0.3 7.5	0.3 7.5	0.3 7.5	0.8 9.2	0.8 9.2	0.8 9.2	
Forecast										
1981 1982 1983 1984 1985 1986 1987	10.0 7.2 2.2 3.1 3.4 1.6 2.0 4.7	8.4 5.8 0.9 1.4 2.2 0.0 0.4 3.5	6.3 4.0 -1.0 -0.5 0.5 -1.9 -1.5	9.0 7.3 2.3 3.1 3.4 1.7 2.0	5.9 0.5 1.4 2.8 0.0	5.3 4.0 -1.0 -0.5 0.5 -2.0 -1.5	10.7 8.8 2.8 3.3 4.4 1.7 2.2 5.8	9.0 7.1 1.1 1.6 2.7 0.0 0.5 4.1	6.7 4.8 -1.2 -0.7 0.4 -2.3 -1.8	
1980-1990 1990-2000 1980-2000	3.8 3.1 3.5	2.3 1.6 1.9	0.4 -0.4 0.03	3.8 3.2 3.5	1.6	0.4 -0.4 -0.03	4.4 3.5 4.0	2.7 1.8 2.3	0.4 -0.5 -0.3	

EXHIBIT 2 EXHIBIT 2

TVA FY 1980 POWER OPERATING EXPENSES AND INTEREST CHARGES

	Amount	Percent
OPERATING EXPENSES	(millions)	
Fuel and Imports		
Fossil Nuclear Combustion turbine Imports	\$1,237 57 8 65	39.1 1.8 0.3 2.1
Operation and Maintenance	482	15.2
Depreciation	169	5.3
Demonstration of Power Use	14	0.4
Administrative and General	117	3.7
Payments in Lieu of Taxes	114	3.6
Social Security	17	0.6
Total operating expenses	\$2,280	72.1
INTEREST CHARGES	881	27.9
Total	\$3,161	100.0

EXHIBIT 3 EXHIBIT 3

CHANGES IN TVA'S NUCLEAR PROGRAM CONSTRUCTION SCHEDULE IN RESPONSE TO CHANGES IN DEMAND FORECASTS

	Commerc	ial operating	date
Unit	Before May 1979 deferral	After May 1979 deferral (note a)	After May 1980 deferral (note a)
Sequoyah 1	01/80	06/80	11/80
Sequoyah 2	09/80	06/81	07/82
Watts Bar 1	12/80	09/81	b/11/82
Watts Bar 2	09/81	06/82	<u>5</u> /08/83
Bellefonte 1	03/83	09/83	12/85
Bellefonte 2	12/83	06/84	09/86
Hartsville Al	12/84	07/86	07/88
Hartsville A2	12/85	07/87	04/89
Hartsville Bl	06/85	06/89	04/95
Hartsville B2	06/86	06/90	04/96
Yellow Creek 1	11/85	11/85	04/88
Yellow Creek 2	11/86	04/88	04/93
Phipps Bend 1	09/85	03/87	02/89
Phipps Bend 2	09/86	08/89	04/94

a/The only units that TVA specifically deferred were the two Hartsville-B units, Yellow Creek 2, and Phipps Bend 2. According to TVA, changes in the schedule for other plants were due to unplanned delays.

 $[\]underline{b}/\text{In}$ February 1981, the commercial operating dates for Watts Bar 1 and 2 were slipped another 13 months.

EXHIBIT 4 EXHIBIT 4

TVA ESTIMATES OF NUCLEAR PLANT CONSTRUCTION COSTS

		Amount rep Budget Pr		Uncapitalized
Nuclear plant	FY 1980	FY 1981	FY 1982 (note a)	interest charges (note a)
			billions	
Sequoyah 1-2	\$ 1.300	\$ 1.460	\$ 2.110	\$0.210
Watts Bar 1-2	1.270	1.475	2.220	0.360
Bellefonte 1-2	1.625	2.050	3.360	0.680
Hartsville A Hartsville B	(3.500	2.616 3.184	4.185 <u>b</u> /7.915	0.825 0.415
Phipps Bend 1 Phipps Bend 2	(1.800	1.536 1.414	2.960 <u>b</u> /3.135	0.445 0.170
Yellow Creek 1 Yellow Creek 2	(2.400	1.540 1.435	2.815 b/2.915	0.475 0.140
Totals	\$ <u>11.895</u>	\$16.710	\$31.615	\$3.720

a/Estimates reported in the FY 1982 Budget Program include some capitalized interest charges, but a significant amount of interest charges associated with the nuclear construction program is expensed each year. Therefore, the estimates in the Budget Program are not the total costs of the construction program.

TVA's Office of Engineering, Design, and Construction provided estimates of uncapitalized interest.

b/The four deferred nuclear units were not included in the FY 1982 Budget Program. These estimates were provided by TVA's Office of Engineering, Design, and Construction.

EXHIBIT 5 EXHIBIT 5

TVA DEPENDABLE CAPACITY (note a)

		19	81	19	85	19	1990		1995		2000	
			Percent		Percent		Percent		Percent		Percent	
		Mega- watts	of total	Mega- watts	of <u>total</u>	Mega- watts	of total	Mega- watts	of total	Mega- watts	of total	
Hydro	0	5603	19.7	5603	17.5	<u>5603</u>	14.2	5603	13.1	5603	12.7	
	Baseload Intermediate Peak	792 3441 1370		792 3441 1370		792 3441 1370		792 3441 1370		792 3441 1370		
Coal		16249	57.2	16249	50.9	16249	41.3	16025	37.4	16025	36.4	
	Baseload Intermediate Peak	9286 6349 614		9286 6349 614		9286 6349 614		9138 6273 614		9138 6273 614		
Nucl	ear	4349	15.3	7851	24.6	15261	38.8	19012	44.4	20245	45.9	
	Baseload Intermediate Peak	4349		7851		15261		19012		20245		
Comb	ustion turbines	2224	7.8	2224	7.0	2224	5.7	2224	5.1	2224	5.0	
	Baseload Intermediate Peak	2224		2224		2224		2224		2224		
TVA	system totals	28425	100.0	31927	100.0	39337	100.0	42864	100.0	44097	100.0	
	Baseload Intermediate Peak	14427 9790 4208		17929 9790 4208		25339 9790 4208		28942 9714 4208		30175 9714 4208		

<u>a/Assumes current construction schedule, 1981 medium forecast, and retirement of coal-fired plants after 50-year service life.</u>

COMPARISON OF TVA LOAD FORECASTS

		Assumpti	ons about	five major	driving fact	ors		
				d forecast (Electricity	consumption
	Alternate	Economic	Substi-	Electricity	Conservation	DOE	growth rate	
Year	forecasts	growth	tution	price	programs	load	1980-1990	1990-2000
							Pero	cent
1978	1	Н	М	L	Н	_	4.60	3.80
(note c)	2	H	M	М	H	-	4.10	3.00
	3	М	М	L	Н	-	3.90	3.20
	4	L	М	L	L	_	3.70	2.80
	5	L	М	M	L	-	3.20	2.00
1979	1	Н	М	L	н		4.60	3.50
	2	М	11	L	L	-	4.30	3.20
	3	M	М	М	L	_	3.60	2.10
	4	М	M	Н	H	_	2.80	1.20
	5	L	M	Н	Н	-	2.40	0.70
1980	High	Н	Н	L	м	E	4.52	3.71
(prepared	Medium	M	М	M	М	E	3.33	2.12
April 1980)		L	L	H	M	E	2.31	-0.03
1981	High	Н	М	м	м	E	3.26	2.30
(prepared	d/Medium	М	М	M	M	E	2.45	1.54
August 1980		L	M	H	M	E	1.41	0.51

a/H = High

M = Medium

L = Low

E = Expected

 $[\]underline{b}$ /The "1980-1990" growth rates column for the 1978 and 1979 forecasts represents growth rates for 1978-1990.

<u>c</u>/This is the forecast presented by TVA before the Senate Committee on the Budget in February 1979 hearing.

d/As of January 1981, TVA had eliminated the mid-range forecast.

EXHIBIT 7 EXHIBIT 7

TVA ECONOMIC GROWTH ASSUMPTIONS USED IN 1981 FORECASTS (Constant 1972 Dollars)

Year	Gross national product (note a)	Gross r High	regional pro Medium	duct Low
	Perc	entage grov	vth rates	
Actual				
1970-1973 1970-1980 1973-1979	4.7 2.8 2.5	7.1 3.3 2.0	7.1 3.3 2.0	7.1 3.3 2.0
Forecast				
1980 1981 1982 1983 1984 1985	-1.2 0.8 4.2 3.2 3.2	-0.1 1.6 4.0 4.0 3.9 3.3	-0.1 0.3 3.6 3.7 3.2 2.5	-0.1 0.3 2.1 1.9 1.5 1.2
1980-1990 1990-2000 1980-2000	2.8 2.8 2.8	3.5 3.5 3.5	2.5 2.9 2.7	1.7 2.7 2.2

a/TVA's source for this data is the Wharton Economic
Forecasting Associates.

EXHIBIT 8 EXHIBIT 8

ADDITIONAL REVENUE REQUIREMENTS DUE TO HIGHER THAN PROJECTED INTEREST RATES (Millions of Dollars)

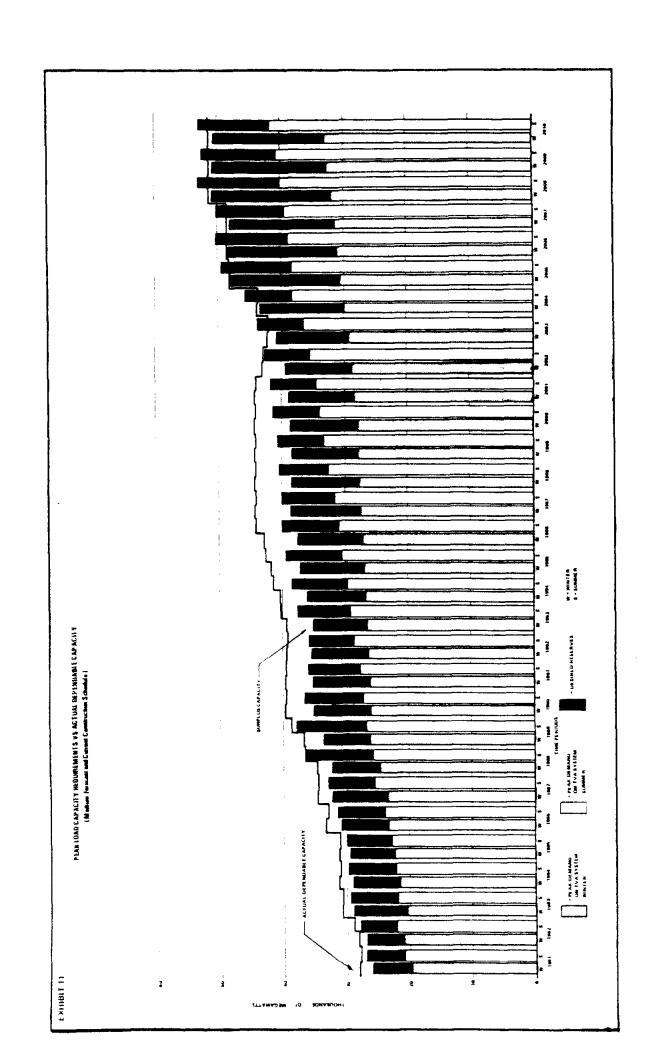
		Percentage	points	higher than	projecte	d
Fiscal	1	point	2 p	oints	3	points
year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
1981	\$ 20	\$ 20	\$ 50	\$ 50	\$ 70	\$ 70
82	40	60	100	150	140	210
83	60	120	140	290	210	420
84	80	200	180	470	270	690
85	100	300	220	690	320	1,010
86	120	420	260	950	380	1,390
87	150	570	310	1,260	450	1,840
88	170	740	360	1,620	520	2,360
89	200	940	410	2,030	600	2,960
90	220	1,160	460	2,490	670	3,630
91	240	1,400	500	2,990	730	4,360
92	270	1,670	560	3,550	820	5,180
93	310	1,980	630	4,180	920	6,100
94	350	2,330	720	4,900	1,060	7,160
95	410	2,740	850	5,750	1,260	8,420

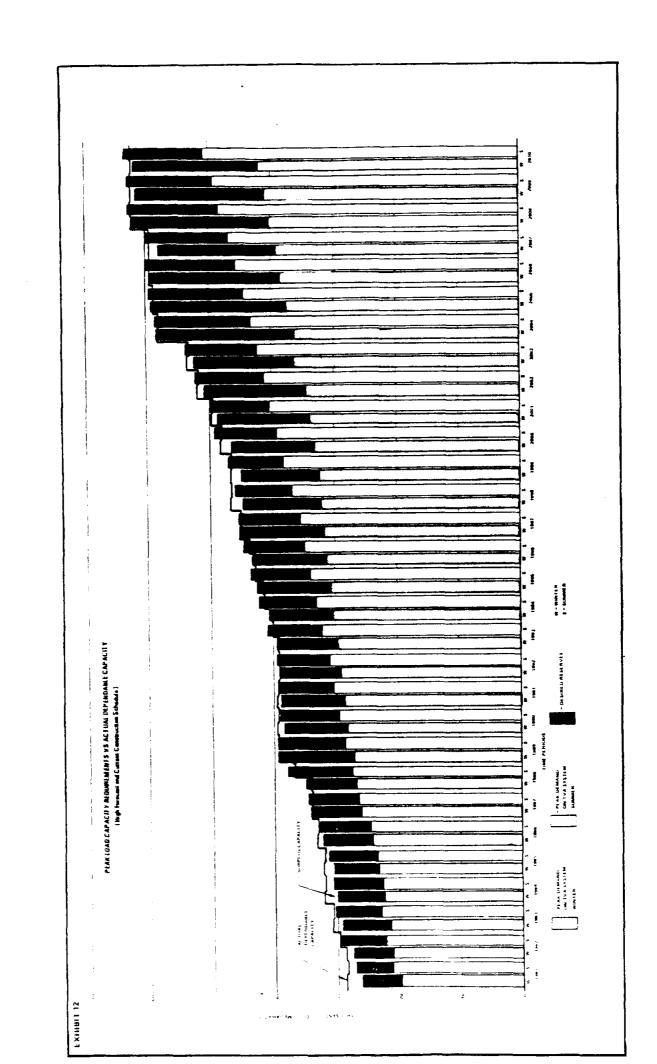
EXHIBIT 9 EXHIBIT 9

TVA ESTIMATES OF TOTAL OUTSTANDING DEBT UNDER THE CURRENT CONSTRUCTION SCHEDULE AND THE 1981 DEMAND FORECASTS (note a)

Fiscal year	Low forecast	Medium forecast	High forecast
		billions	
1981	\$ 12.9	\$ 12.9	\$ 12.9
1982	15.3	15.3	15.3
1983	17.5	17.5	17.5
1984	19.4	19.4	19.4
1985	21.2	21.2	21.2
1986	23.1	23.1	23.1
1987	24.9	24.9	24.9
1988	26.9	26.9	26.9
1989	28.8	28.8	28.8
1990	30.6	30.6	30.7
1991	32.5	32.5	32.8
1992	34.5	34.5	35.8
1993	36.6	36.6	39.0
1994	38.7	38.8	43.7
1995	40.8	41.4	50.3
1996	43.0	45.1	58.7
1997	45.6	50.3	70.0
1998	48.5	56.7	82.5
1999	51.7	64.8	97.2
2000	55.2	74.8	113.6
2001	59.1	86.5	131.2
2002	63.7	99.6	150.0
2003	69.0	116.0	168.5
2004	75.6	133.2	185.7
2005	83.5	149.5	202.8
2006	93.9	166.6	221.9
2007	105.9	185.7	242.1
2008	121.3	202.4	264.1
2009	136.6	219.8	287.9
2010	153.5	238.8	314.7

a/The debt level for each year assumes that 20 percent of construction costs will be financed from internal funds.


EXHIBIT 10 EXHIBIT 10


ESTIMATED FUEL COSTS FOR TVA'S COAL AND NUCLEAR CAPACITY (note a)

	Cost of coal per kwh (note b)						Cost of	nuclear fuel
Fiscal	Low	cost unit	Mid co	st unit	High	cost unit	per kwh s	ystem average
year	Mills :	Increase(%)	Mills Ir	ncrease(%)	Mills	Increase(%)	Mills	Increase(%)
					<u> </u>			
1981	15.1	-	18.4	-	22.6	-	3.2	-
82	16.6	9.9	19.5	6.0	24.7	9.3	4.6	43.8
83	18.5	11.4	21.1	8.2	27.6	11.7	5.4	17.4
84	19.2	3.8	23.8	12.8	31.6	14.5	6.6	22.2
85	19.9	3.6	27.4	15.1	35.7	13.0	7.9	19.7
86	21.3	7.0	29.6	8.0	39.3	10.1	9.2	16.5
87	22.8	7.0	32.6	10.1	43.2	9.9	10.3	12.0
88	25.6	12.3	35.3	8.3	46.9	8.6	11.7	13.6
8 9	28.3	10.5	37.1	5.1	50.3	7.2	12.8	9.4
1990	29.9	5.7	39.0	5.1	53. 7	6.8	13.5	5.5
91	31.7	6.0	41.0	5.1	59.0	9.9	14.6	8.1
92	33.6	6.0	43.1	5.1	62.9	6.6	15.7	7.5
93	39.3	17.0	45.4	5.3	66.5	5.7	17.1	8.9
94	43.6	10.9	47.7	5.1	70.4	5.9	18.6	8.8
95	46.3	6.2	50.5	5.9	74.6	6.0	20.3	9.1
96	49.5	6.9	53.5	5.9	80.3	7.6	21.9	7.9
97	52.8	6.7	58.2	8.8	85.8	6.8	23.7	8.2
98	56.2	6.4	62.8	7.9	92.5	7.8	25.5	7.6
9 9	59.8	6.4	67.5	7.5	99.5	7.6	27.6	8.2
2000	63.7	6.5	71.6	6.1	105.9	6.4	30.0	8.7
01	68.0	6.8	77.5	8.2	108.2	2.2	32.6	8.7
02	72.5	6.6	81.0	4.5	110.6	2.2	35.5	8.9
03	77.4	6.8	87.3	7.8	113.0	2.2	38.7	9.0
04	82.5	6.6	94.1	7.8	115.4	2.1	41.7	7.8
05	88.1	6.8	101.4	7.8	117.9	2.2	44.8	7.4
06	94.0	6.7	109.3	7.8	120.5	2.2	48.0	7.1
07	100.2	6.6	110.8	1.4	129.8	7.7	51.7	7.7
08	107.0	6.8	115.0	3.8	139.7	7.6	55.8	7.9
09	114.1	6.6	123.6	7.5	150.5	7.7	59.9	7.3
10	121.8	6.7	132.8	7.4	162.1	7.7	65.1	8.7

 $[\]underline{a}/\text{Costs}$ are not adjusted for inflation and are based on unaudited data provided by TVA.

b/Most coal units fall into the low to mid-cost range. The high cost coal units require low sulfur coal.

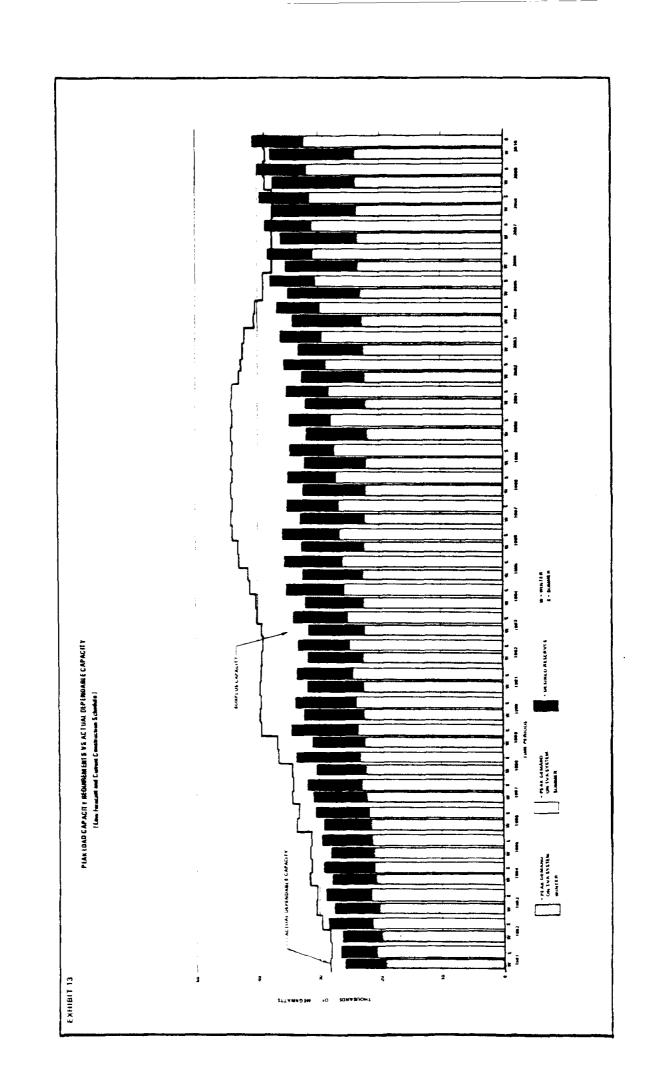


EXHIBIT 14 EXHIBIT 14

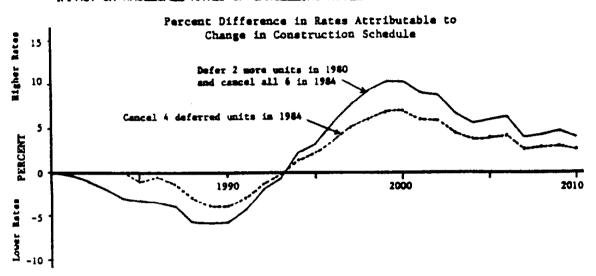
TVA ESTIMATES OF SUMMER PEAK DEMAND RESERVE MARGINS LOW FORECAST AND CURRENT CONSTRUCTION SCHEDULE

		Reserve margins							
	D	esired	Ava	ilable	Surplus				
Year	NW	Percent	MW	Percent	MW	Percent			
1981	6030	29.0	7626	36.7	1596	7.7			
1982	7045	32.6	7950	36.8	905	4.2			
1983	7283	33.4	8937	41.0	1654	7.6			
1984	7980	37.3	10519	49.1	2539	11.8			
				47.5	2320	10.7			
1985	7966	36.8	10286 10828	48.5	2618	11.7			
1986	8210	36.8							
1987	8486	36.3	10951	46.8	2465 3052	10.5 12.9			
1988	10104	42.6	13156	55.5		19.3			
1989	10676	44.5	15321	63.8	4645				
1990	9515	39.1	14981	61.5	5466	22.4			
1991	9064	36.7	14667	59.5	5603	22.8			
1992	8379	33.4	14049	56.1	5670	22.7			
1993	8866	34.8	14915	58.5	6049	23.7			
1994	9168	35.3	15641	60.2	6473	24.9			
1995	8943	33.7	16342	61.6	7399	27.9			
1996	9017	33.7	17314	64.6	8297	30.9			
1997	8042	29.7	17005	62.8	8963	33.1			
1998	7640	27.9	16695	60.9	9055	33.0			
1999	6941	25.0	16360	59.0	9419	34.0			
2000	6759	24.1	16024	57.1	9265	33.0			
2001	6665	23.4	15619	54.8	8954	31.4			
2002	6686	23.1	14457	50.0	7771	26.9			
2003	6768	23.0	13231	45.0	6463	22.0			
2004	7034	23.6	10715	35.9	3681	12.3			
2005	7352	24.3	8467	28.0	1115	3.7			
2006	7438	24.2	7264	23.7	-174	5			
2007	7440	23.9	6851	22.0	-589	-1.9			
2008	8174	25.9	6043	19.2	-2131	-6.7			
2009	8000	25.0	6614	20.7	-1386	-4.3			
2010	7949	24.5	6170	19.0	-1779	-5.5			

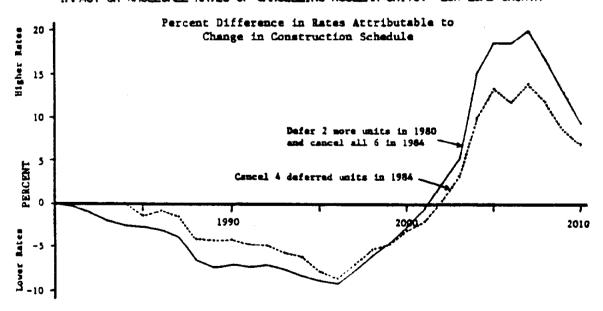
EXHIBIT 15 EXHIBIT 15

TVA ESTIMATES OF SUMMER PEAK DEMAND RESERVE MARGINS HIGH FORECAST AND CURRENT CONSTRUCTION SCHEDULE

		Reserve margins								
	D	esired	Ava	ilable	Surplus					
Year	NW	Percent	MW	Percent	MW	Percent				
1981	6076	28.8	7309	34.6	1233	5.8				
1982	7156	32.1	7274	32.6	118	•5				
1983	7464	32.7	7894	34.5	430	1.8				
1984	7945	34.8	9086	39.8	1141	5.0				
1985	7985	34.0	8440	35.9	455	1.9				
1986	8297	33.6	8416	34.0	119	. 4				
1987	8604	32.6	7920	30.0	-684	-2.6				
1988	10477	38.2	9477	34.6	-1000	-3.6				
1989	11252	39.6	10953	38.6	-299	-1.0				
1990	9606	32.6	9881	33.5	275	.9				
1991	9155	30.2	9036	29.8	-119	4				
1992	8448	27.0	7869	25.2	-579	-1.8				
1993	9110	28.3	8186	25.4	-924	-2.9				
1994	9158	27.5	8376	25.2	-782	-2.3				
1995	9521	27.7	8487	24.7	-1034	-3.0				
1996	9795	27.8	8890	25.3	-905	-2.5				
1997	9563	26.5	9266	25.6	-297	9				
1998	9016	24.3	9263	24.9	247	. 6				
1999	8757	22.9	8169	21.4	-588	-1.5				
2000	9244	23.5	8240	20.9	-1004	-2.6				
2001	9603	23.8	8419	20.9	-1184	-2.9				
2002	10998	26.5	10305	24.8	-693	-1.7				
2003	11754	27.6	10801	25.3	-953	-2.3				
2004	14215	32.5	13593	31.1	-622	-1.4				
2005	14913	33.2	14214	31.6	~ 699	-1.6				
2006	14102	30.6	13498	29.3	-604	-1.3				
2007	12997	27.5	12333	26.1	-664	-1.4				
2008	14796	30.5	14244	29.4	-552	-1.1				
2009	13661	27.5	13006	26.2	~655	-1.3				
2010	12924	25.4	11721	23.0	-1203	-2.4				


EXHIBIT 16 EXHIBIT 16

COMPARISON OF WHOLESALE RATES UNDER ALTERNATE CONSTRUCTION SCENARIOS AND DEMAND FORECASTS (note a) (Cents per kwh)


Option A			Ontion		Option C Six units deferred;	
	Current construction		Option Four units			
	schedule (four units				cancel all six units	
Ti1	deferred until 1984)		cancel four	High	in 1984	
Fiscal	Low	High				High
year	forecast	forecast	forecast.	forecast	forecast	forecast
1981	3.3	3.3	3.3	3.3	3.3	3.3
82	3.9	3.9	3.9	3.9	3.9	3.8
83	4.3	4.2	4.3	4.2	4.2	4.1
84	4.7	4.6	4.7	4.6	4.6	4.5
85	5.3	5.1	5.2	5.1	5.2	4.9
86	5.7	5.4	5.6	5.4	5.5	5.3
87	5.9	5.7	5.8	5.6	5.7	5.5
88	6.8	6.4	6.5	6.2	6.3	6.0
89	7.3	6.8	7.0	6.5	6.8	6.4
1990	7.8	7.2	7.5	6.9	7.2	6.8
91	8.2	7.5	7.8	7.3	7.6	7.2
92	8.7	8.0	8.3	7.9	8.1	7.8
93	9.4	8.6	8.8	8.6	8.7	8.5
94	10.1	9.3	9.5	9.4	9.3	9.5
95	11.0	10.2	10.2	10.4	10.1	10.5
96	12.0	11.2	11.0	11.6	10.9	11.8
97	12.9	12.3	12.0	13.0	11.9	13.3
98	13.8	13.6	13.0	14.5	13.0	14.9
99	14.9	15.1	14.2	16.1	14.2	16.7
2000	16.1	16.7	15.6	17.9	15.7	18.4
01	17.4	18.6	17.1	19.8	17.4	20.3
02	18.6	20.7	18.7	21.9	19.0	22.5
03	19.8	23.0	20.5	24.0	20.9	24.5
04	20.6	24.6	22.7	25.5	23.7	26.0
05	21.9	26.2	24.8	27.2	25.9	27.7
06	23.8	27.9	26.6	29.0	28.2	29.6
07	25.9	30.5	29.6	31.3	31.1	31.7
08	28.4	32.4	31.8	33.3	33.2	33.7
09	31.4	34.4	34.2	35.5	35.5	36.0
2010	34.2	36.8	36.6	37.8	37.5	38.3

 $[\]underline{\text{a}}/\text{Wholesale}$ rates are not adjusted for inflation and are based on unaudited data from TVA financial projections.

IMPACT ON WHOLESALE RATES OF CANCELLING NUCLEAR UNITS: HIGH LOAD GROWTH

IMPACT ON WHOLESALE RATES OF CANCELLING NUCLEAR UNITS: LOW LOAD GROWTH

SOURCE: TVA WHITE PAPER, IMPLICATIONS FOR TVA OF CHANGING LOAD FORECASTS

EXHIBIT 18 EXHIBIT 18

PERCENT DIFFERENCES BETWEEN RATES UNDER THE CURRENT CONNSTRUCTION SCHEDULE AND RATES UNDER OTHER CONSTRUCTION OPTIONS (note a)

	Low demand f	orecast	High demand forecast		
	Defer six		Defer six		
	units in 1980,	Cancel four	units in 1980,		
Fiscal	cancel six units	units	cancel six units	units	
year	in 1984	in 1984	<u>in 1984</u>	<u>in 1984</u>	
		Percen	\t		
			2 2	2.2	
1981	0.0	0.0	0.0	0.0	
82	0.0	0.0	-2.6	0.0	
83	-2.3	0.0	-2.4	0.0	
84	-2.1	0.0	-2.2	0.0	
85	-1.9	-1.9	-3.9	0.0	
86	-3.5	-1.8	-1.9	0.0	
87	-3.4	-1.7	-3.5	-1.8	
88	-7.4	-4.4	-6.3	-3.1	
89	-6.8	-4.1	-5.9	-4.4	
1990	- 7.7	-3.8	-5.6	-4.2	
91	-7.3	-4.9	-4.0	-2.7	
92.	-6.9	-4.6	-2.5	-1.3	
93	-7.4	-6.4	-1.2	0.0	
94	- 7.9	-5.9	2.2	1.1	
95	-8.2	-7. 3	2.9	1.9	
96	-9.2	-8.3	5.4	3.6	
97	-7.8	-7.0	8.1	5.7	
98	- 5.8	-5.1	9.6	6.6	
99	-4.7	-4.7	10.6	6.6	
2000	- 2.5	-3.1	10.2	7.2	
01	0.0	-1.7	9.1	6.5	
02	2.2	.5	8.7	5.8	
03	5.6	3.5	6.5	4.3	
04	15.0	10.2	5.7	3.7	
0.5	18.3	13.2	5.7	3.8	
06	18.5	11.8	6.1	3.9	
07	20.1	14.3	3.9	2.6	
08	16.9	12.0	4.0	2.8	
09	13.1	8.9	4.7	3.2	
2010	9.6	7.0	4.1	2.7	
	,	, • •			

a/Based on unaudited data from TVA financial projections.

EXHIBIT 19

TOTAL COAL CONTRACTED FOR BY TVA FISCAL YEARS 1970-1979

	Contract	<u>amount</u>
Type of contract	Tons in millions	Percent of total
Spot contracts	31.29	8.2
Term contracts		
Less than 1 year 1 to 5 years 5 to 10 years Over 10 years	2.20 75.55 48.93 224.66	.6 19.7 12.8 58.7
	382.63	100.0

COMPARISON OF ANNUAL COAL PROCUREMENTS UNDER ADVERTISED, NEGOTIATED, AND SPOT CONTRACTS FISCAL YEAR 1970-1979

	Advertised contracts		Negotiated contracts			Spot contracts			
Year	Tons (Millions)	Percent of annual total (%)	Contract length (Years)	Tons (Millions)	Percent of annual total (%)		Tons (Millions)	Percent of annual total (%)	Annual total tons (Millions)
1970	1.50	3.1	.5 - 1.75	45.88	95.6	3.5 - 17	0.59	1.2	47.97
1971	1.73	62.7	.5 - 2.0	-	-	-	1.03	37.3	2.76
1972	2.77	61.1	1 - 3	-	-	-	1.76	38.9	4.53
1973	23.12	90.6	.5 - 9.5	0.09	0.3	.5	2.31	9.1	25.52
1974	-	-	-	16.52	96.9	1 - 3.5	0.52	3.1	17.04
1975	0.54	1.5	3.5	30.41	86.0	1 - 10	4.42	12.5	35.37
1976	5.16	63.3	2	-	_	-	2.99	36.7	8.15
1977	25.62	23.3	3 - 10	80.94	_	1 - 17.	3 3.43 <u>a</u> /	3.1	109.99
1978	-	-		110.76	91.2	1 - 11	10.70	8.2	121.46
1979	6.30	64.0	.5 - 3		-	-	3.54	36.0	9.84
Totals	66.74	17.4	.5 - 10.0	284.60	74.4	.5 - 17	31,29	8.2	382.63

 $[\]underline{a}/Includes$ transition quarter.

EXHIBIT 21 EXHIBIT 21

TVA OWNED OR CONTROLLED COAL RESERVES APRIL 1980

Property Name	Tons when acquired	Remaining tons recoverable at at current costs
Red Bird	25,000,000	5,000,000
Franklin County	65,000,000	65,000,000
Koppers	67,000,000	25,000,000
Camp Breckinridge	225,000,000 (note a)	150,000,000
Waverly Coal Block	65,000,000	-
Fabius	10,495,000 (note b)	5,000,000
Eads	4,803,000 (note b)	10,000,000
ENCA	370,000,000	370,000,000
Total	832,298,000	630,000,000

<u>a</u>/Leased coal

 $\underline{b}/\mathtt{Additional}$ reserves were purchased after property acquired.

EXHIBIT 22 EXHIBIT 22

TVA COAL INVENTORY DATA AS OF SEPTEMBER 30, 1980

	In			
Plant name	Target	Actual	Excess	Value of excess inventory
Bull Run Colbert Cumberland Gallatin John Sevier Johnsonville Kingston Paradise	668,000 824,000 1,522,000 680,000 553,000 918,000 1,022,000 1,389,000	792,043 1,148,502 1,741,434 1,847,601 842,563 1,150,179 2,399,243 3,327,338	124,043 324,502 219,434 1,167,601 309,563 232,179 1,377,243 1,938,338	\$ 3,812,089 11,995,865 7,133,799 45,557,455 11,680,121 8,780,081 49,993,920 36,735,381
Widows Creek (Units 7&8)	675,000	858,994	183,994	7,108,792
Total	8,231,000	14,107,897	5,876,897	\$182,797,503